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Estimation with Random Linear Mixing, Belief
Propagation and Compressed Sensing

Sundeep Rangan

Abstract—We apply Guo and Wang’s relaxed belief propaga-
tion (BP) method to the estimation of a random vector from
linear measurements followed by a componentwise probabilistic
measurement channel. Relaxed BP uses a Gaussian approxima-
tion in standard BP to obtain significant computational savings
for dense measurement matrices. The main contribution of this
paper is to extend the relaxed BP method and analysis to general
(non-AWGN) output channels. Specifically, we present detailed
equations for implementing relaxed BP for general channels and
show that relaxed BP has an identical asymptotic large sparse
limit behavior as standard BP, as predicted by the Guo and
Wang’s state evolution (SE) equations. Applications are presented
to compressed sensing and estimation with bounded noise.

Index Terms—Non-Gaussian estimation, belief propagation,
density evolution, compressed sensing, sparsity, bounded noise.

I. INTRODUCTION

Consider the problem of estimating a random vector x ∈ Rn
from the vector y ∈ Rm shown in Fig. 1. As depicted in
the figure, the input vector x is first passed through a linear
transform,

z = Φx, (1)

where Φ ∈ Rm×n is a known transform matrix, and then
passed through an output channel or measurement channel
described by a conditional distribution pY|Z(y|z). Suppose
that the distributions of both the input vector x and output
channel are separable in that the probability distributions
factor as

pX(x) =

n∏
j=1

pX(xj), pY|Z(y|z) =

m∏
i=1

pY |Z(yi|zi), (2)

where pX(xj) and pY |Z(yi|zi) are scalar distribution func-
tions, and xj , yi and zi are the components of the vectors x,
y and z, respectively.

If m = n and the mixing matrix Φ is the identity matrix,
then the problem of estimating the input vector x from the out-
put vector y reduces to n scalar estimation problems. However,
for general Φ, optimal estimation of x is usually intractable
because the transform matrix Φ “couples” or “mixes” the n
components of x into the m components of the output vector
y. We thus call the problem of estimating the vector x from the
coupled output vector y the linear mixing estimation problem.

One natural approach to the linear mixing estimation prob-
lem is belief propagation (BP), which iteratively updates
estimates of the variables based on message passing along
a graph [1], [2]. In communications and signal processing,
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BP is best known for its connections to iterative decoding
in turbo and LDPC codes [3]–[5]. However, while turbo and
LDPC codes typically involve computations over finite fields,
BP has also been successfully applied in a number of problems
with linear real-valued mixing, including CDMA multiuser
detection [6], [7], lattice codes [8] and compressed sensing
[9]–[11].

A key theoretical justification for applying BP to the specific
problem of linear mixing estimation came with the work of
Montanari and Tse [12]. That worked considered BP estima-
tion of binary ±1 vectors with AWGN measurements and large
sparse random mixing matrices. In this setting, Montanari
and Tse derived state evolution (SE) equations for the mean-
squared error of BP as a function of the iteration number. Their
analysis revealed that BP is asymptotically optimal in mean-
square when the SE equations have a unique fixed point. The
large sparse limit analysis was extended by Guo and Wang first
to general priors and power levels [13], and then to arbitrary
(non-AWGN) output channels [14]. These results provided the
first rigorous conditions for the optimality of BP for estimation
with linear mixing and confirmed earlier predictions given by
the replica method from statistical physics [15], [16].

Guo and Wang’s work [13] also presented the important
result that the mean-square optimality of BP could be achieved
by a significantly simpler algorithm that they called relaxed
BP. One of the problems of applying standard BP to the
linear mixing estimation problem is that the computations
grow exponentially with the density of the transform matrix
Φ. Relaxed BP overcomes this problem by using a Gaussian
approximation of the messages to linearize the computations
at the output nodes. Gaussian approximations had been used in
earlier BP-based methods in CDMA multiuser detection [17]–
[19] and also occasionally appear in the analysis and design
of LDPC codes [20], [21].

The main contribution of this paper is to extend the relaxed
BP method and analysis:
• Extensions to non-AWGN output channels: The relaxed

BP algorithm described in Guo and Wang’s first paper
[13] considers only AWGN output channels. The sec-
ond paper [14] considers arbitrary output channels, but
focuses on standard BP and only briefly mentions how
to apply the relaxed BP approximations. In this paper,
we work out the relaxed BP equations in full detail for
general (non-AWGN) channels. Moreover, we offer some
additional simplifications (see Section IV-D) to reduce
the computations of relaxed BP even further. The ability
to incorporate non-AWGN channels extends the scope
of the relaxed BP method significantly. For example, it
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Fig. 1. Linear mixing estimation problem. A random input vector x is
transformed by a matrix Φ, and the transformed vector z is passed through
a separable measurement channel yielding a final output vector y. The linear
mixing estimation problem is to estimate the input vector x from the output
vector y given the transform matrix Φ, prior pX(xj) and measurement
channel transition distribution pY |Z(yi|zi).

enables the study of non-Gaussian noise processes, as
well as discrete output channels that arise, for example, in
pattern classification problems. We suggest some possible
applications in Section II.

• Improved convergence analysis: A key result of Guo and
Wang’s state evolution (SE) analysis in [13] and [14] is
that, when the measurement ratio β = m/n is sufficiently
small, relaxed BP asymptotically achieves the minimum
mean-squared error (MSE) in the limit of large sparse
random mixing matrices. Moreover, this minimum MSE
is described by a unique fixed point to the SE equations.
In this work, we extend the analysis to general β. Specif-
ically, we show that for any β, there are upper and lower
fixed point solutions to the SE equations. The asymptotic
MSE of the relaxed BP method always converges to the
upper fixed point, while the lower fixed point always
provides a lower bound to the MSE of any estimator.
Hence, in the case that the fixed point solution is unique,
relaxed BP is asymptotically optimal.

• Applications to compressed sensing and bounded noise
estimation: Although relaxed BP was originally devel-
oped for CDMA multiuser detection, the method can
be applied to non-Gaussian estimation in a variety of
applications. In this paper, we simulate relaxed BP for
compressed sensing and estimation with bounded noise.

An algorithm closely related to relaxed BP is the recently
developed approximate message passing (AMP) method pro-
posed in [11] and analyzed further in [22]. The AMP algorithm
generalizes the relaxed BP method and analysis in the special
case of AWGN measurements. Unlike relaxed BP, the AMP
algorithm can be applied with an arbitrary scalar estimation
function so that the prior on the components of x do not
need to be known. Also, as we will discuss in Section V,
the analysis of relaxed BP is only valid under a certain large
sparse limit model. This model is an approximation to the case
where Φ is dense. The analysis of the AMP algorithm in [22]
provides rigorous results for dense measurement matrices. An
interesting open problem is whether the analysis of AMP can
be extended to general output channels considered here.

A. Organization

The remainder of this paper is organized as follows. In
Section II, we introduce some specific examples of the linear

mixing estimation problem. Section III reviews how to apply
standard BP to estimation with linear mixing. The relaxed BP
algorithm is introduced in Section IV. The large sparse limit
analysis is described in Section V. Section VI presents some
simple simulations of the algorithm to validate the analytic
results. All the proofs are developed in appendices.

II. EXAMPLES AND APPLICATIONS

The linear mixing model is extremely general and can be
applied in a range of circumstances. We illustrate some simple
examples for both the measurement channel and prior on x.

A. Measurement Channel Examples

a) AWGN output channel: For an additive white Gaus-
sian noise (AWGN) output channel, the output vector y can
be written as

y = z + w = Φx + w, (3)

where w is a zero mean, Gaussian i.i.d. random vector
independent of x. For this case, the corresponding channel
transition probability distribution is given by

pY |Z(yi|zi) = φ(yi − zi ; µw), (4)

where µw > 0 is the variance of the components of w and
φ(v ; µ) is the Gaussian distribution,

φ(v ; µ) =
1√
2πµ

exp

(
− 1

2µ
|v|2
)
. (5)

The AWGN channel is precisely the model considered by Guo
and Wang in their original relaxed BP paper [13].

b) Non-Gaussian noise models: Since the output channel
can incorporate an arbitrary separable distribution, the linear
mixing model can also include the model (3) with non-
Gaussian noise vectors w, provided the components of w
are i.i.d. One interesting application for a non-Gaussian noise
model is to study the bounded noise that arises in quantization.
We will consider this application in the numerical simulations
in Section VI-C

c) Logistic channels: A quite different channel is based
on a logistic output. In this model, each output yi is 0 or 1,
where the probability that yi = 1 is given by some sigmoidal
function such as

pY |Z(yi = 1|zi) =
1

1 + a exp(−zi)
, (6)

for some constant a > 0. Thus, larger values of zi result in a
higher probability that yi = 1.

This logistic model can be used in classification problems
as follows [23]: Suppose one is given m samples, with each
sample being labeled as belonging to one of two classes. Let
yi = 0 or 1 denote the class of sample i. Also, suppose that the
ith row of the transform matrix Φ contains a vector of n data
values associated with the ith sample. Then, using a logistic
channel model such as (6), the problem of estimating the
vector x from the labels y and data Φ is equivalent to finding
a linear dependence on the data that classifies the samples
between the two classes. This problem is often referred to
as logistic regression and the resulting vector x is called the
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Fig. 2. Factor or Tanner graph for the linear mixing estimation problem.

regression vector. By adjusting the prior on the components
of x, one can then impose constraints on the components of
x including, for example, sparsity constraints.

B. Examples of Priors

d) Sparse priors and compressed sensing: As discussed
in the introduction, one class of priors that we will consider
in some detail in the simulations is sparse distributions. A
vector x is sparse if a large fraction of its components are
zero or close to zero. Sparsity can be modeled probabilistically
with a variety of heavy-tailed distributions including Gaussian
mixture models, generalized Gaussians and Bernoulli distribu-
tions with a high probability of the component being zero. The
estimation of sparse vectors with random linear measurements
is the basic subject of compressed sensing [24]–[26] and fits
naturally into the linear mixing framework.

e) Discrete distributions: The linear mixing model can
also incorporate discrete distributions on the components of x.
Discrete distribution arise often in communications problems
where discrete messages are modulated onto the components
of x. The linear mixing with the transform matrix Φ comes
into play in CDMA spread spectrum systems and lattice codes
mentioned above.

III. REVIEW OF STANDARD BELIEF PROPAGATION

Before describing the relaxed BP algorithm, it is useful to
first review how standard BP would be applied to the linear
mixing estimation problem. Standard BP associates with the
transform matrix Φ a bipartite graph G = (V,E), called
the factor or Tanner graph illustrated in Fig. 2. The vertices
V in this graph consists of n “input” or “variable” nodes
associated with the variables xj , j = 1, . . . , n, and m “output”
or “measurements” nodes associated with the observations yi,
i = 1, . . . ,m. There is an edge (i, j) ∈ E between the input
node xj and output node yi if and only if Φi,j 6= 0.

