
EDIC RESEARCH PROPOSAL 1

Programming Datacenter-Scale Reconfigurable
Systems

Stuart Byma
I&C, EPFL

Abstract—The growth, complexity and performance require-
ments of modern datacenter services are outpacing general-
purpose server performance. The trend is evident in the end
of Dennard scaling, and in the fact that the end of Moore’s
Law is not far off. Reconfigurable hardware in the form Field
Programmable Gate Arrays has recently been shown to be a
viable solution to this performance mismatch, using hardware
acceleration at scale to boost performance, while maintaining the
desirable properties of a datacenter. The barrier to widespread
adoption is high however, with FPGAs being difficult to program
and use effectively without specialist expertise. In this research
proposal, we examine recent work involving FPGAs in the data-
center, as well as current methods to alleviate the programming
problem, which include Domain-Specific Languages and High-
Level Synthesis. We propose that using these techniques in
conjunction with one another may be sufficient to raise the
abstraction to an acceptable level for non-hardware experts to de-
velop next-generation, hardware-accelerated datacenter services.

Index Terms—Datacenters, FPGAs, DSLs, HLS

I. INTRODUCTION

The datacenter has emerged as the cornerstone of modern
Information Technology (IT) infrastructure. These massive

Proposal submitted to committee: May 11th, 2015; Candi-
dacy exam date: May 19th, 2015; Candidacy exam committee:
Prof. Paolo Ienne, Prof. James Larus, Prof. Edouard Bugnion.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(B. Falsafi) (signature)

EDIC-ru/05.05.2009

systems are generally based on commodity components and
general-purpose CPUs, which keeps costs down while at the
same time providing a familiar environment for application
developers to work in. The performance increases of general-
purpose machines, however, are slowing as we reach fun-
damental physical limits of the transistors they are built of.
Dennard scaling, the concept that power density scales down
with transistor size, has already ended, leading to an era of
dark silicon where the full complement of transistors on an IC
cannot be powered simultaneously without risk of catastrophic
failure. Moore’s Law, the doubling of transistors on chip every
two years is also nearing the end as device sizes approach
fundamental atomic limits.

Modern datacenter workloads, however, are becoming more
complex and computationally demanding much faster than
server performance is scaling. This is quickly creating a funda-
mental mismatch between available resources and demand, a
mismatch that will need to be resolved to enable the advanced
datacenter services of the future.

Hardware acceleration is one potential solution to this prob-
lem, where algorithms or computationally intensive kernels
are implemented directly in hardware to provide much higher
performance and performance per Watt than general purpose
machines. Commonly done in the past using ASICs, silicon
fabrication has become far too expensive and risky for most
datacenter providers and users. It is also rigid and inflexible,
as it is impossible to change a design after fabrication – a
fact that is incompatible with the quickly evolving datacenter
services we see today. Reconfigurable hardware, such as Field
Programmable Gate Arrays (FPGAs), can provide a more
flexible alternative for hardware acceleration. Using FPGAs
in a datacenter is a relatively new concept however, and this
proposal will examine some recent work in this area. FPGAs,
being low-level hardware devices, also present challenges
in programming, especially considering that most datacenter
users and developers are not hardware design experts. This
proposal will also investigate recent work that can help alle-
viate this programming problem.

A. Field-Programmable Gate Arrays

An FPGA is a silicon device consisting of a large array
of programmable logic blocks that use Look Up Tables to
implement digital logic functions. Logic blocks also contain
flip-flops and memory elements to create stateful circuits.
FPGAs also contain a programmable routing network used to
wire logic blocks together to create arbitrary digital circuits,



EDIC RESEARCH PROPOSAL 2

however modern devices are large and require complex CAD
tools to map circuits into this fabric. Modern FPGAs also
benefit from hardened blocks such as multi-kilobit memories,
DSP blocks and communications hardware (e.g. PCI Express).
In short, FPGAs provide the benefits of hardware acceleration
while remaining reprogrammable.

