
EDIC RESEARCH PROPOSAL 1

Navigating the Design Space of Reconfigurable
Neural Networks Accelerators

Mario Paulo Drumond
PARSA, I&C, EPFL

Abstract—Neural Networks are an important class of algo-
rithms used in many machine learning tasks, such as image clas-
sification and speech recognition. These algorithms are compute-
intensive and its users often need heterogeneous acceleration to
achieve satisfactory performance. We survey the landscape of
heterogeneous acceleration for Neural Networks, comparing three
classes of accelerators, GPUs; ASICs; and FPGAs, according
to three factors: flexibility, energy-efficiency, and scalability.
We show that GPUs are flexible but suffer from poor energy-
efficiency, ASICs are energy efficient but inflexible, and FPGAs
can achieve the flexibility of GPUs and near ASIC energy-
efficiency.

Index Terms—FPGA, convolutional neural networks, acceler-
ators

I. INTRODUCTION

Machine learning algorithms are widely used, either by the
scientific community or Internet services. These algorithms
find applications in various fields, from web search to stock
market forecasting, often operating over datasets measured in
terabytes.

Neural networks are one example of a machine mearning
emerging workload. They have been shown to perform well in

Proposal submitted to committee: May 27th, 2015; Candi-
dacy exam date: June 3rd, 2015; Candidacy exam committee:
Prof. James Larus, Prof. Babak Falsafi, Prof. Paolo Ienne.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(B. Falsafi) (signature)

EDIC-ru/05.05.2009

many tasks like speech recognition and image classification.
Moreover, they have been used to implement approximate
computations [1], even approximating some algorithms in the
PARSEC benchmark [2].

The complexity of a neural network can be roughly esti-
mated by its number of synaptic weights. This number can
range from a few hundreds to billions of weights [3], and
even the biggest artificial networks can still be considered
small when compared to the human brain, where just the visual
cortex can have hundreds of trillions of synapses.

These algorithms are highly parallel and compute intensive,
and users have often turned to heterogeneous acceleration, in
the form of GPUs, looking for satisfactory performance in
tasks like image classification.

Thus, to efficiently train and process data with neural
networks, heterogeneous accelerators are becoming the norm,
be it in scientific high-performance computing (HPC) or data-
center settings. We identify three main requirements for these
heterogeneous accelerators:

• Energy-Efficiency: because processing bigger networks
can impose prohibitive energy requirements;

• Flexibility: because researchers need to take advantage
of acceleration in novel neural network algorithms;

• Multi-node Scalability: because neural networks’ sizes
should not be limited by chip die area constraints.

In this work we survey the neural networks accelerator
landscape, and study the trade-offs involved in building ef-
ficient accelerators over three different computing substrates:
GPUs, ASICs and FPGAs. We also present a research proposal
that applies the knowledge from other accelerators to build a
flexible and efficient FPGA accelerating framework.

The rest of this work is organized as follows: Section II
introduces Neural Network algorithms and its computational
requirements, Sections III, IV and V study GPU, ASIC and
FPGA accelerators for Neural Networks and Sections VI and
VII studies how can we use lessons learned in other accelera-
tors to build an energy-efficient, scalable FPGA accelerators.

II. INTRODUCTION TO NEURAL NETWORKS

Neural networks are a class of algorithms that mimic the
brain’s networks of neurons. They are generally composed by
an input layer, one or more hidden layers and an output layers,
and layers are connected by synapses.

Neural networks must be trained, by using known pairs of
inputs/outputs to calculate its synaptic weights. Afterwards,
networks can be queried with previously unseen inputs, in a
process is called inference.



EDIC RESEARCH PROPOSAL 2

Fig. 1. Example of Convolutional Neural Network

Fig. 2. Types of parallelism in neural networks

There are many types of neural networks, and in this work
we focus on Convolutional Neural Networks (CNNs) and Deep
Neural Networks (DNNs).

CNNs are networks where each neuron is the result of a
convolution of a kernel with the previous layers’ neurons. A
layer consists of many sub-layers, called feature maps and a
kernel is composed by a number of synaptic weights that are
learned during the training phase. All neurons of an output
CNN layer share the same weights (i.e., the same kernel is
convoluted with the input layers), but neurons from different
output feature maps do not share kernels.