Given this graph, define the neighbor sets of the input and
output nodes as

Nin(j) = { i : (i, j) ∈ E) , (7a)
Nout(i) = { j : (i, j) ∈ E) , (7b)

so that Nin(j) is the set of neighbors of the input index j, and
Nout(i) is the set of neighbors of the output index i.

The standard BP algorithm works by iteratively passing
“messages” along the edges of this graph represented as
probability distributions on the variables xj . The messages
are sometimes called beliefs. For the linear mixing estimation
problem, the standard BP algorithm can be described as
follows:

1) Initialization: Set t = 1 and initialize the outgoing
messages from the input nodes to

pxi←j(t, xj) = pxj (t, xj) = pX(xj), (8)

for all input node indices j and edges (i, j) ∈ E. This
initialization simply sets the messages to the priors on
the variables xj .

2) Mixing update: For each edge (i, j) ∈ E, compute
pzi→j(t, zi→j), the distribution of the random variable

zi→j =
∑

r∈Nout(i)6=j

Φirxr, (9)

assuming the variables xr are independent with distri-
butions xr ∼ pxi←r(t, xr). Here, the sum is over indices
r ∈ Nout(i) with r 6= j. Also, for each i, compute
pzi (t, zi), the distribution of the random variable

zi =
∑

r∈Nout(i)

Φirxr. (10)

3) Output update: For each edge (i, j) ∈ E, compute the
likelihood function

pui→j(t, ui) =

∫
pY |Z(yi | ui + zi→j)

× pzi→j(t, zi→j) dzi→j . (11)

4) Input update: For each edge (i, j) ∈ E, compute the
distribution

pxi←j(t+1, xj) ∝ pX(xj)
∏

`∈Nin(j)6=i

pu`→j(t,Φ`jxj). (12)

Here, the ∝ sign indicates that the distribution is to be
normalized so that it has unit integral. Also, compute
the total distribution

pxj (t+ 1, xj) ∝ pX(xj)
∏

`∈Nin(j)

pu`→j(t,Φ`jxj). (13)

Increment t = t+1 and return to step 2 until a sufficient
number of iterations have been performed.

When the graph G is acyclic, then it can be shown that
the distributions pxj (xj) and pzi (zi) eventually converge to the
true marginal distributions of the random variables xj and zi
given the observations y. However, for graphs with cycles, the
BP algorithm in general only returns an approximation to the
true marginals. An analysis of the BP algorithm is beyond the
scope of this work and is covered extensively elsewhere. See,
for example, [1], [2] and [27].

What is important here is to recognize the complexity of
the algorithm. The difficult step is the computations of the
distributions of the variables zi→j and zi in (9) and (10) in
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the mixing update. Suppose the output node yi has in-degree
d. That is, there are d indices j such that Φij is non-zero.
Then, the evaluation of the distributions on zi→j and zi involve
the integration over d − 1 and d components xr. Since the
complexity of this computation grows exponentially in d, the
BP algorithm is only tractable when the transform matrix Φ is
sparse (i.e., d is small). The point of relaxed BP is to provide
an approximation to BP suitable for large, dense Φ.

IV. RELAXED BELIEF PROPAGATION

A. Scalar Estimation Functions

Before describing the relaxed BP algorithm, we need to
define certain functions related to scalar estimation problems
at the input and output nodes. At the input nodes, we consider
the problem of estimating a scalar random variable x ∼ pX(x)
from some scalar observation of the form

q = x+ v, v ∼ N (0, µ), (14)

where µ > 0 is a noise-level and v is additive Gaussian
noise independent of x. Let Fin(q, µ) and Ein(q, µ) be the
conditional mean and variance of the random variable x given
the scalar observation q. Although, the functions Fin(q, µ) and
Ein(q, µ) may not have closed form expressions, they can be
evaluated with one-dimensional integrals.

To analyze the output nodes, suppose that z is a scalar Gaus-
sian random variable z ∼ N (ẑ, µ) and y has the conditional
distribution pY |Z(y|z). Let pY |Ẑ,µ(y|ẑ, µ) be the likelihood
function

pY |Ẑ,µ(y|ẑ, µ) =

∫
pY |Z(y|z)φ(z − ẑ ; µ) dz, (15)

where φ(z − ẑ ; µ) is the Gaussian p.d.f. in (5) with mean
ẑ and variance µ. The relaxed BP algorithm is based on the
derivatives of log likelihood or score function

Dr(y, ẑ, µ) = − ∂r

∂ẑr
log py|Ẑ,µ(y|ẑ, µ), (16)

for r > 0. Again, this function can in general be evaluated
numerically.

B. Algorithm

We can now describe the relaxed BP algorithm. The algo-
rithm produces a sequence of estimates x̂j(t), t = 0, 1, . . . for
each variable xj as well as estimates ẑi(t) for each transformed
variable zi. Several other intermediate estimates and variances
are also computed. The steps are as follows:

1) Initialization: Set t = 1, and for every input node index
j and every (i, j) ∈ E, initialize

x̂i←j(t) = x̂j(t) = x̂init, (17a)
µxi←j(t) = µxj (t) = µxinit, (17b)

where x̂init and µxinit are the mean and variance of the
prior pX(x).

2) Output node, linear step: For every (i, j) ∈ E compute

ẑi→j(t) =
∑
r 6=j

Φirx̂i←r(t), (18a)

µzi→j(t) =
∑
r 6=j

|Φir|2µxi←r(t). (18b)

Also compute ẑi(t) and µzi (t) similarly, but with the
summation over all r ∈ {1, . . . , n}.

3) Output node, non-linear step: For every (i, j) ∈ E
compute

ûi→j(t) = −
D1(yi, ẑi→j(t), µ

z
i→j(t))

D2(yi, ẑi→j(t), µzi→j(t))
, (19a)

µui→j(t) =
1

D2(yi, ẑi→j(t), µzi→j(t))
, (19b)

where Dr(y, ẑ, µ) are the derivatives of the negative log
likelihood function in (16).

4) Input node, linear step: For every (i, j) ∈ E compute

q̂i←j(t) = µqi←j(t)
∑
` 6=i

Φ∗`j û`→j(t)

µu`→j(t)
, (20a)

µqi←j(t) =

∑
6̀=i

|Φ`j |2

µu`→j(t)

−1 . (20b)

Also, compute q̂j(t) and µqj(t) similarly, but with the
summation over all ` ∈ {1, . . . ,m}.

5) Input node, non-linear step: For every (i, j) ∈ E
compute

x̂i←j(t+ 1) = Fin(q̂i←j(t), µ
q
i←j(t)), (21a)

µxi←j(t+ 1) = Ein(q̂i←j(t), µ
q
i←j(t)). (21b)

Similarly, for every j = 1, . . . , n, compute x̂j(t+1) and
µxj (t+1) using q̂j(t) and µqj(t). Set t = t+1 and return
to step 2.

C. Heuristic Justification

Although we will formally analyze the relaxed BP algorithm
below, it is useful to first provide a heuristic understanding
of the steps. The relaxed BP algorithm is a simplification of
the standard BP method where only the means and variances
of the probability distributions are passed. Specifically, the
terms x̂i←j(t) and µxi←j(t) are approximations of the mean
and variance of the distribution pxi←j(t, xj) in (13) in the
standard BP algorithm. In step 1, these are initialized based
on the prior pX(xj). The relaxed BP approximation does not
assume that pxi←j(t, xj) itself is Gaussian. However, relaxed
BP does assume that there is a sufficient number of terms in
the summation in (9) that pzi→j(t, zi→j) of the standard BP al-
gorithm is well-approximated as Gaussian. The terms ẑi→j(t)
and µzi→j(t) in (18) in step 2 of the relaxed BP algorithm are
the mean and variance of this Gaussian distribution. Under
this Gaussian assumption, the likelihood function pui→j(t, ui)
in (11) is approximately given by

pui→j(t, ui) ≈ pY |Ẑ,µ(yi|ẑi→j(t), µzi→j(t)), (22)
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where pY |Ẑ,µ(y|ẑ, µ) is given in (15). Then, using the deriva-
tives in (16), the second order approximation of (22) is given
by

log pui→j(t, ui) ≈ − 1

2µui→j(t)
|ui − ûi→j(t)|2

+O(|ui|3) + const, (23)

where ûi→j(t) and µui→j(t) are given in (19) in step 3 of the
relaxed BP algorithm and the constant term does not depend on
ui. Now summing the log likelihoods in (23), the distribution
pxi←j(t, xj) in (13) is given by

log pxi←j(t, xj) = const + log pX(xj)

+
∑
` 6=i

log pu`→j(t,Φ`jxj)

≈ log pX(xj)−
1

2µqi←j(t)
|xj − q̂i←j(t)|2 + const, (24)

where qi←j(t) and µqi←j(t) are the outputs (20). The ap-
proximation in (24) is due to the fact that the sum of the
O(|Φijxj |3) terms is asymptotically negligible for large n.
This implies that

pxi←j(t, xj) ∝ pX(xj)φ(xj − q̂i←j(t) ; µqi←j(t)),

where again φ(· ; ·) is the Gaussian distribution in (5). This
implies that, conditional on xj , q̂i←j(t) is distributed as
N (xj , µ

q
i←j(t)). The final step, step 5, uses the scalar es-

timation functions in Section IV-A to compute x̂i←j(t) and
µxi←j(t), the mean and variance of xj given q̂i←j(t).

D. Algorithm Complexity and Simplifications
We next consider the complexity of the relaxed BP algo-

rithm. The most computationally demanding steps are the non-
linear mean and variance computations in Fin(·), Ein(·) in
(21) and the derivatives, Dr(·) of the log likelihood function
in (19). Each of these functions can be computed by a one-
dimensional numerical integral. Moreover, each iteration of
the relaxed BP algorithm requires exactly one evaluation of
the input node functions and one evaluation of the output log
likelihood derivatives per edge of the Tanner graph. Thus, the
computations grow linearly with the density of the graph and
unlike standard BP, the relaxed BP algorithm is tractable even
for dense matrices Φ.

The relaxed BP algorithm can actually be further sim-
plified with some small approximations. Following Tanaka
and Okada’s approximate BP algorithm in [18], the relaxed
BP algorithm can be approximately implemented using one
evaluation of the input and output nonlinear functions per
vertex, as opposed to one evaluation per edge.