FPGAs have several traditional application domains. They
are commonly found in networking and telecommunication
equipment, in signal and image processing applications, as
well as in ASIC prototyping systems. Related to datacenter
systems, FPGAs are also used in High-Performance Com-
puting systems. FPGAs have not typically been used in
modern datacenters as a method of accelerating or enhancing
performance. However, recent work has demonstrated that
FPGAs can have a large impact on the performance of dat-
acenter services while preserving the desirable characteristics
of modern datacenters such as homogeneity and the use of
Commercial off the Shelf (COTS) products. This system,
called Catapult [1], will be discussed in Section II.

B. The Programming Problem

One of the major, longtime challenges of using FPGAs is the
difficulty in programming them – traditional design involves
writing Register Transfer Level (RTL) code in Hardware
Description Languages (HDL) such as Verilog or VHDL that
requires digital design expertise. This problem is especially
relevant in the domain of datacenters, as the majority of data-
center services and applications are created by non-hardware
experts. There is a clear need for abstractions and systems that
can mask the low-level nature of FPGA programming.

1) High-Level Synthesis (HLS): Related to DSLs is the
concept of High-Level Synthesis, where high level languages
(usually C or C++) are automatically compiled down to HDL
or circuit implementations. HLS is generally not domain
specific, but does provide abstractions that can make hardware
design more accessible to non-hardware experts. To illustrate
this, we review in Section III the Autopilot tool [2], an
industry-grade HLS tool specifically geared towards HLS for
FPGA designs.

2) Domain-Specific Languages (DSLs): A Domain-Specifc
Language is a language that is tailored for a specific appli-
cation domain, containing features and semantics that make
it easier to express solutions in that domain. DSLs can
provide useful higher level abstractions over traditional general
purpose languages, and can also help solve the programming
problem by providing abstractions for traditional HDLs. The
higher-level nature of DSLs can also constrain the computation
model and data flow patterns for a domain, which aids hard-
ware generation by restricting possible circuit architectures to
those that fit well with the domain in question. In Section IV
we examine a recent, successful DSL for image processing
called Halide [3], and also examines how it might bridge the
gap between application developers and FPGA hardware.

C. Programming Hardware at Scale

The FPGA programming problem has been acknowledged
and studied for quite some time, and numerous tools and

CPU CPU CPU 

FPGA FPGA FPGA 

PCIe 
SLIII 

Inter-FPGA Routing 

PCIe 
x8 

DMA 

DDR3	  Control	  

Applica0on	  
(Role)	  

Config	  

JTAG	  

SEU	  

I2C	  

Fig. 1: Catapult system architecture (a 3 x 3 subset) and shel-
l/role architecture, adapted from [1]. Note that the complete
torus network configuration is not illustrated here.

systems have emerged in the attempt to solve the problem.
These include:

• HLS tools such as Autopilot [2] and LegUp [4], an open
source tool

• FPGA system integration and portability tools such as
LEAP [5] and CoRAM [6]

• New HDLs that adopt a more functional programming
style, examples including BlueSpec Verilog [7] and
Chisel [8]

• Overlay architectures that abstract the fine-grain FPGA
fabric. Examples are numerous, including all manner
of soft processors, Coarse Grain Reconfigurable Arrays
(CGRA), and other domain-specific overlays.

While some of these are geared more towards speeding
up FPGA development and some, like HLS, attempt to make
FPGA programming more software-like, the fact remains that
some hardware expertise is generally still required in order
to obtain good Quality of Results. The research proposal in
Section V of this paper will examine how HLS might be
combined with domain-specificity to remove this need for
hardware expertise, while also considering the implications of
working inside datacenter-scale systems like Catapult, where
applications involve not one but many distributed FPGAs.