DNNs are similar to CNNs, but kernel weights are not
shared by output neurons, thus, they have a higher number
of weight values.

In figure 1, we see an example of network that won the Ima-
genet Large Scale Visual Recognition Challenge (ILSVRC) in
2012 [4]. It is composed by five convolutional layers followed
by fully connected layers. Each convolutional layer is followed
by a pooling layer. For instance, the first convolutional layer
of the network has kernel size 11x11x3, with an input layer
of size 224x224x3 and an output layer of size 55x55x48.

This network has three types of layers: convolutional,
pooling and fully connected. There are indeed many types of
layers, and in this work we are going to focus on convolutional
layers, as they are representative of the challenges involved in
accelerating neural networks computations.

The two main algorithms involving neural networks are
training and inference, and they often must be executed in
multiple computing nodes to achieve satisfactory throughput.
CNNs and DNNs use similar training and inference algo-
rithms, and the parallelization techniques applied to them are
also similar but face different constraints, as we will see.

A. Inference and Training

Inference is done by propagating inputs trough the network
layers.

Training is done by initializing weights with some
lightweight computational method, and then forward propa-
gating training data through the network. The error is then
calculated against the training labels and backpropagated
through the layers. Finally, the weights are updated based on
the calculated errors. This process is repeated for the entire
training dataset.

Therefore, the training algorithm comprises three phases
of similar complexity: forward propagation (inference), back-
propagation and weight update. To increase performance,
training is done in mini-batches, where training inputs are
batched together, back propagated errors are accumulated for
each batch, and the third phase of the algorithm, weight
update, occurs only once after each mini-batch, using the
accumulated errors.

Unsupervised training uses a cost function to calculate
the reconstruction error of the output layers, as opposed to
calculating the error based on labels. The backpropagation
and weight update phases are similar to the supervised training
algorithm. It is worth noting that calculating the reconstruction
error is often computationally expensive, and can dominate the
computing time in training.

B. Distributed neural network acceleration

Neural Network training often involves millions of training
inputs. Computational requirements can be high: Google used
3 days of a 1000 16-core machines to train an unsupervised
network with 1.8 billion synaptic weights [3].

On the other hand, both the training and inference algo-
rithms are highly parallel, and one can exploit of this paral-
lelism by using a single accelerator or a distributed accelerator.
With networks expected to grow by orders of magnitude it is
necessary to achieve scalable, distributed acceleration, both for
training and inference algorithms.

Distributed neural network processing can be achieved by
exploiting two types of parallelism: model and data paral-
lelism [5]. Figure 2 is a visual representation of these models.
Model parallelism divides the network between workers with
weights remaining in the same node throughout computations,
and network inputs and intermediate values being moved
between nodes. In this model, the amount of inter-node com-
munication depends on connectivity layers. Data parallelism
processes batches in parallel. Inputs and intermediate values
remain in the same close to nodes. For training, weights have
to be transferred between nodes during the weight update
phase.

III. GPU ACCELERATION

Neural networks algorithm are modeled as matrix multipli-
cations in GPUs. In this approach, the weights are organized
in one matrix and the neuron values on other, and matrix
multiplication calculates the output neurons. Users can use
this approach to take advantage of heavily optimized matrix



EDIC RESEARCH PROPOSAL 3

Fig. 3. Factor speedup obtained for varying sizes of network and number
of GPUs, normalized for the size of the network.

multiplication libraries. In inference algorithms, some imple-
mentations can achieve near peak floating point performance
in high-end GPUs, but some steps of the training algorithm
are memory bound.

The mapping of DNNs to matrix multiplication often results
in sparse weight matrices, but the sparsity patterns are known
at development time. In these networks the programmer often
faces the challenge of choosing between traversing the sparse
matrices or performing additional operations to avoid travers-
ing the sparse regions of the weight matrix. To mitigate this
problem, Coates et al. [6] propose a novel approach, where
filters are grouped in blocks, improving the matrix sparsity
pattern. This change allows them to multiply the weight and
neuron matrices in succession of dense sub-matrices multipli-
cations.