To implement this simplified relaxed BP algorithm, we first
assume that the outgoing variances are the same to all desti-
nations. Specifically, we replace the variance computations in
the relaxed BP algorithm with

µzi→j(t) = µzi (t)

µui→j(t) =
1

D2(yi, ẑi(t), µzi (t))

µqi←j(t) = µqj(t)

µxi←j(t) = µxj (t),

where µqj(t) and µxj (t) are still computed as in the relaxed BP
algorithm. In this way, the variance function Ein(·) and second
derivative D2(y, ẑ, µ) are each only computed once per vertex
per iteration, as opposed to once per edge.

To reduce the evaluations of the input node function Fin(·),
we first observe from (20) and the definition of qj(t) that

qi←j(t) = qj(t)− µqi←j(t)
Φ∗ijui→j(t)

µui→j(t)
.

Therefore, we can approximate the update in (21) with

x̂i←j(t) = Fin(q̂i←j(t), µ
q
i←j(t))

≈ Fin(q̂i←j(t), µ
q
j(t))

≈ Fin(q̂j(t), µ
q
j(t))

−µqi←j(t)
Φ∗ijui→j(t)

µui→j(t)

∂

∂q
Fin(q, µqj(t))

∣∣∣∣
q=q̂j(t)

,(25)

where we have used a first order approximation for Fin(·).
Moreover, the partial derivative can be evaluated with the
following lemma.

Lemma 1: The input MSE function defined in Section IV-A
satisfies

∂

∂q
Fin(q, µ) =

1

µ
Ein(q, µ). (26)

Proof: See Appendix C.
For the output node, we can use the fact that

ẑi→j(t) = ẑi(t)− Φij x̂i←j(t).

Therefore, we can make the approximation

ûi→j(t) = D1(yi, ẑi→j(t), µ
z
i→j(t))

≈ D1(yi, ẑi→j(t), µ
z
i (t))

≈ D1(yi, ẑi(t), µ
z
i (t))

−Φij x̂i←j(t)D2(yi, ẑi(t), µ
z
i (t)). (27)

Using (25) and (27), we only need to evaluate the nonlinear
functions Fin(·) and D1(·) once per edge. The analysis that we
will present later does not apply to the relaxed BP algorithm
with these approximations. Nevertheless, we will see in the
simulations that the approximate relaxed BP algorithms behave
closely to the exact implementation.

V. LARGE SPARSE LIMIT ANALYSIS

A. Modeling Assumptions

We analyze the relaxed BP algorithm in the large sparse
limit developed in [12]–[14]. The large sparse limit model
considers a sequence of problems parameterized by n and d.
For each n and d, the transform matrix Φ = Φ(n, d) ∈ Rm×n
is of the form

Φ =
1√
d
AS1/2, S = diag(s1, . . . , sn), (28)

where A ∈ Rm×n and S ∈ Rn×n are two matrices, and
m = m(n) is a deterministic function of n. The number of
measurements is assumed to grow linearly in n in that

lim
n→∞

n

m(n)
= β (29)
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for some β ≥ 0.
The components sj in (28) are called the scale factors and

are assumed to be i.i.d. with some probability distribution
pS(sj) that does not depend on n or d. We assume sj > 0
almost surely. The diagonal scale factor matrix S is used to
scale the powers of the components of x. Specifically, multi-
plication by S1/2 scales the variance of the jth component of
x by a factor sj . In this way, the scale factors can be used to
capture variations in the power of the components of x that
are known a priori at the estimator. Variations in the power
of x that are not known to the estimator should be captured
in the distribution of x.

The matrix A is deterministic, and we evaluate the perfor-
mance of the relaxed BP algorithm on a deterministic sequence
of input and output indices i = i(n, d) and j = j(n, d). The
sequence of matrices A and indices i and j are assumed to
satisfy the following conditions:

Assumption 1: Let A = A(n, d) be a sequence of deter-
ministic matrices in the factorization of Φ = Φ(n, d) in (28).
Let i = i(n, d) and j = j(n, d) be a deterministic sequence
of indices. Let t > 0 be some fixed iteration number of the
relaxed BP algorithm. Assume that A, i and j satisfy the
following:
(a) For every n and d, (i, j) is an edge in the Tanner graph

G associated with Φ.
(b) The computation subgraphs Gi(t) and Gj(t) of the

Tanner graph taken a depth of 2t hops from the output
node i and input node j are trees. Precise definitions of
these computation subgraphs are given in Appendix D.

(c) All the nodes in the subgraphs Gi(t) and Gj(t) have
degrees bounded above by d.

(d) For all output nodes ` in the subgraph Gi(t), we have
the limits

lim
d→∞

lim
n→∞

1

d

∑
r∈Nout(`)

|a`r|2 = β, (30a)

lim
d→∞

lim
n→∞

1

d3/2

∑
r∈Nout(`)

|a`r|3 = 0. (30b)

For all input nodes r in the subgraph Gj(t), we have the
limits

lim
d→∞

lim
n→∞

1

d

∑
`∈Nin(r)

|a`r|2 = 1, (30c)

lim
d→∞

lim
n→∞

1

d3/2

∑
`∈Nin(r)

|a`r|3 = 0. (30d)

As in [12]–[14], the key assumption is that the Tanner graph
G associated with the transform matrix Φ is locally tree-like
around the components of interest i and j. The assumption
is common in the study of BP algorithms as it makes the
messages independent. This local tree-like property is only
possible with the graph being sparse. This sparsity assumption
is brought out explicitly by bounding the input and output
degrees of the Tanner graph.

Assumption 1 uses a deterministic model for the A as
opposed to the random matrix model with i.i.d. components
studied in [12]–[14]. The deterministic model simplifies some

of the proofs. In particular, the input and output degrees are
deterministically bounded as opposed to be bounded on aver-
age – which simplifies some of the convergence arguments.

In the large sparse limit analysis, we first let n→∞ with
m growing linearly with n and keeping d fixed. This enables
the local-tree like properties. We then let d→∞, which will
enable the use of a Central Limit Theorem approximation.

This order of limits is critical. Unfortunately, to analyze
dense matrices, one would like an analysis where d can grow
with n. Indeed, if the matrix is completely dense, we would
like d = m(n). Unfortunately, the large sparse limit analysis
that we rely on here requires that we consider the two limits
separately; it thus represents an approximation to the actual
problem. Nevertheless, we will see in simulations that large
sparse limit analysis appears to predict the behavior with dense
matrices as well.

More sophisticated analysis techniques developed recently
in [22] enable the study of dense matrices without the order
of limits above. One possible avenue of future research would
be to see if that analysis can be applied to the relaxed BP
algorithm with general (non-AWGN) output channels as well.

B. Large Sparse Limit Convergence

Under the large sparse limit model, define the random
vectors

θxi←j(n, d, t) = (xj , sj , x̂i←j(t), µ
x
i←j(t)) (31a)

θxj (n, d, t) = (xj , sj , x̂j(t), µ
x
j (t)) (31b)

θzi→j(n, d, t) = (zi→j , ẑi→j(t), µ
z
i→j(t)) (31c)

θzi (n, d, t) = (zi, ẑi(t), µ
z
i (t)), (31d)

where the dependence on n and d on the right-hand side of the
equations is implicit. Our goal is to describe the large sparse
limit behavior of these random vectors.

A key result of [14] is that the large sparse limit behavior
of BP is described by a set of simple state evolution (SE)
equations, which can be described as follows: Given Ein(q, µ)
in Section IV-A, define

E in(µ, s) = E [Ein(q, µ/s)|s] (32a)
E in(µ) = E [sEin(q, µ/s)] , (32b)

where the expectation is taken over the scalar random variables
s ∼ pS(s) and q given by (14) with x ∼ pX(x). We will call
E in(µ) the input node MSE function. In addition to the works
[13], [14], this function appeared in Guo and Verdú’s replica
analysis of MSE estimation [16] and related works [28], [29].
Variants also appear in the analysis of the AMP algorithm
[11], [22].

At the output node, let

µzinit = βE(s)µxinit, (33)

where µxinit is variance of xj according to the prior pX(xj),
and the expectation is over s ∼ pS(s). Then, for µ ≤ µzinit,
Guo and Wang [14] define the output node MSE function as

Eout(µ) =
1

E [D2(y, ẑ, µ)]
, (34)
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where D2(y, ẑ, µ) is the derivative (16) of the score function.
The expectation in (34) is taken over

(z, ẑ) ∼ N (0, Pz(µ)), (35)

where Pz(µ) is the covariance matrix

Pz(µ) =

(
µzinit µzinit − µ

µzinit − µ µzinit − µ

)
, (36)

and the conditional distribution of y given z is given by
pY |Z(y|z).

Now consider the recursion

µq(t) = Eout(µz(t)), (37a)
µx(t+ 1, s) = E in(µq(t), s), (37b)
µz(t+ 1) = βE in(µq(t)), (37c)

defined for t ≥ 1. We can also write (37) with the single
equation

µz(t+ 1) = βE in
[
Eout(µz(t))

]
. (38)

In [14], the equations (37) (or the single equation version (38))
are called the state evolution equations for BP as they describe
the evolution of the error variances.

We consider two possible initial conditions for this recur-
sion: one low value and one high value. The low sequence will
be initialized with µz(1) = µzlo(1) = 0, and the high sequence
will be initialized with µz(1) = µzhi(1) = µzinit in (33). We
will use the subscripts as in µzlo(t) and µzhi(t) to differentiate
between the two sequences.

Now, for t ∈ Z+, let θx(t) be the random vector

θx(t) = (x, s, Fin(q, µ), Ein(q, µ)) , (39)

where x ∼ pX(x), s ∼ pS(s), q is distributed as (14), and
µ = µq(t − 1)/s with µq(t − 1) being the (deterministic)
quantity in the state evolution (SE) equation (37). To initialize,
let

θx(1) = (x, s, x̂init, µ
x
init) , (40)

where x̂init and µxinit are the mean and variance of the prior of
pX(x). We will see below that when we use µq(t) = µqhi(t),
the SE output with the “high” initial condition θx(t) describes
the limit of the random vector θxi←j(n, d, t) in (31). When
µq(t) = µqlo(t), θx(t) is the limit of a related quantity for a
certain “genie-aided” algorithm (see Appendix B).