II. CATAPULT

The Catapult system [1] is the result of a recent effort
at Microsoft attempting to bridge the gap between server
performance and workload needs. Figure 1 shows the archi-
tecture of the system. Catapult is a reconfigurable fabric for
the datacenter, and consists of “pods” of 48 servers, each
containing a custom PCIe daughtercard with a Stratix 5 FPGA.
Each card has 8 GB of local DRAM, and FPGAs are connected
to one another through dedicated 10 Gb/s links that form a
6x8 two dimensional torus. Catapult was constructed in this
way for several reasons. First, it maintains homogeneity – all
the servers are the same, which ensures a consistent platform
for users and simplifies management. Second, it allows the
creation of multi-FPGA systems – the dedicated links of
the secondary network allow sufficiently fast data transfer
between FPGAs, the alternative of going through PCIe to
the host and over the regular datacenter network (Ethernet)
being too slow. The architecture also allows flexibility in the



EDIC RESEARCH PROPOSAL 3

number of FPGAs used in an application, which avoids wasted
FPGA fabric. The daughtercards were also designed with the
datacenter in mind. They are compact enough to fit inside a
dense 1U half-width server, and have a power requirement that
can be supported by only the PCIe interface. The increased
total cost of ownership per server does not exceed 30%, of
which 10% is for power.

A. Shell and Role Architecture

To facilitate design reuse and productivity, FPGA hardware
in Catapult is divided into two parts, as shown in Figure 1: a
“shell”, containing necessary interface and system integration
hardware, and the “role”, containing application-specific logic.
The shell facilitates role access to DRAM, access to the inter-
FPGA links with routing, access to the PCIe and DMA,
while supporting management functions like reconfiguration
and Single Event Upset detection and correction. This design
lets the hardware developer focus on implementing their
hardware without worrying about the complexities of memory
controllers, interfaces, and other device-specific complexities.

B. Software Support

Catapult also has a significant software infrastructure to
support it, including two new services: the Mapping Manager
and Health Monitor. The Mapping Manager facilitates service
start-up by configuring bitstreams (FPGA hardware images)
into the devices. The Health Monitor helps to deal with
suspected failures. Other major changes to system software
were made to:

• Ensure Correct Operation – FPGA reconfiguration is
a disruptive process. The FPGA can appear as failed on
the PCIe bus and can possibly send garbage data on the
inter-FPGA links. Disabling non-maskable interrupts for
the FPGA PCIe device solves the first problem, while
a series of communication management message types
serve to solve the second.

• Detection and Recovery from Failure – The health
monitor is activated when higher level services detect un-
responsive servers. Servers are diagnosed, and if healthy,
the FPGAs and associated components are checked for
errors. If necessary, the Mapping Manager is called upon
to reposition roles away from faulty FPGAs in the torus
network.

• Debugging – To facilitate debugging on such a large
scale, the Catapult FPGA hardware includes a lightweight
“Flight Data Recorder” that captures runtime data. This
data is streamed out of the system, and forms an operation
log of the hardware.

C. Bing PageRank Acceleration

To demonstrate Catapult, the authors map the Bing PageR-
ank algorithm into hardware, involving approximately 30,000
lines of C++ converted by hand into Verilog. The hardware is
mapped onto seven FPGAs in a macropipeline with one spare
– Figure 2 shows a diagram of the application. The pipeline
consists of stages to perform Feature Extraction, Free-Form

Fig. 2: Bing ranking mapped to eight FPGAs, from [1].

Fig. 3: Relative average and tail latencies, from [1].

Fig. 4: Throughput relative to software at 95th percentile
latency, from [1].

Expression calculations, and finally document scoring via a
machine-learned model. Because the software model changed
rapidly (on the order of weeks or months), the hardware was
designed such that changes in the model could be deployed
without redesign of the hardware. All eight CPUs can inject
documents to be ranked by the pipeline – injected documents
are forwarded via the inter-FPGA links to the pipeline head,
and upon completion the result is sent back to the originating
server.

