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The Wire-Tap Chann&

By A. D. WYNER

(Manuscript received May 9. 1975)

If d na situation ii’ n/i iih i/iijtai data is to b re/i big tea Os—

1tt ((SC c/c. n e’morjicss ihan net (liMe’) that is sub riled to a

‘‘‘i iti. IJe assuo’i’ thai thr iiire-tapje L’t UN liii clan ii/

0/Up” ‘ ‘/2/il l)nli . L/’(Of/tfl’/ by t/i tiaos,’ ilti1 011(1 fl n”11i0’j b11 li,i

p r 1 dli d. Hon’cccr, liii ((idC boohN U501’ in 11 (Se operations are

as.’•
C, ‘a hnii”o 1n I/ic ,r11e-mput,. TIn’ i/i NO/lit’ 011(11)ptr Ia fill ild

‘.,/ Hider no Soc/i a nai as to )naxu ize 1/c lra,inii issm,i rab I?,

arid I nu’ocation d of 1/a data as seco by the ne-tapper. In 1/i is paper,

li( j / trade-off cu,r( lattice,, 1? and d, assunienq esseitialitj peifect

“nil -.‘ ‘‘) transni issioo. In pailna/ar, i d i n’qua/ to II , the entropy

of 1/i ‘I 1W oource, then ne considc,’ that I/ic transniission is a(tOliipiiN/iCd

in pc i secrecy. Our results imply that there exists a C, > 0, such

that ‘ fl tans)) is.sion at rates up to C, is possilihe in appi’oxiniately

I. INTRODUCTION

• paper we study a (perhaps nois) communication sustem

tha i ‘lug wire-tapped via a second noisb channel. Our object is to

i uan in ucii a ‘s as that the u ire-tapper’s level of confusion

‘ ill I . high as possible. To fix idea. consider first the simple special

caNe i eted iii Fig. 1 (in which the main communication system is

noi The source emits a data sequence Si. S. , which consists

of a ‘. ‘rodent copies of the binary random variable S where

Pr — I) = Pr ,8 = 1 } = . The encoder examines the first K

tc SK
= (s’, ‘ ‘

•, ?SK) and encodes SK into a binary .V vector
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]ig. 1 —P ire—tap channel (pecia1 case).

, / — 1 and let V be arbitrary. Let C0 be the subset of

0, i consisting of those .V vectors with even parity

,cncihc’r of l’s). Let (‘i C 0, 1 be the subset of vectors

The encoder works as follows. When Si = 1. ( i = 0, 1),

: itput X’ is a randomly elioseli vector in C.. Thus, the

r t i eel with transition probability

I)” x —

1 x C (‘.
— x —

0, x E C.

or
‘learl , the decoder >‘ail ren wer 51 from X perfectly. so

p \Vc iio\\ turn to the wire_tapper who observes Z , the

1>’ nsc corresponding to the input X°. Let z C 0, 1 be

vec e i\ eve>> parity. Then

the nae makes an
Zv=z=l>r even number Ut erroN

-“V

= ( ) idl pP = + (i 2po)-’.
—0 \ .1 I
e’.efl

fhe 1iility can be verihed by applying the binomial formula to

f)o) ± .rpolV
= ( p(1 po) \i( ±.r)’.

X-’ = (X>, ‘‘‘ , Xv). XV in turn is transmitted perfectly to the decodetvia the noiseless channel and is transformed into a binary data streapi
= (S1, . . ., S) for delivery to the destination. The error probabilitv” is defined as

P7;PrSpS1}. (I)

The entire process is repeated OlE successive blocks of K source bits.The transmission rate is K .V bits per translnitted channel symbol.
The wire-tapper observes the encoded vector XV through a (memoryless) binar symmetric channel (Bsc) with crossover probability

po(O < po ). The corresponding output at the wire-tap is Z.E’
= (Z1, . ., Z-), so that for .r, z 0, 1 (1 a