Also, for all t ∈ Z+, define the random vector

θz(t) = (z, ẑ, µz(t)), (41)

where µz(t) is the output of the state evolution equations (37)
and (z, ẑ) ∼ N (0, Pz(µ

z(t))).
Theorem 1: Consider the relaxed BP algorithm under the

large sparse limit model above with transform matrix Φ and
indices i and j satisfying Assumption 1 for some fixed iteration
number t. Then:

(a) The random vectors in (31) converge in distribution as
follows:

lim
d→∞

lim
n→∞

θxi←j(n, d, t) = θx(t) (42a)

lim
d→∞

lim
n→∞

θxj (n, d, t) = θx(t) (42b)

lim
d→∞

lim
n→∞

θzi←j(n, d, t) = θz(t) (42c)

lim
d→∞

lim
n→∞

θzi (n, d, t) = θz(t), (42d)

where the random vectors θx(t) and θz(t) are defined as
above with µq(t) = µqhi(t) and µz(t) = µzhi(t).

(b) The error variances satisfy the limits

lim
d→∞

lim
n→∞

E
[
|xj − x̂j(t)|2|sj = s

]
= µxhi(t, s), (43a)

lim
d→∞

lim
n→∞

E
[
|zi − ẑi(t)|2

]
= µzhi(t), (43b)

where µxhi(t, s) and µzhi(t) are the output of the SE
equations (37) with the “hi” initial condition.

(c) The minimum conditional error variance of xj and zi
given Φ and y satisfy the asymptotic lower bounds

lim
d→∞

lim
n→∞

E [var(xj |y,Φ)|sj = s] ≥ µxlo(t, s), (44a)

lim
d→∞

lim
n→∞

E [var(zi|y,Φ)] ≥ µzlo(t), (44b)

where µxlo(t, s) and µzlo(t) are the output of the SE
equations (37) with the “lo” initial condition.
Proof: See Appendices E and F.

The performance bounds in parts (a) and (b) are largely
identical to the results in [14] except that they apply to
relaxed BP instead of BP. This is our main result: in the
large sparse limit model, relaxed BP and standard BP have
the identical asymptotic behavior. The lower bound in part (c)
of the theorem is also very close to results in [14] and just
repeated here for completeness.

Part (a) of the theorem provides a simple scalar char-
acterization for this asymptotic behavior. Specifically, using
the definition of θx(t) in (39), Theorem 1 shows that the
componentwise behavior of the relaxed BP follows a scalar
equivalent model as shown in Fig. 3: The component xj is
first corrupted by Gaussian noise yielding a noisy component
qj . The relaxed BP estimate x̂j(t) then behaves identically
to the optimal scalar MMSE estimate of xj from the AWGN
measurement qj . From this scalar equivalent joint distribution
of the components and their estimates, one can compute any
componentwise separable performance metric such as mean-
squared error or probability of detection.

The effective Gaussian noise levels in the scalar models
are described by µzhi(t) and µqhi(t) from the state evolu-
tion equations (37). Since the state evolution equations can
be evaluated easily with numerical integration, Theorem 1
thus provides a simple, computationally-tractable method for
exactly characterizing the performance of the relaxed BP
algorithm.

Part (b) shows that the SE outputs µxhi(t, s) and µzhi(t)
respectively describe the asymptotic estimation error on the
components xj and prediction error on the outputs zi. Part (c)
provides corresponding lower bounds on these error variances
for any estimator.
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Fig. 3. Equivalent scalar model of the relaxed BP algorithm. The asymptotic
behavior of the relaxed BP estimate x̂j(t) of a component xj is identical to
the output of an MMSE estimator with AWGN noise. The effective noise is
scaled by the factor sj corresponding to the component xj .

C. Convergence over Iteration and Mean-Square Optimality

Theorem 1 describes the asymptotic behavior of the relaxed
BP algorithm for a fixed iteration number t. Our second result
describes the behavior of the relaxed BP estimates as t→∞.

Theorem 2: Consider the state evolution equations (37).
Suppose that E in(µ) and Eout(µ) are continuous. Then, the SE
equations have at least one fixed point with 0 ≤ µz ≤ µzinit.
Also:

(a) With the “hi” initial condition, µz(1) = µzhi(1) = µzinit,
the sequences µzhi(t), µxhi(t, s) and µqhi(t) decrease mono-
tonically to the largest fixed point of the SE equations
(37).

(b) With the “lo” initial condition, µz(1) = µzlo(1) = 0, the
sequences µzlo(t), µxlo(t, s) and µqlo(t) increase monotoni-
cally to the smallest fixed point of the SE equations (37).

Proof: See Appendix G.
The theorem is similar to the convergence result in [13]

except that it applies to all β. The importance of the result
is that it shows that relaxed BP provably converges in the
limit of large iterations, and the asymptotic error variance of
relaxed BP and the corresponding error lower bounds are both
fixed points of the SE equations. A corollary of this result
is that, when the fixed points of the SE equations (37) are
unique, the error variance of relaxed BP and the corresponding
lower bound agree. The result thus gives an easily verifiable
condition under which relaxed BP is asymptotically mean-
square optimal.

VI. NUMERICAL SIMULATIONS

The large sparse limit analysis of the relaxed BP algorithm
in Section V is theoretically exact only in the asymptotic
limit of large dimensions. Also, the analysis assumes a certain
scaling where the measurement matrix Φ remains sparse. To
test the accuracy of the large sparse limit model for finite
problems with dense Φ, we conducted the following simple
numerical experiments.

A. Gauss-Bernoulli Prior with an AWGN Output Channel

In the first experiment, the vector x was generated with i.i.d.
components xj with a Gauss-Bernoulli distribution given by

xj ∼
{
N (0, 1/ρ) with prob = ρ,
0 with prob = 1− ρ. (45)

Here ρ is the sparsity ratio and represents the average fraction
of non-zero components in x. The experiments below used the
value ρ = 0.1. We chose this Gaussian mixture model since
it is a simple example of a sparse prior used in compressed
sensing. This prior is also used in the numerical validation of
the replica method in [28].

The components of the measurement matrix Φ were gener-
ated as i.i.d. zero-mean Gaussians. Even though this matrix is
dense, we will see that the large sparse limit analysis predicts
the behavior of the relaxed BP estimator well.

For the measurement channel in this first experiment, we
assumed an AWGN output channel (3), where the noise w also
has i.i.d. zero-mean Gaussian components. The noise variance,
µw, of the components of w was selected such that SNR0 =
10 dB, where SNR0 is the signal-to-noise ratio,

SNR0 = 10 log10

(
E‖Φx‖2

nµw

)
. (46)

As discussed in [28], SNR0 is the effective SNR that an
estimator would see in estimating any one component of xj
with the other n− 1 components of x known.

Fig. 4 shows the median normalized squared-error (NSE) as
a function of the iteration number in the relaxed BP algorithm
for this model. In all the numerical experiments, we used
the relaxed BP algorithm with the simplifications described
in Section IV-D. The simulation was conducted with 1000
random realizations of the problem, and for each realization,
we measured the NSE given by

NSE = 10 log10

(
‖x̂− x‖2

E‖x‖2

)
,

where x̂ is the estimate of x. The NSE represents the average
error over the n components of x. Fig. 4 plots the median of
these NSE values over the 1000 Monte Carlo trials. The figure
shows the median NSE for vector dimensions n = 100 and
500 and β = n/m = 2 and 3.

The points marked “pred (SE)” are the NSE values as
predicted by the state evolution equations (37). We see that
the state evolution equations, which are theoretically exact for
infinite n, provide an excellent match (within 0.1 dB) with
the simulated values when n = 500. At the shorter length
of n = 100, the SE equations still provide a good match,
although there is a small steady error of about 0.2 dB when
β = 2 and 0.8 dB when β = 3.

In Fig. 4, we plotted the median NSE since there is
actually considerable variation in the NSE over the random
realizations of the problem parameters. To illustrate the degree
of variability, Fig. 5 shows the CDF of the NSE values over the
1000 Monte Carlo trials. We see that there is a large variation
in the NSE, especially at the smaller dimension n = 100.
This means that although the median performance may be
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evolution limit (SE lim).

good, there is still a significant chance that the algorithm could
perform well below the median on any particular realization.

As one might expect, at the higher dimension of n = 500,
the level of variability is reduced and performance begins to
concentrate around the density evolution limit. However, even
at n = 500, the variation is not insignificant. As a result,
caution should be exercised in using the SE predictions with
short to medium block lengths.
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Fig. 6. Performance comparison of relaxed BP with other sparse estimation
methods.

B. Comparison to Other Sparse Detection Methods

Fig. 6 plots the squared-error performance of the relaxed
BP algorithm varying the measurement ratio β = n/m and
holding n = 100. For each value of β, the points labeled
“relaxed BP” show the median NSE after 20 iterations of the
relaxed BP algorithm.

Also plotted is the theoretical optimal MMSE performance
as predicted by the lower bound, Theorem 1(c). In this
experiment, we observed only one fixed point for the SE
equations for all the values of β. So the lower bound on
the MSE in Theorem 1(c) equals the theoretical asymptotic
performance of relaxed BP given in Theorem 1(b). We see
that the relaxed BP algorithm at n = 100 performs very close
to the asymptotic optimal performance for values of β up to
approximately 2. For larger values of β, there is a small gap
between the performance of the relaxed BP algorithm and the
optimal performance. The gap grows to 0.8 dB at β = 3. As
discussed in Fig. 4, this gap decreases at higher values of n.

Fig. 6 also shows the performance of two other simple
algorithms. The top curve is the median NSE for optimal linear
MMSE estimation, and the curve labeled “lasso” is the MSE
from the lasso algorithm of [30]. The lasso method is based on
an `1-relaxation of the optimal estimator and is widely-used
for sparse estimation problems in compressed sensing. In this
experiment, the regularization weighting in the lasso estimator
was optimized as described in [28].

We see that the relaxed BP algorithm offers some gain
over either of these methods. Of course, with the interest
in compressed sensing, there is now a plethora of methods
for estimating sparse vectors. It is likely that other methods,
including possible modifications of lasso, can obtain a similar
performance as relaxed BP. A complete comparison of relaxed
BP against these methods is beyond the scope of this work.
What is important is that relaxed BP provides a unified,
systematic method for a large class of problems, such that
when applied to certain compressed sensing problems, it gives
near optimal performance.
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Fig. 7. Relaxed BP algorithm with a Gaussian prior and bounded noise
output channel. The plot compares the simulated relaxed BP performance
against the predicted performance based on density evolution. Also shown is
the performance of the linear MMSE estimator with and without projection
to the consistent set.

C. Estimation with Bounded Noise

To validate the relaxed BP method and analysis for non-
AWGN output channels, we next considered a bounded,
uniform noise channel. Specifically, we assumed that the
output channel is given by (3) where the components of
the noise vector w are i.i.d. and uniformly distributed in an
interval [−δ, δ] for some δ > 0. Among other applications,
this bounded noise model arises in the study of subtractive
dithered quantization [31], [32], where the uncertainty interval
corresponds to a quantization region.