Multi-node injection experiments on a 1632 server testbed
(with 672 running the ranking service) show that the FPGA-
based ranking can significantly reduce latency compared to



EDIC RESEARCH PROPOSAL 4

pure software (Figure 3). The hardware is shown to reduce
worst-case latency by 29% in the 95th percentile distribution,
improving at higher injection rates because of software la-
tency variability caused by memory heirarchy contention. For
latencies bound at the 95th percentile, the FPGA hardware
improves system throughput by 95% (Figure 4).

D. Discussion

The PageRank acceleration makes a strong case for the use
of FPGAs in the datacenter. A near doubling in throughput
means that the number of servers for a service like Bing can
be cut in half, or performance can be nearly doubled with
the same number of servers, with total cost of ownership
not increasing more than 30%. More importantly, Catapult
has shown a commercially-viable method of bridging the
increasing performance gap between general purpose servers
and large-scale datacenter services. However, the major imped-
iment to widespread adoption is of course the aforementioned
programming problem – sections III and IV will look further
into this problem.

III. AUTOPILOT HIGH-LEVEL SYNTHESIS

Although Catapult has demonstrated how effective hardware
acceleration can be in the datacenter, it required many skilled
hardware designers to create applications for it. To gain
traction among datacenter service developers, the low-level
details of hardware design must be hidden or abstracted away.
High-Level Synthesis is one technique that attempts to make
this abstraction, automatically compiling software or software-
like languages down to HDL. Autopilot [2] is a state of the
art HLS tool that we will examine in this section.

A. C-Based HLS

As the authors of Autopilot point out, recent efforts in
HLS mostly use C or C++ as input languages. This presents
a familiar interface to system designers and allows use of
compiler technology developed for software, however C/C++
are inherently sequential languages that lack bit accuracy
and timing information that hardware requires. There are
also language constructs such as pointers that do not map
well to hardware. The common solution to this is to add
language extensions and restrict use to a “synthesizable sub-
set”, introducing pragmas or directives to inform the compiler
about desired hardware architecture. Autopilot follows this
methodology, however it goes further than most other tools in
supporting large subsets of C, C++ and SystemC. Other tools,
such as Cadence C-to-Silicon [9], Mentor Catapult C [10] and
Synopsys Synphony C [11], tend to support only one language
with a narrow focus, and depend on embedded timing and
interface details that complicate design entry.

B. Compilation, Synthesis, Optimization

Autopilot takes a platform approach to HLS, outputting
optimized RTL in Verilog, VHDL or SystemC, along with
comprehensive simulation frameworks for verification of the
generated code. The flow targets Xilinx FPGAs, and includes

Fig. 5: The Autopilot C to HDL compilation flow, from [2].

capabilities to map hardware constructs onto Xilinx FPGA
primitives (DSP multipliers, Block RAMs) to improve perfor-
mance. Figure 5 shows the Autopilot compilation flow.

Autopilot is tightly integrated with LLVM [12] and uses
Clang as a front end to translate C/C++ into LLVM Interme-
diate Representation (IR). Code optimizations are performed,
including constant propagation, dead code elimination, mem-
ory dependence analysis, loop transformations, as well as
hardware-specific optimizations such as bitwidth analysis.

Autopilot is geared towards FPGA implementation, and
makes many assumptions and optimizations specifically for
these platforms. Depending on the device, constraints are
added depending on how many Block RAMS, DSPs, logic
blocks are on said device, and area, delay and power for
each of these blocks is characterized and factors into the
compilation and optimizations. Certain hardware constructs
also have very different costs on FPGAs compared to ASICs
– multiplexors are expensive on FPGAs since they are im-
plemented in slow logic blocks, however memory is cheap
and generally abundant in the form of Block RAMs. These
FPGA-specific features are also factored into compilation.