A. Scaling and Distributed Computing

Scaling to multiple GPU nodes is often challenging. Due
to inter-node communication, traditional ethernet networks
quickly become a performance bottleneck. Furthermore, GPUs
need big datasets to achieve high performance: they can
only achieve high functional unit utilization with high data
parallelism. With smaller datasets, GPUs fail to hide memory
and control latencies, and cannot sustain high utilization. Thus,
for both for model and data parallel approaches, processing
smaller data-subsets results in reduced performance.

Coates et al. [6] proposed several techniques to improve
GPU scalability, the main one being the use of off the shelf
Infiniband high-throughput interconnects. They take advan-
tage of DNNs’ low connectivity pattern to exploit model
parallelism with low communication overhead. In their im-
plementation GPUs share a small number of neuron values,
located on the borders of the regions mapped to two GPUs.
Communication is not only minimized, but it is also local:
GPUs will share values with other GPUs that hold adjacent
morel regions. With DNNs, communication overheads scale
sublinearly with number of nodes.

B. Evaluation

1) Energy efficiency: GPU accelerators are able to achieve
orders of magnitude more throughput than general purpose

CPUs, due to the high parallelism of the algorithm that can
be properly exploited by GPU architectures.

GPUs are also more energy-efficient than CPUs, because
they minimize von Neumann overheads.

However, there are some limitations to GPU efficiency.
First, they need to maintain high functional unit utilization
to be energy-efficient because the overhead of maintaining
many GPU cores active dominates energy [7]. Furthermore,
the extreme multithreaded model makes it hard for threads
to share values. Values can be shared either directly through
specialized scratch pad memories or indirectly through the
cache hierarchy. Thus, some opportunities for data reuse are
wasted; for example, two consecutive kernels cannot share on-
chip buffers. The resulting higher number of high energy main
memory accesses limits energy-efficiency, as shown in [8].

2) Scalability and its Limits: Coates et al. [6] showed that
it is possible to achieve some level of scalability for neural
network training, as depicted in 3. The authors are able to
train a network that is similar to the one used in [3] using
around 330x less machines. They achieve further scalability
using bigger networks. They note that future neural network
topologies can be designed in a way that improves scalability.

Scaling to multiple nodes allows researchers to train and
test bigger networks, however, as shown in [9] there are limits
to scalability. Some of them are inherent limitations in neural
network distributed processing, but there are additional limi-
tations in GPU scalability. The lack of an exclusive optimized
accelerator network and the energy efficiency reduction are
exclusive artifacts of GPU architectures, and other accelera-
tors can be designed to avoid these problems, as shown by
DaDianNao [10].

3) Flexibility: Coates et al. [6] build an scalable accelerator
using only off-the-shelf components, and their code can be
abstracted in a software library. Their system is flexible and
easily portable.

Library based approaches have been embraced by the neural
network community. The three most prominent Neural Net-
works frameworks (Caffe [11], Torch7 [12] and Theano [13]),
have backends that integrate GPU libraries. Although dis-
tributed computation support for Neural Networks is still in its
infancy, it is fair to assume that future distributed accelerators
will have to consider the library-based approach used until
now.

C. Summary of GPU acceleration

GPUs are flexible high-throughput accelerators that achieve
higher energy-efficiency than CPUs. These benefits make them
the most common computational platform used by Neural Net-
work researchers. However, we showed that GPUs face limited
scalability and some inefficiency. In the next sections, we study
a couple of alternatives for Neural Network acceleration.

IV. ASIC ACCELERATION - DADIANNAO

Chen et al. [8], [10] identified several bottlenecks for energy
efficiency in GPUs and CPUs. In DianNao [8] they showed
that proper loop tiling reduces memory accesses by orders of
magnitude, minimizing energy overheads. They also showed



EDIC RESEARCH PROPOSAL 4

Fig. 4. A neural functional unit in DaDianNao

Fig. 5. Tile distribution within a DaDianNao computing node

that neural network inference can be achieved by operating
over 16-bit fixed point number representation, as opposed to
using expensive 32-bit floating point operations. They built
an accelerator based on those lessons, carefully using on-chip
buffers to exploit data reuse. Their results were promising, but
the need for high energy main memory accesses limited their
accelerators’ energy efficiency.