Unfortunately, optimal MMSE estimation with bounded
uniform noise involves an integration over an n-dimensional
polytope, which is generally computationally intractable. How-
ever, the relaxed BP algorithm can be readily applied to the
relaxed BP problem with bounded noise providing a simple,
computationally-tractable algorithm for this problem.

Fig. 7 shows a simulation of the relaxed BP algorithm
with a bounded uniform output noise channel. The simulation
used a vector x with n = 50 zero-mean i.i.d. Gaussian
components. Similar to the previous experiment, we again
used a measurement matrix Φ with Gaussian i.i.d. components.
Also, bounded uniform noise in the interval [−δ, δ] results in
a noise variance of µw = δ2/3. In this experiment, the noise
level δ was adjusted such that SNR0 in (46) was equal to 10
dB. We varied the values of the measurement ratio β = n/m,
and for each value of β, the points labeled “Relaxed BP” in
Fig. 7 plots the median NSE over 1000 Monte Carlo trials of
the relaxed BP algorithm, using 20 iterations in each relaxed
BP run.

As in the previous experiment, the SE equations have
a unique fixed point, and thus relaxed BP is theoretically
asymptotically optimal with a minimum variance predicted by
the SE fixed point. The curve labeled “Opt MMSE” shows this

theoretical asymptotic minimum squared error. We see that the
median squared error of relaxed BP at n = 50 matches the
theoretical asymptotic performance well.

Fig. 7 also compares the relaxed BP method to two other
simple algorithms. One is the linear MMSE estimator, which
is equivalent to the MMSE estimator assuming Gaussian noise.
The second estimator, shown in the curve labeled “Linear
MMSE + Proj,” is the linear MMSE estimate followed by
a projection step. A key observation of the work [33], [34] is
that any estimate (including the linear MMSE estimate) can
be improved by simply projecting the estimate onto the set of
vectors x consistent with the bounded noise. An estimate x̂
is consistent with the noise if ‖y − Φx̂‖∞ ≤ δ. The works
[33], [34] show that projecting to a consistent estimate always
reduces the squared-error and can offer significant gains at
low values of β (what is called high oversampling). Similar
results and algorithms have been reported elsewhere [35]–[37].
The figure shows that projecting the linear MMSE estimate
does indeed offer reductions in the squared error, especially for
small β. However, the relaxed BP algorithm, in comparison,
is even better.

The reason that the relaxed BP algorithm shows a perfor-
mance improvement over the projected linear MMSE estimate
is that projecting the linear MMSE estimate will generally
result in a point only on the boundary of the consistent set. In
contrast, the relaxed BP algorithm will attempt to find the
centroid of the consistent region, which will likely have a
smaller error variance.

VII. CONCLUSIONS

We have presented an extension to Guo and Wang’s relaxed
BP method in [13] to non-AWGN measurements. The algo-
rithm applies to a large class of estimation problems involving
linear mixing and arbitrary separable input and output distri-
butions. Unlike standard BP, relaxed BP is computationally
tractable even for dense measurement matrices. Our main
result shows that, in the large sparse limit, relaxed BP achieves
the same asymptotic behavior as standard BP as described in
[14]. In particular, when certain state evolution equations have
unique fixed points, relaxed BP is mean-square optimal. Given
the generality of the algorithm, its computational simplicity
and provable performance guarantees, we believe that relaxed
BP can have wide ranging applications. We have demonstrated
the algorithm in two well-known NP-hard problems: com-
pressed sensing and estimation with bounded noise.

The main theoretical limitation of the work is that it applies
to large sparse random matrices, where the density of the
measurement matrix must grow at a much slower rate than the
matrix dimension. An interesting avenue of future work would
be to see if the dense matrix analysis of the AMP algorithm
in [11] and [22] can be extended to relaxed BP.

APPENDIX A
PRELIMINARY CONVERGENCE RESULTS

Before proving our main result, the next number of ap-
pendices develop some preliminary results. We begin in this
appendix with some simple extensions to the Law of Large



RANGAN 11

Numbers and the Central Limit Theorem. We omit the proofs
as the results can be proven with minor modifications to
standard arguments using characteristic functions [38].

Lemma 2 (Modified Law of Large Numbers): For each n
and d, let xdn,i ∈ R, i = 1, . . . , d be a set of independent
(though not necessarily identically distributed) random vari-
ables satisfying

lim
d→∞

lim
n→∞

xdn,i = x ∼ pX(x),

where the convergence is in distribution and pX(x) is the
distribution for the limiting random variable x and i =
i(n, d) ∈ {1, . . . , d} is any deterministic sequence. Assume
x has bounded second moments. Let bdn,i be a set of non-
negative deterministic constants such that

lim
d→∞

lim
n→∞

1

d

d∑
i=1

bdn,i = 1.

Then, the limit

lim
d→∞

lim
n→∞

1

d

d∑
i=1

bdn,ix
d
n,i = E(x)

holds in distribution.
Lemma 3 (Modified Central Limit Theorem): Let xdn,i be

as in Lemma 2 such that, for any deterministic sequence of
indices i = i(n, d) ∈ {1, . . . , d}, we have the limit

lim
d→∞

lim
n→∞

√
d|E(xdn,i)−E(x)| = 0.

Also, suppose that adn,i is a deterministic sequence of scalars
such that that

lim
d→∞

lim
n→∞

1

d

d∑
i=1

|adn,i|2 = 1,

lim
d→∞

lim
n→∞

1

d3/2

d∑
i=1

|adn,i|3 = 0.

Then,

lim
d→∞

lim
n→∞

1√
d

d∑
i=1

adn,i(x
d
n,i −E(x)) = N (0, var(x))

where the limit is in distribution.

APPENDIX B
GENIE ALGORITHM

As stated earlier, part (c) of Theorem 1 is not new and
can be found in [13], [14]. Their proof is restated here
only for completeness. Using similar arguments as [39], their
proof considers a “genie” or “oracle-aided” algorithm that
has, as side information, knowledge of certain subsets of the
components xj .

The genie algorithm is defined as follows: In step 1 of the
relaxed BP algorithm in Section IV-B, we simply replace the
initialization (17) at t = 1 with

x̂i←j(t) = x̂j(t) = xj , (47a)
µxi←j(t) = µxj (t) = 0, (47b)

where xj is the true value of the component. Otherwise, all
the steps of the algorithm are the same as the regular relaxed
BP algorithm.

We will see that while the error in the regular BP algorithm
improves with each iteration, the genie algorithm starts with
zero error and then increases. The performance of the true op-
timal estimator is “sandwiched” somewhere between the genie
and regular relaxed BP algorithms, and thus consideration of
the regular and relaxed algorithms provide upper and lower
bounds on the optimal performance.

APPENDIX C
PROOF OF LEMMA 1

Fix µ > 0 and for r = 0, 1, 2, . . ., define the functions

Ar(q) =

∫
xrpX(x)φ(q − x ; µ) dx. (48)

Then, the conditional mean Fin(q, µ) and variance Ein(q, µ)
are given by

Fin(q, µ) =
A1(q)

A0(q)
, (49a)

Ein(q, µ) =
A2(q)

A0(q)
− A2

2(q)

A2
0(q)

. (49b)

Now, taking the derivative of the Gaussian distribution φ(· ; µ)
in (5), it is easily verified that

∂

∂q
φ(q − x ; µ) =

x− q
µ

φ(q − x ; µ).

Bringing this derivative inside the integral (48) then shows that

∂Ar(q)

∂q
=

1

µ
(Ar+1(q)− qAr(q)) . (50)

Applying (50) to (49) we obtain

∂Fin(q, µ)

∂q
=

∂

∂q

A1(q)

A0(q)

=
(A2(q)− qA1(q))A0(q)− (A1(q)− qA0(q))A1(q)

µA2
0(q)

=
A2(q)

µA0(q)
− A2

2(q)

µA2
0(q)

=
1

µ
Ein(q, µ).

APPENDIX D
COMPUTATION SUBGRAPHS AND LOCAL TREE-LIKE

PROPERTIES

An essential assumption of the large sparse limit analysis
is that the Tanner graph is locally tree-like. To describe this
property more precisely, we review some standard definitions
and results that can be found in any description of BP such
as [40]. Consider the Tanner graph G for the linear mixing
problem defined in Section III. For t = 0, 1, 2, . . ., recursively
define a sequence of computation subgraphs, Gj(t), Gi(t),
Gi←j(t) and Gi→j(t), as follows:

1) Initialize: Set t = 1, and for all (i, j) ∈ E let Gi←j(t)
and Gj(t) be the empty subgraphs.

2) Output update: For all (i, j) ∈ E, let Gi→j(t) be the
subgraph containing, for all r ∈ Nout(i) 6= j:
(a) the edges (i, r); and
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(b) the subgraphs Gi←r(t).
Similarly, define the subgraph Gi(t) to be the subgraph
using all r ∈ Nout(i).

3) Input update: For all (i, j) ∈ E, let Gi←j(t + 1) be
the subgraph containing the node xj and for all ` ∈
Nin(j) 6= i:
(a) the edges (`, j);
(b) the output nodes y`; and
(c) the subgraphs G`→j(t).
Similarly, define the subgraph Gj(t) to be the subgraph
using all ` ∈ Nin(j). Set t = t+ 1 and return to step 1.

Now let Hi→j(t) be the sigma algebra generated by
the components y` contained in the computation subgraph
Gi→j(t). Similarly, let Hi←j(t) be the sigma algebra gen-
erated by the components y` contained in the computation
subgraph Gi←j(t). To analyze the BP algorithm with the “ge-
nie” initialization in Appendix B, let Hgenie

i→j (t) and Hgenie
i←j (t)

be respectively the sigma algebras generated by the entire
vector y and the variable xr not in the computation subgraphs
Gi→j(t) and Gi←j(t). The following results are standard for
BP and can be proven using arguments as in [41].

Lemma 4: Consider the sigma algebras Hi←j(t) and
Hi→j(t) defined above.
(a) In the standard BP algorithm in Section III, the distribu-

tions pxi←j(t, xj) are Hi←j(t) measurable, and the dis-
tribution pzi→j(t, zi) and likelihood function pui→j(t, uj)
are Hi→j(t) measurable.

(b) In the relaxed BP algorithm, x̂i←j(t) and q̂i←j(t)
are Hi←j(t) measurable and ẑi→j(t) and ûi→j(t) are
Hi→j(t) measurable.

Similarly, under the oracle initialization described in Appendix
B, the above statements hold with Hi←j(t) and Hi→j(t)
replaced by Hgenie

i←j (t) and Hgenie
i→j (t).