One of the important problems in the HLS compilation
process is scheduling, where operations are scheduled not as
processor instructions but as hardware operations that take
place within certain clock cycles, subject to their dependen-
cies. Autopilot uses System of Difference Constraints (SDC)
scheduling, where operations have a schedule variable to
represent the time step at which they occur, with constraints
in an integer-difference form. SDC [13] relies on the fact
that the resulting constraint matrix is unimodular – a linear
program with such a matrix will always have integer solutions,
so an optimal schedule can be found in polynomial time.
Autopilot expresses data, control and timing constraints in this
way. Additionally, Autopilot uses a modified SDC that allows



EDIC RESEARCH PROPOSAL 5

Fig. 6: Comparison of hand-coded HDL to Autopilot results,
from [2].

some constraints to be violated (called soft constraints), which
allow the tool to more easily make trade-offs between design
goals – this is possible since FPGA component timings are
estimated, and a small timing violation will usually not affect
correct functionality of a design. Autopilot also applies other
optimizations to efficiently map constructs to FPGA primitive
blocks, to efficiently share resources, and to partition memory
to increase throughput of loops with array accesses.

C. Results
The authors of Autopilot compare a hand-coded RTL design

of a sphere decoder to a version created with Autopilot. The
RTL version was created by Xilinx, while the HLS version was
converted to Autopilot compatible C++ from about 4000 lines
of MATLAB code, with the algorithm consisting mainly of
linear algebra operations. Autopilot was able to generate final
designs consuming less area in less time than hand-coding.
Figure 6 compares area and design time of the two methods.

D. Discussion
Autopilot provide several benefits in terms of solving the

programming problem for FPGAs. The input as C/C++ can
be compiled as either software or hardware, which facilitates
algorithmic correctness verification. There is a more familiar
interface for designers, and it has been shown that produc-
tivity can be enhanced. However, HLS in this form does not
give a high enough abstraction – Autopilot code must still
be sprinkeled with #pragma directives to get comparable
performance, and generally needs design iterations that require
an understanding of the RTL code that the tool outputs. Such
iterations are difficult to automate given the general-purpose
nature of the tool, but constraining the application domain may
allow higher-level abstractions to be built without sacrificing
quality of results.

IV. HALIDE: DOMAIN-SPECIFIC, FUNCTIONAL
IMAGE PROCESSING

A DSL is a language with a constrained set of features
directed towards a certain type of application. This has two
immediate benefits – it is easier for the programmer to express
solutions to problems in that domain, and constraints allow the
DSL compiler to make assumptions and optimizations that are
not necessarily possible in a general purpose language. This
can lead to better results and shorter development times. In
addition, a DSL can mask underlying complexity from the
user, a fact we wish to exploit for hardware compilation. In
this section we examine a recent DSL for image processing
called Halide [3], by Ragan-Kelley et al..

A. Halide DSL

Image processing code in traditional languages like C++
usually consist of multiple, sometimes deeply nested loops. In
optimized forms, code can grow extremely complicated to take
advantage of parallelism and locality inherent in the algorithm,
data and CPU memory heirarchy – loops are split, parallelized
and littered with inline assembly and primitives like SSE
or AVX instructions for vectorization. Halide abstracts away
these complexities by introducing a functional language for
image processing embedded in C++. In Halide, what would be
mutable arrays are instead simply functions from coordinates
to values. Functions are defined by side-effect free expressions
that include arithmetic/logic operations, loads, if-then-else
blocks, references and other function calls. Consider the box
filter example presented in [3]:

UniformImage in(UInt(8), 2)
Var x, y
Func blurx(x,y) = in(x-1,y) + in(x,y) + in(x+1, y)
Func out(x,y) = blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)

There is no recursion, higher-order functions or data struc-
tures. Functions are defined pure and over infinite domains,
and boundary conditions are computed on the fly as needed
when a Func is realized. Halide also provides a way to
express some recursive computations like summation through
reductions, which have an initial value function and a recursive
function to redefine values. Reduction order is specified using
a bounded reduction domain.

B. Pipeline Scheduling and Compilation

Halide programs consist of functions that feed into one
another, forming a pipeline stencil computation. However, the
functions that define the algorithm do not define when values
are computed or where they are stored or cached – these
choices greatly affect performance, but not computed results.
Ragan-Kelley et al. refer to this set of choices as a schedule,
and it is a trade-off between locality, parallelism and value
recomputation.