In DaDianNao [10] they addressed these issues by propos-
ing an scalable accelerator architecture, using multiple nodes
to process networks that did not fit into a single chip memory,
eliminating the need for main memory accesses.

This section will study the main insights of their design and
the benefits of using ASIC accelerators in CNNs and DNNs.

A. Accelerator Architecture

Figure 4 presents the architecture a neural functional
unit (NFU), the basic processing element of the accelerator.
The NFU consists of a three stage staggered pipeline, where

the first stage performs multiplications between input neu-
ron values and synaptic weights, the second stage performs
the sum of weighted values and the third stage applies the
neurons sigmoid functions (transfer function) to the outputs.
This architecture allows the NFU to exploit parallelism in
the algorithm, by pipelining operations and processing many
inputs in parallel.

The authors show that for inference, 16-bit fixed-point
operators result in low output error, but for training, 16-
bit operators prevent training convergence. Convergence is
affected because the backpropagation step often operates over
numbers that cannot be represented by 16-bit fixed point
operators. Thus, the NFU can operate over 16-bit operators
for inference and 32-bit for training. Other work [14] has
confirmed that 32-bit floating point operators are not necessary
for neural networks algorithms. Inference and training can
be performed using operators with lower accuracy, and the
authors of DaDianNao defer this investigation for future work.

A single chip, or processing node, comprises 16 tiles with
one NFU and some buffer space each, as shown in Figure 5.
Tiles are connected by a fat tree, and intermediate outputs are
stored on tile buffers. At the end of a neuron computation,
output values are routed through the fat tree to the central
eDRAM router and then to the next NFU. An HT2.0 low
latency interconnect allows inter node communication, with a
bandwidth of 6.4GB/s in each of the four directions. Neural
networks are distributed through the chip in a model parallel
way: synaptic weights are kept fixed near the NFUs while
neuron values are transferred between computing nodes. This
design aims to achieve high scalability and reduce data move-
ment for networks with a high number of synapses.

A NFU is fed from either other NFUs or its local buffers.
On-chip buffers are built using embedded DRAM (eDRAM).
This technology — an on-chip memory technology that is
denser than SRAM — allowed the authors to put 36MB of on-
chip buffers in a 66mm2 chip. This design choice is made to
address the efficiency bottlenecks of DianNao [8], effectively
eliminating the need for main memory accesses.

To eliminate the need for main memory, the accelerator
needs to scale horizontally. For example, to implement the
convolutional layer of the network proposed in [3], it needs
64 nodes. It is important to note that scaling horizontally incur
additional inter node communication overhead.

The accelerator is programmed with a simple ISA. Instruc-
tions are used to configure NFUs, distributing the network
across nodes and across NFUs within nodes. The ISA also
contain buffer instruction to configure the NFU buffers and
to set up data reuse. There are also instructions to configure
NFUs to process different layers. For example, some layers
do not require a sigmoid operation after the weight-neuron
reduction, and thus, the last stage of the NFU pipeline needs
to be turned off.

B. Evaluation

1) Energy efficiency: Chen et al. [10] evaluate the Da-
DianNao accelerator against a K20M GPU baseline, making
performance and energy comparisons. Their GPU baseline run



EDIC RESEARCH PROPOSAL 5

cuda-convnet [15], a state-of-the-art neural network library for
GPUs.

Their accelerator die area is 66mm2 of which 48% is
eDRAM. This area is roughly 12% of a K20M die area.
The estimated power, assuming 100% toggle rate is 15.97W,
roughly 10% of a state-of-the-art GPU power consumption.
Most of their accelerator power is spent in the HT interconnect
and eDRAM blocks, with respectively 50.14% and 38.30% of
the power.