Lemma 5: Consider the standard BP algorithm in Section
III and the computation subgraphs defined above.
(a) If Gi←j(t) is a tree, then pxi←j(t, xj) is the conditional

distribution of xj given Hi←j(t).
(b) If Gi→j(t) is a tree, then pzi→j(t, zi) is the conditional

distribution of zi→j given Hi→j(t).
Similarly, under the genie initialization, the above statements
hold with Hi←j(t) and Hi→j(t) replaced by Hgenie

i←j (t) and
Hgenie
i→j (t).
Lemma 6: Consider the relaxed BP algorithm in Section IV

under the assumptions in Section V.
(a) If Gi←j(t) is a tree, then all the terms (ẑ`→j(t), µ

z
i→j(t))

are independent for different values ` ∈ Nin(j) 6= i.
(b) If Gi→j(t) is a tree, then the random vectors θxi←r(t) are

independent for different values r ∈ Nout(i) 6= j.

APPENDIX E
PROOF OF THEOREM 1(A)

We prove this by induction. It is clear that (42a) holds for
t = 1. In part B below we will show that if (42a) holds for
some t, then so does (42c) and (42d). Then, in part C, we will
show that if (42c) holds for some t, then (42a) holds for t+1.
This will complete the induction argument. Part A provides a
preliminary calculation that we need in part C.

A. Derivatives of the Score Function

The following lemma characterizes the derivatives
Dr(y, ẑ, µ) in (16). The result can also be found in [14], but
we sketch the proof here for completeness. We will use this
result below in the analysis of the output node update.

Lemma 7: Fix ẑ and µ and consider random variables y
and z generated by z ∼ N (ẑ + u, µ) and y ∼ pY |Z(y|z) for
some u ∈ R. Consider the derivative of the score function in
(16). Then,

E [D1(y, ẑ, µ)|u] = −uE [D2(y, ẑ, µ)|u = 0]

+O(u2), (51a)
var [D1(y, ẑ, µ)|u] = E [D2(y, ẑ, µ)|u = 0]

+O(u2). (51b)

Proof: To simplify the notation, we will drop the depen-
dence on ẑ and µ. So, we will write, for example, D1(y) for
D1(y, ẑ, µ). To prove (51a), we first note that

E [D1(y)|u] =

∫
pY |U (y|u)D1(y) dy

=

∫
pY |U (y|0)D1(y) dy

+u

∫
∂

∂u
pY |U (y|u)

∣∣∣∣
u=0

D1(y) dy +O(u2). (52)

Now, for the first term in (52), note that using the definition
of D1(y) in (16), we have∫

pY |U (y|0)D1(y) dy

= −
∫
pY |U (y|0)

∂

∂u
log pY |U (y|u)

∣∣∣∣
u=0

dy

= −
∫

∂

∂u
pY |U (y|u)

∣∣∣∣
u=0

dy

= − ∂

∂u

∫
pY |U (y|u) dy

∣∣
u=0

= − ∂

∂u
(1) = 0. (53)

Similarly, the second term in (52) can be simplified by eval-
uating the second-order derivative in the definition of D2(y)
to obtain

E [D2(y)|u = 0]

=

∫
1

pY |U (y|0)

(
∂

∂u
pY |U (y|u)

∣∣
u=0

)2

dy

−
∫

∂2

∂u2
pY |U (y|u)

∣∣
u=0

dy. (54)

Now, ∫
∂2

∂u2
pY |U (y|u)

∣∣
u=0

dy

=
∂2

∂u2

∫
pY |U (y|u)

∣∣
u=0

dy =
∂2

∂u2
(1) = 0. (55)
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Also,∫
1

pY |U (y|0)

(
∂

∂u
pY |U (y|u)

∣∣
u=0

)2

dy

=

∫
∂

∂u
pY |U (y|u)

∣∣
u=0

∂

∂u
log pY |U (y|u)

∣∣
u=0

dy

= −
∫

∂

∂u
pY |U (y|u)

∣∣
u=0

D1(y) dy. (56)

Substituting (55) and (56) into (54), we obtain that

E [D2(y)|u = 0] = −
∫

∂

∂u
pY |U (y|u)

∣∣
u=0

D1(y) dy. (57)

Then (51a) follows by substituting (53) and (57) into (52).
Equation (51b) is proved by similar manipulations.

B. Analysis of the Output Node Update

Let t ≥ 1 and suppose that (42a) holds for some t. We will
show that this induction hypothesis implies (42c) and (42d).
We will just prove this implication for t > 1. The proof for
t = 1 is similar.

Under the induction hypothesis (42a), we first consider the
convergence of the terms µzi→j(t). From the factorization (28)
we have that

Φij =
1√
d
aij
√
sj , ∀j ∈ Nout(i). (58)

Using (18) and (58), we have that

µzi→j(t) =
∑

r∈Nout(i) 6=j

|Φir|2µxi←r

=
1

d

∑
r∈Nout(i) 6=j

|air|2srµxi←r(t). (59)

By Lemma 6(b) and the assumption that Gi→j(t) is a tree,
the terms in the summation in (59) are independent. Also,
the induction hypothesis (42a) shows that their asymptotic
distribution is given by

lim
d→∞

lim
n→∞

srµ
x
i←r(t) = sEin(q, µq(t− 1)/s),

where the convergence is in distribution and the random
variables s and q are the terms in θx(t) in (39). For the regular
relaxed BP algorithm µq(t−1) = µqhi(t−1) and, for the genie
algorithm, µq(t−1) = µqlo(t−1). In either case, the expectation
of this limiting random variable is

E [sEin(q, µq(t− 1)/s)] = E in(µq(t− 1)),

where E in(µq(t− 1)) is defined in (32). Using (30c), we can
apply the Modified Law of Large Numbers (Lemma 2), to the
sum in (59) to obtain

lim
d→∞

lim
n→∞

µzi←j(t) = βE in(µq(t− 1)) = µz(t), (60)

where the convergence is in distribution and the last step
follows from the definition of µz(t) in (37).

We next consider the convergence of the variables ẑi→j(t).
If we define zi→j as in (9), then (18) and (58) show that

zi→j − ẑi→j(t) =
∑

r∈Nout(i)6=j

Φir(xr − x̂i←r)

=
1√
d

∑
r∈Nout(i) 6=j

air
√
sr(xr − x̂i←r). (61)

By Lemma 6(b) the terms in the summation (61) are indepen-
dent. Also assuming (42a) holds, the terms in the summation
converge as

lim
d→∞

lim
n→∞

√
sr(xr − x̂i←r) =

√
s(x− Fin(q, µq(t− 1)/s)),

where the convergence is in distribution and the random
variables x, s and q are the terms in θx(t) in (39). The
variances of the terms converge as

lim
d→∞

lim
n→∞

E
[
sr|xr − x̂i←r|2

]
= E

[
s|x− Fin(q, µq(t− 1)/s)|2

]
= E in(µq(t− 1)).

Using (30a), (30b) and (60), we can apply the Modified Central
Limit Theorem (Lemma 3) to (61) to obtain

lim
d→∞

lim
n→∞

zi→j − ẑi→j(t) = N (0, µz(t)), (62)

where the convergence is in distribution.
Similarly one can show that

lim
d→∞

lim
n→∞

zi→j = N (0, µzinit) (63a)

and

lim
d→∞

lim
n→∞

(zi→j − ẑi→j(t))ẑi→j(t) = 0, (63b)

where µzinit is defined in (33). Equations (62) and (63) imply
that

lim
d→∞

lim
n→∞

(zi→j , ẑi→j(t)) = (z, ẑ), (64)

where z and ẑ are the Gaussian random variables in (35) with
µ = µz(t). Combining (60) and (64) proves (42c).

This argument shows that if (42a) is true for some t, then
so is (42c). A similar argument shows that (42a) also implies
(42d), except we replace the summations over the sets r ∈
Nout(i) 6= j with r ∈ Nout(i).

C. Analysis of the Input Node Update

For the next step in the induction proof, we want to prove
that if (42c) holds for some t, then (42a) holds for t+ 1.

Throughout this section, fix the input index j and variables
sj and xj . For each output index ` ∈ Nin(j) and u ∈ R, define
the Markov chain

ẑG` → zG` (u)→ yG` (u),

where the random variables are distributed as

ẑG` ∼ N (0, µzinit − µz(t))
zG` (u) ∼ N (ẑG` + u, µz(t))

yG` (u) ∼ pY |Z(y|zG` (u)).

Suppose the Markov chains are independent over different
values of `. We use the superscript “G” here to indicate that
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the random variables are Gaussian approximations to actual
random variables in the problems. To be specific, first observe
that

Φ`j =
1√
d
a`j
√
sj , ∀` ∈ Nout(j). (66)

Combining (66) with the definition of zi→j in (9) and the fact
that z = Φx, we have

z` =
∑

r∈Nout(`)

Φ`jxj = u` + z`→j , (67)

where
u` = Φ`jxj =

1√
d
a`j
√
sjxj . (68)

The induction hypothesis (42c) and Lemma 6(a) then show
that

lim
d→∞

lim
n→∞

(ẑ`→j(t), z`, y`, µ
z
`→j(t))

= (ẑG` , z
G
` (u`), y

G
` (u`), µ

z(t)), (69)

where the convergence is in distribution.
With these definitions, we first consider the convergence of

µqi←j(t). Using (19b), (20b) and (66), we have that

1

µqi←j(t)
=

∑
`∈Nin(j)6=i

|Φ`j |2

µu`→j(t)

=
1

d

∑
`∈Nin(j)6=i

|a`j |2sjD2(y`, ẑ`→j(t), µ
z
`→j(t)). (70)

By Lemma 6(a), given xj and sj , all the terms in (70) are
independent.

Also, using (69), we have the limit

lim
d→∞

lim
n→∞

D2(y`, ẑ`→j(t), µ
z
`→j(t))

(a)
= D2(yG` (u`), ẑ

G
` (u`)µ

z(t))
(b)
= D2(yG` (0), ẑG` (0), µz(t)) +O(|u`|3)
(c)
= D2(yG` (0), ẑG` (0), µz(t)) (71)

where the convergence in (a) is in distribution; (b) follows
from the assumption that D3(·) is uniformly bounded and (c)
follows from the fact that (68) shows that |u`|3 = O(d−3/2)→
0. We can apply the Modified Law of Large Numbers (Lemma
2) to the sum (70) to obtain the limit

lim
d→∞

lim
n→∞

1

µqi←j(t)

(a)
= lim

d→∞
lim
n→∞

1

d

∑
`∈Nin(j)6=i

|a`j |2sj

×D2(yG` (0), ẑG` (0), µz(t))
(b)
= sjE

[
D2(yG` (0), ẑG` (0), µz(t))

]
(c)
= sjEout(µz(t))

(d)
=

sj
µq(t)

, (72)

where the limit in (a) is in distribution and follows from (70)
and (71); (b) follows from (30c) and the Modified Law of
Large Numbers; (c) follows from the definition of Eout(·)
in (34) and the fact that the expectation over (y, z) in (34)

is identical to (yG` (0), zG` (0)); and (d) follows from the SE
equation (37a).