The simplest schedule is breadth first, where a function is
fully evaluated before those that depend on it; highly parallel
but sacrificing locality between functions. Opposite this, an
output value can be computed by computing all intermediate
values on the fly, optimizing locality but causing a large
amount of redundant work when windows overlap. Other
options include interleaving computation over sliding windows
and splitting images into tiles that are computed in parallel.
Figure 7 from [3] gives a visual overview of the space of
scheduling choices using the above box filter as an example.

Compilation begins by lowering Halide functions into loops,
proceeding recursively from the output and referring to the
schedule for placement of callees. Loops bounds are inferred
and injected, also in recursive fashion. Multi-dimensional
loads, stores and allocations are flattened into single dimen-
sion, and the compiler performs constant loop unrolling and
vectorization where possible. Back-end code generation based
on LLVM supports x86 and ARM, and supports respective
SIMD operations (NEON, SSE, AVX).



EDIC RESEARCH PROPOSAL 6

Fig. 7: Different scheduling options for the 3x3 box filter example, from [3].

C. Autotuned Scheduling and Results
The authors of Halide use a stochastic search (specifically

a genetic algorithm) to find good schedules for Halide pro-
grams. Examples are compared against previously published
expert implementations. In most cases, the Halide compiled
implementations are faster, while taking few lines of code
to express. We consider the local laplacian filter example.
The reference is a 262 line Adobe-developed C++ program,
which took three months to develop and optimize, employing
parallelization and hand-tuned assembly. The Halide version is
expressed in 52 lines of code written in one day and is reported
to be 1.7x faster than the hand-tuned version, although the
stochastic search took about two days to find the schedule
that accomplished this.

D. Discussion
The Halide language has experienced success and fairly

widespread adoption, as it can produce excellent results while
providing a simple, functional interface familiar to many pro-
grammers. It is an excellent example of the type of abstraction
we hope to bring to large-scale hardware acceleration. The user
is able to express their solution and reason about it effectively,
while the low-level mechanics of compilation, vectorization,
parallelization and optimization are masked. While Halide
makes use of existing software compilers, mapping high-
level code to HDL requires more specialized tools such as
Autopilot as discussed above. Combining technologies like
Halide and Autopilot may lead to effective solutions to the
FPGA programming problem, as we propose in the following
section.

V. RESEARCH PROPOSAL

As discussed in this proposal and shown by the Catapult
system, FPGAs can provide a way to bridge the increasing gap
between server performance increase and datacenter service
requirements. To gain wider adoption as a solution, however,
FPGA development must be made more palatable to those
creating datacenter services. DSLs and HLS are not complete
solutions in themselves, and we propose to combine technolo-
gies like these together to create a more complete solution.

A. Domain-Specific, Compile-to-HDL Languages

Domain-Specificity will provide ease of design entry and
accessibility to non-hardware developers. At the same time,
DS will allow specific optimizations to be integrated into
the DSL compiler that will help generate higher performance
circuits. We plan to leverage existing HLS tools to provide a
backend for the front-facing DSL that can generate HDL, such
as Autopilot or LegUp. Both of these tools use LLVM as a
base compiler infrastructure, which, having a widely used and
well-documented IR, will facilitate integration with existing
or custom DSLs. In related work, George et al. take a similar
approach, compiling Scala-embedded DSLs down to hardware
by generating HLS-compatible C code [14], focusing on
common parallel computation patterns. HIPAcc [15] also takes
a similar approach for image processing. Other examples of
DSL to HDL compilers include MATLAB’s HDLCoder [16]
and SPIRAL [17] for DSP applications.