The authors evaluate several distributed configurations of
DaDianNao, ranging from single-node to 64-node accelerator
configurations, comparing them against the GPU baseline. The
average inference speedup range from 21.38x for a single-node
system to 450x for a 64-node system, with convolutional layers
dominating execution time. The average training speedup
range from 12.62x for a 1-node system to 300x for a 64-
node system. Here, scalability is better due to the higher
computation per communication ratio.

Energy reduction trends are different: for inference, average
energy gains range from 300x for single-node to 150x for 64-
nodes, for training, the reduction ranges from 173x in single-
node systems to 66x in 64-node systems. As the number of
computing nodes increase, communication overheads become
dominant over performance and energy.

Architecturally, DaDianNao does a thorough design space
exploration and eliminates most of the inefficiencies from
general purpose processors, and they are able to achieve better
scalability than GPU accelerators.

2) Limitations of ASIC: The authors admit there is a risk
associated to freezing algorithms in hardware, but this risk is
minimized thanks to fast evolving hardware.

However, there are additional costs of using ASIC accel-
erators; its total cost of ownership can be high, and ASIC
development costs can overshadow potential energy savings.

Moreover, high-performance computing or data-center clus-
ters — where such accelerators are most useful — often
execute complex algorithms, where only single stage of the
computation is done by neural networks, severely limiting the
usefulness of specific purpose accelerators.

The best option would be a compromise between energy-
efficiency and flexibility, with a multipurpose accelerator that
could potentially follow algorithmic evolution and also accel-
erate other workloads. Thus, FPGAs are a potential candidate
for this task: their reconfigurability allows the acceleration of
future neural network algorithms or even other workloads, and
we show they are more energy efficient than GPUs.

V. FPGA ACCELERATION

The literature has many neural networks accelerators im-
plemented in FPGA [16], [17], [18] but most of them fail
to present a thorough design space exploration and fully
exploit FPGA buffer space and computational capacity. The
most prominent exception is [19], where the authors present
a methodology to automatically explore the design space, find
the optimal reconfigurable accelerator for a given layer and
match the accelerator computational capacity with its memory
bandwidth requirements, leveraging on data reuse to maximize

Fig. 6. Basis of the roofline model

Fig. 7. FPGA accelerator architecture

Fig. 8. Pseudo code of a tiled convolutional layer



EDIC RESEARCH PROPOSAL 6

throughput. We closely study this work and compare it with
ASICs and GPUs in the design space.

A. Roofline Model

Zhang et al. [19] identify computation and communication
as the main constraints regarding system throughput. In order
to balance these constraints, they propose a roofline perfor-
mance model, as shown in figure 6. There, the “y” axis repre-
sents the maximum attainable performance, in floating point
operations per seconds (GFLOPS), and the “x” represents the
computation to communication ratio (CTC). The two roofs
are shown in the picture: the bandwidth and computational
roofs, and, for a given CTC, we can identify the maximum
throughput and the minimum between the two roofs. For
instance, in the figure, algorithm 1 would be I/O bound, and
algorithm 2 would outperform it, fully utilizing the hardware
computational potential.

However, actual accelerator implementations sometimes
have to choose between achieving high throughput and ex-
ploiting reuse opportunities, and thus, a good methodology
is needed to exploit the design space for FPGA accelerators.
The authors develop a methodology to perform this analysis
by exploring different optimizations of HLS code. They use
polyhedral analysis to extract parallelism from the algorithm
(to increase the accelerator throughput) and explore reuse
opportunities (to increase the CTC ratio).

B. Accelerator Architecture

Their baseline computing subtract is shown in figure 7. It
is composed by several processing elements (PEs), on-chip
buffers, external memory, and on-/off-chip interconnect. Their
on-chip buffers use double buffering, to allow overlap between
communication and computation.

C. Computational and Memory Access optimizations

There are three main optimizations that the architecture
can exploit: loop unrolling, loop pipelining and loop tiling.
Figure 8 presents the pseudo-code of a tiled convolutional
layer, divided in two sections: the outer loops that have impact
on external data transfers and the inner loops that have impact
over the on-chip computations. In this code, the inner loops
will be targeted by loop unrolling and pipelining, while loop
tiling will affect the structure of the outer loops, setting up
data reuse in the PEs.