We next turn to the distribution of q̂i←j(t). Using (19), the
update (20a) can be simplified to

q̂i←j(t) = µqi←j(t)
∑
` 6=i

Φ∗`j û`→j(t)

µu`→j(t)

= −µqi←j(t)
∑
6̀=i

Φ∗`jD1(y`, ẑ`→j(t), µ
z
`→j(t)). (73)

So, using (69) and (72),

lim
d→∞

lim
n→∞

q̂i←j(t)

= −µ
q(t)

sj
lim

d,n→∞

∑
` 6=i

Φ∗`jD1(yG` (u`), ẑ
G
` (u`), µ

z(t)), (74)

where here and below we use the shorthand limd,n for
limd limn. Now define

e` = D1(yG` (u`), ẑ
G
` (u`), µ

z(t))

+ Φ`jxjE
[
D2(yG` (0), ẑG` (0), µz(t))

]
, (75)

so we can rewrite (74) as

lim
d→∞

lim
n→∞

q̂i←j(t)

= − lim
d,n→∞

∑
` 6=i

1

sj
Φ∗`je`

− lim
d,n→∞

∑
` 6=i

µq(t)|Φ`j |2xj
sj

E
[
D2(yG` (0), ẑG` (0), µz(t))

]
= − lim

d,n→∞

µq(t)√
dsj

∑
` 6=i

a∗`je` + xj , (76)

where the last step follows from (74) and (58).
Now, applying Lemma 7 to e` in (75),

E (e`|u`) = O(|u`|2)

var (e`|u`) = E
[
D2(yG` (0), ẑG` (0), µz(t))

]
+O(|u`|2)

=
1

µq(t)
+O(|u`|2).

From the definition of u` in (68), the O(|u`|2) terms are
O(1/d) and thus can be ignored. Applying the Modified
Central Limit Theorem (Lemma 3) to the sum in (76) along
with (30c) we obtain

lim
d→∞

lim
n→∞

q̂i←j(t) = xj +
(µq(t))2

sj
N
(

0,
1

µq(t)

)
= N

(
xj ,

µq(t)

sj

)
. (77)

Also since xj ∼ pX(xj) and sj ∼ pS(sj), (72) and (77)
together show that for any iteration t,

lim
d→∞

lim
n→∞

(xj , sj , q̂i←j(t), µ
q
i←j(t))

=

(
x, s,N

(
x,

1

s
µq(t)

)
,

1

s
µq(t)

)
, (78)

where the convergence is in distribution, x ∼ pX(x) and s ∼
pS(s). Applying (21) to (78) shows (42a). Therefore, we have



RANGAN 15

shown that if (42c) holds for t, then (42a) holds for t+1. One
can also show that if (42c) holds for t, then (42b) holds for t+1
using similar arguments except we replace the summations
over ` ∈ Nin(j) 6= i with ` ∈ Nin(j).

APPENDIX F
PROOF OF THEOREM 1(B) AND (C)

Parts (b) and (c) of Theorem 1 can be proven along the
lines of Guo and Wang’s analysis in [13] and [14] using the
concept of an asymptotically sufficient statistic along with
a standard sandwiching argument. Specifically, using their
analysis, we will show that the regular and “genie” versions of
the relaxed BP algorithm provide sufficient statistics for certain
conditional distribution of the vectors x and z. The regular BP
algorithm provides a sufficient statistic relative to the sigma
algebras Hi←j(t) and Hi→j(t), and the “genie” relaxed BP
algorithm in Appendix B provides a sufficient statistic relative
to Hgenie

i←j (t) and Hgenie
i→j (t). Moreover, the MSE relative to the

sigma algebras is described by the state evolution equations
starting from the “high” initial conditions for the regular
algorithm and “low” initial condition for the genie algorithm.
Since the sigma algebra generated by the actual observation
vector y lies somewhere between these sigma algebras, H and
Hgenie, the MSE of the optimal estimator is “sandwiched”
between the two solutions to the state evolution equations.

Since the arguments in this section follow very closely with
Guo and Wang’s analysis in [13], [14], we will just sketch the
proof. Similar sandwiching arguments can be found in the
early analysis of LDPC codes in [39].

We begin with the following definition.
Definition 1: Suppose that (xn, qn, Hn) is a sequence

where, for every n, xn and qn are random variables and Hn

is a sigma algebra. We will say that qn is an asymptotically
sufficient statistic for xn given Hn with limiting distribution
(xn, qn)→ (x, q) if:
(a) qn is Hn-measurable;
(b) (xn, qn)→ (x, q) in distribution;
(c) For any bounded continuous function f(x),

lim
n→∞

(E(f(xn)|Hn)−E(f(x)|q = qn)) = 0

almost surely.
The definition is a natural generalization of the concept of

a sufficient statistic. Specifically, it says that the conditional
estimate E(f(xn)|Hn) can be replaced by E(f(x)|q = qn)
with asymptotically vanishing error. That is, it is sufficient to
use just qn instead of the entire sigma algebra Hn and use
just the limiting distribution (x, q) as opposed to the termwise
distributions (xn, qn).

Following along the lines of Guo and Wang [13], [14], we
now prove the following.

Theorem 3: For the relaxed BP algorithm:
(a) If Gi→j(t) is a tree, then ẑi→j(t) is an asymptotically

sufficient statistic for zi→j given Hi→j(t) with the
asymptotic distribution (42c).

(b) If Gi←j(t) is a tree, then (q̂i←j(t), sj) is an asymptot-
ically sufficient statistic for xj given Hi←j(t) with the
asymptotic distribution (78).

The result also holds for the “genie” algorithm in Ap-
pendix B with Hi→j(t) and Hi←j(t) replaced by Hgenie

i→j (t)

and Hgenie
i←j (t).

Similar to the proof of Theorem 1(a), we prove Theorem 3
by induction. For the initial step in the induction, note that,
for the regular (non-Genie) algorithm, Hi→j(t) is empty
and ẑi→j(1) is the prior on zi→j . For the genie algorithm,
Hgenie
i→j (t) contains the entire vector x and ẑi→j(1) = zi→j .

Therefore, part (a) of Theorem 3 holds for t = 1. In part A
below, we will show that if (a) holds for some t, (b) holds for
t+ 1. In part B, we will show the reverse implication that if
(b) holds for some t so does (a). In part C, we apply Theorem
3 to prove Theorem 1(b) and (c).

A. Analysis of the Input Node Update

Suppose that part (a) of Theorem 3 holds for some t ≥
1. We will prove part (b) holds for t + 1. The asymptotic
limit (78) has already been proven. We only need to show
that (q̂i←j(t), sj) is asymptotically sufficient to describe the
conditional distribution of xj given Hi←j(t+ 1).

To this end, suppose that Gi←j(t + 1) is a tree. By the
construction of the computation subgraphs, G`→j(t) must be
a tree for every ` ∈ Nin(j), ` 6= j. Now define, for any r ≥ 1,
the “actual” derivatives of the likelihood

D`→j
r,act(t, y`) = − ∂r

∂ur
log pu`→j(t, u)

∣∣
u=0

, (79)

where pu`→j(t, u) is defined in (11). Since G`→j(t) is a tree,
Lemma 5 shows that pz`→j(t, z`→j) in (11) is the conditional
distribution z`→j given H`→j(t). Bringing the derivatives in
(79) inside the expectation in (11) we can rewrite (79) as

D`→j
r,act(t, y`)

= −E
[
∂r

∂ur
log pY |Z(yi|u+ z`→j)

∣∣
u=0

| H`→j(t)

]
,

(80)

where the expectation is over the conditional distribution of
z`→j given H`→j(t). Also, using (15) and (16), we can write

Dr(y, ẑ, µ)

= −E
[
∂r

∂ur
log pY |Z(yi|u+ z)

∣∣
u=0

| ẑ, µ
]
, (81)

where the expectation is over z ∼ N (ẑ, µ).
Now, the induction hypothesis, Theorem 3(a), states that

ẑ`→j(t) is asymptotically sufficient for z`→j given H`→j(t)
with the asymptotic distribution

lim
d→∞

lim
n→∞

(z`→j , ẑ`→j(t)) = N (0, Pz(µ
z(t)),

where µz(t) = µzhi(t) for the regular algorithm and µz(t) =
µzlo(t) for the “genie algorithm”. Applying this property to
(80) to (81), we obtain that

lim
n→∞

lim
d→∞

D`→j
r,act(t, y`)−Dr(y`, ẑ`→j(t), µ

z(t)) = 0, (82)

almost surely.
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We can now rewrite pxi←j(t+ 1, xj) in (13) as

lim
d→∞

lim
n→∞

− log pxi←j(t+ 1, xj) + log pX(xj) + const

(a)
= lim

d→∞
lim
n→∞

∑
`∈Nin(j) 6=i

log pu`→j(t,Φ`jxj)

(b)
= lim

d→∞
lim
n→∞

∑
`∈Nin(j) 6=i

D`→j
r,act(t, y`)Φ`jxj

+
1

2
D`→j
r,act(t, y`)|Φ`jxj |2 +O(|Φ`jxj |3)

(c)
= lim

d,n→∞

∑
`∈Nin(j)6=i

Dr(y`, ẑ`→j(t), µ
z(t))Φ`jxj

+
1

2
Dr(y`, ẑ`→j(t), µ

z(t))|Φ`jxj |2

(d)
= lim

d,n→∞

1

2µqi←j(t)
|xj − q̂i←j(t)|2

(e)
= lim

d,n→∞

sj
2µq(t)

|xj − q̂i←j(t)|2

where the constant is independent of xj ; (a) follows from (13);
(b) is the Taylor’s series expansion of log pu`→j(t,Φ`jxj); (c)
follows from (82) and (30d); (d) follows from (19) and (20)
and (e) follows from (72). Here, with some abuse of notation,
we have written limA = limB in place of lim(A− B) = 0.
Using this same convention, the above equations show that

lim
d→∞

lim
n→∞

pxi←j(t+ 1, xj)

= lim
d→∞

lim
n→∞

const

× pX(xj) exp

[
1

2µqi←j(t)
|xj − q̂i←j(t)|2

]
. (83)

From Lemma 5, the left hand side of (83) precisely the
conditional distribution of xj given Hi←j(t+1) (or Hgenie

i←j (t)).
Therefore, (83) shows that this conditional distribution is
asymptotically only a function of q̂i←j(t) and sj , and there-
fore (q̂i←j(t), sj) is asymptotically sufficient for xj given
Hi←j(t+ 1).