In general we hope to close the semantic gap between
the languages programmers are used to, and the languages
that describe hardware circuits. One problem lies in the fact
that most modern high-level languages assume a standard
Von Neumann execution model, and the languages and their
semantics heavily reflect this. Variables correspond to reg-
isters or storage, control flow maps straightforwardly into
branch instructions, and other expressions generally conform
to referencing memory and executing arithmetic operations in
sequential fashion. Implementing an algorithm in hardware
assumes no fixed execution model (i.e. an overall circuit
architecture and memory architecture), which is why HLS
with a C/C++ frontend is so difficult and requires special
#pragmas and multiple iterations to obtain good results.

We propose to leverage the high-level nature of DSLs to
constrain the set of reasonable architectures (“execution mod-
els”) for a given domain. Figure 8 illustrates the concept. Tem-
plate architectures can be predefined by hardware experts, or
possibly auto-generated by the DSL compiler through domain-
constrained program analysis. Underlying HLS compilation
and scheduling can be modified or directed to target whatever
architecture was selected or generated. The result can then



EDIC RESEARCH PROPOSAL 7

DSL

DSL 
Compiler

HLS

Board Support Shell (HDL)

FPGA 
Vendor Tools

High-Level 
Architectures

DRAM

PCIe
DMA

Network

App

HDL HDLIR

Fig. 8: Proposed flow to leverage domain-specificity in hard-
ware compilation. A DSL compiler lowers a program to a
form suitable for HLS that targets a domain-specific high-level
architecture. A Board Support Shell provides a fixed interface
to common subsystems for the compiled circuit.

be placed in a shell framework similar to that developed for
Catapult, and handed off to FPGA vendor tools for synthesis,
placement and routing on the target FPGA. The shell is built
to support specific FPGA devices and boards (the Board
Support Shell in Figure 8), and would ideally export vendor-
agnostic interfaces to layers above, increasing portability of
the compiler toolchain and user hardware designs. The shell
would also have supporting software and drivers that allow
testing and execution. Thus datacenter service developers will
have access to effective hardware acceleration with acceptable
results without having to be digital design experts.

1) Preliminary Work: As a first step, we have used the
LegUp HLS tool to provide back-end HDL compilation for
Halide programs. A new LLVM bit code generator was
written, based on the generators for x86 and ARM architec-
tures, which generates LLVM bitcode that conforms to the
constraints imposed by LegUp. All images must be embedded
as LegUp does not support dynamic memory allocation. The
final output image must also be the same size as the input,
as the output buffer size is inferred from the input, so that all
loops conditions can be governed by constants. This allows us
to leverage the pipelining feature supported by Legup.

The tool is funcional but so far does not provide satisfactory
results. This can be attributed mostly to LegUp’s relatively
fixed, Von Neumann-like architecture. A microprocessor sys-
tem is assumed, which restricts the memory architecture to
a bus system, while accelerator local memory is limited to
dual port RAMs. There is no facility for streaming data or
implementation of line buffers or similar structures, which
are crucial in high-performance image processing hardware.
This experience confirms to us that domain-specific high-level
architectures are necessary when using general-purpose HLS
tools as back-end HDL compilers.

B. Multi-FPGA Systems

As the Catapult experiments have shown, datacenter-scale
services are large and complex, and will likely require mul-
tiple FPGAs worth of reconfigurable fabric to implement.
We additionally propose to generalize the backend hardware
system generation to support multi-FPGA systems, as we see

in Catapult. This will allow simple implementation of large-
scale hardware acceleration that requires more than one device.
Other problems may arise through this work that we may
also explore, such as how to schedule and deploy multi-
FPGA circuits on a shared fabric, and how to partition the
compiled circuit among several devices. These may leverage
existing work in compute workload scheduling and circuit
netlist partitioning.

VI. CONCLUSION

The increasing gap between server processor performance
and datacenter workloads is a problem that will need to
be addressed to enable the complex, demanding workloads
of the future. FPGAs have been shown to be an effective
platform for compute acceleration in the datacenter, but to
enable widespread adoption and utilization, low-level hard-
ware design must be abstracted to a programming model
more palatable to datacenter service developers. We have
proposed using Domain Specificity to constrain execution
models or high-level architectures of a given domain, and to
then use this information to guide HLS compilation, providing
a relatively high-performance hardware system that can readily
be deployed on an FPGA board. The user writes their solution
in a high-level specification (DSL) and is completely shielded
from the intricacies of hardware design.