Loop unrolling allows one or more iterations of the loop
to be executed by different processing elements. However,
data dependencies across loop iterations need to be observed,
since they will influence the interconnect between buffers and
processing elements. Complicated dependency patterns incur
unfeasible interconnects.

Loop pipelining allows loop iterations to be pipelined within
a single processing element, enabling further parallelism, since
loop iterations can overlap in the pipeline.

Finally, tiling is the most important optimization applied.
Proper tilling dramatically reduces the memory bandwidth of
an algorithm, since it allows the PEs to reuse the tile working
set, as opposed to streaming the entire dataset from memory.

1) Design Space Exploration: Polyhedral-based optimiza-
tion is used to identify all legal loop transformations, and
pre-synthesis results are used to estimate resource utilization
and performance. They choose the design with highest perfor-
mance, and, in case two designs have the same performance,
they choose the design with the lower memory bandwidth
requirements.

The last challenge is to find a design that performs well
in all network layers. Different layers have different optimal
unroll factors, and thus, it is necessary to find a sub-optimal
design that performs well for all layers. For their case study,
they are able to identify one set of parameters with a worst
case performance degradation of 5%, when compared to each
layer optimal configuration.

D. Evaluation

Zhang et al. [19] evaluate their methodology with a case
study that uses a board equipped with a Xilinx FPGA chip
Virtex7 485t. They compare their design against an Intel Xeon
CPU E5-2530.

They obtain the best performance when compared with
previous reconfigurable neural network accelerators, attaining
a throughput of 66 GFLOP/s. They are also able to extract the
best performance density from the FPGA, even though they
are the only ones to employ floating-point numeric represen-
tations in their computations. Their accelerator obtains 4.79x
performance gains over 16-threaded CNN implementation on
the baseline CPU, 5.1x less power consumption and 24.6x
energy reductions.

1) Reconfigurable accelerators performance roof: Al-
though the maximum performance obtained in the FPGA
board seems disappointing when compared to GPU perfor-
mance (hundreds of GFLOP/s), there are several factors to
consider. First, the authors focus the methodology and in
fast FPGA development using HLS, instead of focusing in
presenting a single optimized implementations. One important
design decision that reflects this focus was to include a soft-
processor in the architecture, with IP interconnects. The alter-
native, namely using a dedicated block to handle configuration
and control, would free up more resources for the accelerator.

For example, Microsoft [18] was able to obtain about 3x
better performance on a FPGA accelerator, with slightly higher
power (their power budget was 25W vs. 18W). Unfortunately
there are not enough details on that design for a thorough
comparison.

Furthermore, floating-point representations also limit per-
formance; since floating-point operations are known to be the
bottleneck of FPGA designs clock frequency. Their accelerator
achieves slightly higher energy efficiency than GPUs (roughly
15% of the throughput with less than 10% of the power), but
different design choices could trade programmability for better
energy-efficiency. They also do not study scalable accelerators,
and in fact, to the best of our knowledge no scalable FPGA
neural network accelerators exist on the literature. In the next
section, we propose a different set of trade-offs, sacrificing
programmability to increase energy efficiency and achieve
scalability.



EDIC RESEARCH PROPOSAL 7

Fig. 9. Energy efficiency table/graph

VI. RESEARCH PROPOSAL

TABLE I
PERFORMANCE COMPARISON BETWEEN GPUS, ASICS AND FPGAS ON

DISTRIBUTED DNN TRAINING

Device # Nodes Normalized Performance
[Ops/(s ∗mm2)]

Energy Efficiency
[Ops/W ]

FPGA
1 1.97G 29.5G
9 1.92G 28.8G

64 1.92G 25.1G

GPU
1 1.75G 5.33G
9 874M 2.90G

64 436M 1.66G
ASIC 64 15.7G 148G

Zhang et al. [19] maximized computational throughput us-
ing polyhedral-based optimizations to explore the design space
of convolutional networks accelerators. However, their explo-
ration is limited in many dimensions, such as: multi-layers
optimizations, training acceleration and distributed FPGA ac-
celerators. These three additional design space dimensions,
if properly explored, have the potential to change the CNN
acceleration state-of-the-art from GPUs to FPGAs, further
contributing to make FPGAs main-stream accelerators in both
HPC and data-center settings.