B. Analysis of the Output Update

Continuing the induction argument, we next show that if
the part (b) of Theorem 3 holds for some t, then so does part
(a). We have already proven the asymptotic distribution (42c).
So, we just need to show that the conditional distribution of
zi→j given Hi→j(t) asymptotically depends only on ẑi→j(t).

Now, from Lemma 5, the conditional distribution of zi→j
given Hi→j(t) is given by pzi→j(t, zi→j) from the BP algo-
rithm. But this distribution is described by the summation (9).
The analysis in Appendix E-B shows that this summation has
an asymptotic Gaussian distribution N (ẑi→j(t), µ

z(t)). So,
ẑi→j(t) is asymptotically sufficient to describe the distribution.

This completes the induction argument and proves Theo-
rem 3.

C. MSE Relationships

Using Theorem 3, we can now prove parts (b) and (c)
of Theorem 1. First observe that Theorem 3 along with the

definition of an asymptotically sufficient statistic shows that

lim
d→∞

lim
n→∞

E(xj |Hi←j(t))− x̂i←j(t+ 1)

(a)
= lim

d→∞
lim
n→∞

E(x|q = q̂i←j(t), s = sj)− x̂i←j(t+ 1)

(b)
= lim

d→∞
lim
n→∞

Fin(q̂i←j(t), µ
q(t)/sj)− x̂i←j(t+ 1)

(c)
= 0 (84)

where in (a) the expectation is with respect to (x, q, s) dis-
tributed as (78); (b) follows from the definition of Fin(·) in
Section IV-A; and (c) follows from (21) and (78). The limit
(84) shows that the conditional variance is given by

lim
d→∞

lim
n→∞

E (var(xj |Hi←j(t))|sj = s)

= lim
d→∞

lim
n→∞

E
(
|xj −E(xj |Hi←j(t))|2|sj = s

)
(a)
= lim

d→∞
lim
n→∞

E
(
|xj − x̂i←j(t)|2|sj = s

)
(b)
= E

(
|x− Fin(q, µq(t)/s)|2|s

)
(c)
= E (Ein(q, µq(t)/s)|s)
(d)
= E in(µq(t), s)

(e)
= µx(t+ 1, s), (85)

where (a) is due to the limit (84); (b) is due to the limit (78); (c)
is the definition of Ein(q, µ); (d) follows from (32); and (e) is
from (37b). The limit (85) holds for the regular algorithm with
µx(t+1, s) = µxhi(t+1, s) and for genie algorithm with µx(t+
1, s) = µxlo(t + 1, s). With the regular (non-genie) algorithm,
the limit (85) shows (43a). Also, for the genie algorithm, the
sigma algebra Hgenie

i←j (t) is contains the sigma generated by
just y. Therefore,

var(xj |y) ≥ var(xj |Hgenie
i←j (t)).

Combining this inequality with (85) shows (44a).
A similar argument can be used to show (43b) and (44b).

We have thus shown part (b) and (c) of Theorem 1.

APPENDIX G
PROOF OF THEOREM 2

The proof is based on a degradation argument, which is
used commonly for convergence proofs of BP algorithms
[40]. Suppose that X → Y → Z is a Markov chain.
Then, we say that Z is degraded with respect to Y , since
estimates of X from Z are strictly worse than those from Y .
The following lemma states a standard property of degraded
random variables.

Lemma 8: Suppose that X → Y → Z is a Markov chain.
Then,
(a) The conditional variance of X satisfies

var(X|Y ) ≤ var(X|Z).

(b) Suppose the likelihood function of X given Y and the
likelihood of X given Z both have continuous third
derivatives. Then, for any x,

F (Z|X = x) ≤ F (Y |X = x)
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where, for any random variables X and W , F (W |X = x)
is the Fisher information

F (W |X = x) = −E
[
∂2

∂x2
log pW |X(w|x)

∣∣∣∣X = x

]
(86)

Proof: See, for example, [42].
We will combine this lemma with the following simple

iteration result to prove the theorem.
Lemma 9: Suppose G(µ) is a monotonically increasing,

continuous function with 0 ≤ G(µ) ≤ µmax for all µ and
some µmax.
(a) Consider the sequence µ(t + 1) = G(µ(t)) initialized

with µ(1) = µmax. Then

lim
t→∞

µ(t) = µ,

for some µ with µ = G(µ). Moreover, the limiting
value µ is the largest value satisfying µ = G(µ) and
µ ∈ [0, µmax].

(b) Similarly, if the above sequence is initialized with µ(1) =
0, then µ(t)→ µ where µ is the smallest value satisfying
µ ∈ [0, µmax] and the fixed point equation µ = G(µ).
Proof: We will just prove part (a) as part (b) is similar.

We first prove by, induction, that µ(t+1) ≤ µ(t) for all t. For
t = 1, since µ(1) is initialized to µmax and G(µ) ≤ µmax for
all µ, we have that

µ(2) = G(µ(1)) ≤ µmax = µ(1).

Now suppose that µ(t + 1) ≤ µ(t) for some t. Then, using
the monotonicity of G(µ),

µ(t+ 2) = G(µ(t+ 1)) ≤ G(µ(t)) = µ(t+ 1).

So, by induction, µ(t) is a monotonically decreasing sequence.
Since it is bounded below by zero, it must converge to some
µ. By the continuity of G(µ), the limit point must satisfy the
fixed point equation µ = G(µ).

It remains to show that the limiting value µ is the largest
fixed point of G in the interval [0, µmax]. To this end, let µ1

be any fixed point µ1 = G(µ1) with 0 ≤ µ1 ≤ µmax. Then,
µ(1) = µmax ≥ µ1. Also, if µ(t) ≥ µ1, by the monotonicity
of G,

µ(t+ 1) = G(µ(t)) ≥ µ1.

So, by the induction the entire sequence µ(t) ≥ µ1. Taking
the limits as t→∞, we have that µ ≥ µ1. Hence µ ≥ µ1 for
any other fixed point of G.

We can now prove Theorem 2. Define the function

G(µ) = βE in
[
Eout(µ)

]
, (87)

so that we can rewrite the density evolution equation (38) as

µz(t+ 1) = G(µz(t)).

We will now apply Lemma 9 to show that µz(t) → µ to a
fixed point µ = G(µ). We first upper bound G(µ). For all
µ > 0,

E [Ein(q, µ)]
(a)
= var(X|Q)

(b)

≤ var(X)
(c)
= µxinit.

where the expectation is over the random variable q = x+ v,
v ∼ N (0, µ); (a) follows from the definition of Ein(q, µ); (b) is
the fact that conditioning cannot increase the variance; and (c)
is from the definition of µxinit in (17). Therefore, the definition
of E in(µ) in (32) implies that

E in(µ) = E [sEin(q, µ/s)] ≤ E(s)µxinit.

As a result, G(µ) defined in (87) satisfies

G(µ) ≤ βE(s)µxinit = µzinit,

where µzinit is defined in (33). So, we have that G(µ) ≤ µzinit
for all µ. Also, the “high” sequence µzhi(t) is initialized with
µzhi(1) = µzinit and the “low” sequence with µzlo(1) = 0 So,
we will apply Lemma 9 with µmax = µzinit.

By the assumption of the theorem, E in(µ) and Eout(µ) are
continuous. Therefore, so is G(µ).

Hence, to apply Lemma 9, it remains to show that G(µ)
is monotonically increasing. From (87), we need to show that
E in(µ) and Eout(µ) are monotonically increasing.

We first consider E in(µ). Let µ2 ≥ µ1 and define the
random variables

q1 = x+ v1, v1 ∼ N (0, µ1/s),

q2 = q1 + w, w ∼ N (0, (µ2 − µ1)/s),

where x ∼ pX(x), s ∼ pS(s), and v1 and v2 are independent.
We have that x → q1 → q2 is a Markov chain, so Lemma
8(a) shows that, for all s,

var(X|Q1, S = s) ≤ var(X|Q2, S = s). (88)

Also, q2 is identically distributed to q2 = x + v2, v2 ∼
N (0, µ2/s) for some v2 independent of x. The definition of
E in(µ) shows that for i = 1, 2,

E in(µi) = E [s var(X|Qi, S = s)] . (89)

Combining (88) and (89) shows that E in(µ) is monotonically
increasing in µ.

The proof that Eout(µ) is monotonically increasing is sim-
ilar. Let µ1 and µ2 be variances such that

0 ≤ µ1 ≤ µ2 ≤ µzinit.

For u ∈ R, define the random variables

ẑ2 ∼ N (0, µzinit − µ2)

ẑ1 ∼ ẑ2 +N (0, µ2 − µ1)

z ∼ u+ ẑ1 +N (0, µ1)

where all the Gaussian random variables are independent.
Also, conditional on z, let y have the distribution y ∼
pY |Z(y|z). It can be verified that

u→ (ẑ1, y)→ (ẑ2, y)

is a Markov chain. It follows from Lemma 8(b) that

F (Ẑ1, Y |U = 0) ≥ F (Ẑ2, Y |U = 0). (90)

Also, the definitions of z, ẑ1 and ẑ2 above show that, for
i = 1, 2, when u = 0,

(z, ẑi) ∼ N (0, Pz(µi)),
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where Pz(µ) is defined in (36).
Now, the Fisher information satisfies

F (Ẑi, Y |U = 0)

(a)
= −E

[
∂2

∂u2
log pẐi,Y |U (ẑi, y|u)

∣∣∣∣u = 0

]
.

(b)
= −E

[
∂2

∂u2
log pY |U,Ẑi

(y|u, ẑi)
∣∣∣∣u = 0

]
.

(c)
= E [D2(y, ẑi, µi)] .
(d)
=

1

Eout(µi)
(91)

where (a) follows from the definition of the Fisher information
in (86); (b) follows from the fact that

log pẐi,Y |U (ẑi, y|u)

= log pY |Ẑi,U
(y|u, ẑi) + log pẐi|U (ẑi|u)

and ẑi is independent of u; (c) is the definition of Dr(y, ẑ, µ)
in (16); and (d) follows from the definition of Eout(µ) in (34).
Equations (90) and (34) together now show that Eout(µ) is
monotonically increasing in µ. Since E in(µ) is also monoton-
ically increasing in µ, so is G(µ).

Lemma 9 thus shows that µzhi(t) converges to the largest
fixed point solution of the equation µ = G(µ) and µzlo(t)
converges to the smallest fixed point.
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