These ideas and the presented compiler toolchain concept
leave many research questions open, such as:

1) High-level architectures can be predefined. Is it possible
to automate generation or customization of these by
analyzing the input DSL program? To what extent? How
does the domain affect this?

2) What is the trade-off between domain constraint and the
extent of general-purpose HLS use? That is, can one
increase constraints and do less with a given DSL, but
get a higher performance circuit?

3) How and when in the compile flow should a design be
partitioned to fit in and be deployed on a multi-FPGA
fabric like Catapult? What are the trade-offs involved
when performing this?

As we build a toolchain that realizes the ideas we have
presented in this proposal, we will begin to answer some of
these questions, and in the process, begin to provide solutions
that will enable new, demanding datacenter services.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al.,
“A Reconfigurable Fabric for Accelerating Large-scale Datacenter Ser-
vices,” in ISCA 2014. IEEE, 2014, pp. 13–24.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 4, pp. 473–491, April 2011.

[3] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A Language and Compiler for Optimizing Par-
allelism, Locality, and Recomputation in Image Processing Pipelines,”
ACM SIGPLAN, vol. 48, no. 6, pp. 519–530, 2013.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “LegUp: High-Level Synthesis
for FPGA-based Processor/Accelerator Systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, 2011, pp. 33–36.



EDIC RESEARCH PROPOSAL 8

[5] A. Parashar, M. Adler, K. Fleming, M. Pellauer, and J. Emer, “LEAP:
A Virtual Platform Architecture for FPGAs,” in 1st Workshop on the
Intersections of Computer Architecture and Reconfigurable Logic (CARL
2010), 2010.

[6] E. S. Chung, J. C. Hoe, and K. Mai, “Coram: An in-fabric memory
architecture for fpga-based computing,” in 19th ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. ACM, 2011,
pp. 97–106.

[7] R. Nikhil, “Bluespec System Verilog: Efficient, Correct RTL from High
Level Specifications,” in Formal Methods and Models for Co-Design,
2004. IEEE, 2004, pp. 69–70.

[8] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 1216–1225.

[9] C-to-Silicon Compiler. [Online]. Available: http://www.cadence.com/
products/sd/silicon\ compiler/pages/default.aspx

[10] T. Bollaert, “Catapult Synthesis: A Practical Introduction to Interactive
C Synthesis,” in High-Level Synthesis. Springer, 2008, pp. 29–52.

[11] Synphony C Compiler. [Online]. Available: http://www.synopsys.com/
Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx

[12] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation,” in International Symposium on
Code Generation and Optimization, 2004. IEEE, 2004, pp. 75–86.

[13] J. Cong and Z. Zhang, “An Efficient and Versatile Scheduling Algorithm
Based on SDC Formulation,” in Proceedings of the 43rd Annual Design
Automation Conference. ACM, 2006, pp. 433–438.

[14] N. George, H. Lee, D. Novo, T. Rompf, K. J. Brown, A. K. Sujeeth,
M. Odersky, K. Olukotun, and P. Ienne, “Hardware System Synthesis
from Domain-Specific Languages,” in Field Programmable Logic and
Applications (FPL) 2014. IEEE, 2014, pp. 1–8.

[15] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich, “Code
Generation from a Domain-specific Language for C-based HLS of Hard-
ware Accelerators,” in Proceedings of the 2014 International Conference
on Hardware/Software Codesign and System Synthesis. ACM, 2014,
pp. 17:1–17:10.

[16] HDL Coder. [Online]. Available: http://www.mathworks.com/products/
hdl-coder/index.html

[17] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer Gen-
eration of Hardware for Linear Digital Signal Processing Transforms,”
ACM Transactions on Design Automation of Electronic Systems, vol. 17,
no. 2, 2012.