Several challenges hinder the transition of FPGAs from
niche to mainstream accelerators. First we need better system
integration, and there are proposed solutions in the literature,
like Catapult [20] and Intel/Altera HARP. Second, the explo-
ration of such a rich design space requires better ways to
express algorithms. C-like imperative representations limit the
design space by imposing unnecessary ordering constraints. In
order to expose all the options, we need a functional repre-
sentation of neural network algorithms. These representations
would allow us to properly analyze the space of possible
operation schedules, or even traverse this space in a stochastic,
non-deterministic way.

Finally we need show that, for neural networks, FPGAs can
achieve the same or better performance than GPUs. Machine
learning researchers have demonstrated openness to the idea
of using heterogeneous systems in their studies by embracing
GPU computing. If we provide them with a competitive
alternative, we will take an important step towards turning
FPGAs into mainstream accelerators.

We have addressed the last issue, by modeling the perfor-
mance and energy-efficiency of GPUs, FPGAs and DaDian-
Nao, in single node and 64-node distributed settings. Table I
shows the results obtained during training of a mini-batch of
the network used in [3]. The FPGA modeled was the same
used in [18], with adjusted performance for 32-bit fixed point
operators. The GPU is modeled with the same configuration
as the one used in [6].

Table I shows that FPGAs can be an order of magnitude
more efficient than GPUs, while achieving almost the same
area normalized performance. They are still less efficient
than ASIC accelerators, but they provide flexibility that is
unmatched by ASIC accelerators.

VII. CONCLUSION

In this work we surveyed the landscape of neural net-
work heterogeneous accelerators. We identified three classes
of accelerators: GPUs, ASICs and FPGAs, comparing them
according to three factors: flexibility, energy-efficiency and
scalability. We showed that GPUs are flexible and scalable,
however, they are not the best option as energy-efficient accel-
erators; ASICs on the other hand provide energy-efficiency and
scalability, but are inflexible. Finally, we showed that FPGAs
can be more energy-efficient and scalable than GPUs, while
maintaining some level of flexibility.

Based on these findings, we propose the development of a
scalable FPGA accelerator, in order to make FPGAs the de
facto state-of-the-art in Neural Network acceleration, and to
take an important step moving FPGAs from a niche accelerator
to a mainstream general purpose accelerator.

REFERENCES

[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-45, pp. 449–460, IEEE Computer Society.

[2] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “BenchNN: On the broad potential
application scope of hardware neural network accelerators,” in 2012
IEEE International Symposium on Workload Characterization (IISWC),
pp. 36–45.

[3] Q. V. Le, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and
A. Y. Ng, “Building high-level features using large scale unsupervised
learning,” in In International Conference on Machine Learning, 2012.
103.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105.

[5] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” in arXiv:1404.5997 [cs].

[6] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in Proceedings of The 30th
International Conference on Machine Learning, pp. 1337–1345.

[7] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ISCA ’10, pp. 280–289, ACM.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pp. 269–284, ACM.

[9] H. F. Frank Seide, “On parallelizability of stochastic gradient descent for
speech DNNS,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 235–239.

[10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A machine-learning su-
percomputer,” in 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 609–622.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia, MM ’14, pp. 675–678, ACM.

[12] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop.

[13] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-
eron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new
features and speed improvements,” in arXiv preprint arXiv:1211.5590.

[14] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in arXiv:1502.02551 [cs,
stat].

[15] A. Krizhevsky, “https://code.google.com/p/cuda-convnet.”
[16] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-

ically configurable coprocessor for convolutional neural networks,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, pp. 247–257, ACM.



EDIC RESEARCH PROPOSAL 8

[17] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, pp. 109–116,
IEEE.

[18] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, “Accelerating deep convolutional neural networks using
specialized hardware,” in Microsoft Research Whitepaper, vol. 2.

[19] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, pp. 161–170, ACM.

[20] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA ’14, pp. 13–24, IEEE Press.