Pr {Z,, = z X,, = = (I po)e + poll
—

We take tile equivocation

HSK Z- (2)

as a measure of the degree to which the wire-tapper is confused. The
logarithms in H are, as are all logarithms in this paper, taken to the
base 2. The system designer would like to have P. close to zero, with
K, X and as large as possible.
Consider the following schemes:

(1) Set K = .V = 1, and let X1 = S. This results in Pu = 0,
K X = 1, and H(X1 Z>) = h(po), where

h(X) = — X log X — (1 — X) log (1 — X), 0 X 1, (3)

(take 0 logO = 0).

o th-

2 ( ) Pi (1 — po)
V 1 (1 — po ± I

.
p) + (1 Pu —

. p o)
A

= I + 1 —

. P. 1.1 vd). Similarly, for z C 0, 11 of odd parity,

Pr , 0 Z- =
the BSC makes an

odd number of errors

— (1 — 2po’.

Ther , for all z C {0, 1 } A,

H(51 Z” z) = 1i[i — 1(1 — 2po)V],

= H(S ZN)
=

— (1 —

—ifI(S), as\—.

- \ , the equivocation at the wire-tap approaches the
V

V tional source entropy so that communication is accomplished

t secrecy. The “catch” is that, as X ‘. x , the transmission

= 1 X0.
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A central question to which this paper is addressed is whethernot it is possible to transmit at a rate bounded away from zerovet achieve approxnnatelv perfect ecrecv, i.e., Ifgiving the ai wt’r to tlih luet ioi i we slat] I leseribe tIe a triprobleni that i’iah1re’’ed in tifl’ sequel.
ib’fer to Fig. 2. TI1 ‘oiUree a. discrete and nit’nI rvlcc it]1 e1itrq, III. The “inam charnel liii] the “wire-till) e1elel arenieiaorvless cltitmiels nith ti’aia.it ion 1)r(ibabiIitii ()(l .).r’speetiviIi ‘ihe -ilt1r(’( and the t r ia.ition Pr Ieihiiiii1,5and Qw are given and fixed. The encoder, a in the leivi’ cx npl.channel with the K vector S1’ as input and the .\ victor X’ as o1ltpilie vector X’1 is iii ttirii the input to the mani channel. The 1flajchannel oIItl)llt H zid t lie wifl’—I all eietiiiiel input is Y . ‘1,he wiretipchannel output is 1’ The decoder associates a K vector S’ with y.iand t he error probabihtv P, is given b 1) The equivocatimigiven by 2) and the transmission rate is KIfs \ source lids pchannel input svnibol. 1{ouglil speaking. a pair II, d s aehievabkit it is possible to find au encoder—decoder with arbitrarily small pand ku.1 .\ about I?, and about (I 1wtli perhaps K and K verylarge). Our main l)( ibleni is thit’ t’hiaracterization if the familyachievable R. ii) pairs. and such a characterization is given in Thieorer52. It turns nut (Theorem 3’) that, in nearly ever\ case, there exist,‘secrec capacity. (‘. > 0. uch that C, IJt is achievah de [whj1for I? > C., J?, JIM) 1 hut acluevablej. Thus, it is possible ti reliablytransmit iuitorniatiut at the positive rate C’. in essentially perfectsecrecy.

For the special case of our introductori example tN,1 = 1, Qcorresponding to a noiseless channel and Q to a Bsc) , the conclusionof Theorem 2 specializes to the assertion that I?, c/) is achievable iland univ if 0 1? 1, 0 1 1, arid Rd /i(p1j. Note that scheme(i) suggested above for this special case asserts that I? = I , d h p)

ilicuireni 2. thi value of i/ = / pt is the milaxi

if R 1 Schieilii’ /1’) iii ye aserts that 1? ()

, lot dii’ h ilistmic’ lv uboptim1la] since from

/ ii = I h aelnevable Thus, reliable trail’-

p i posible ithi perfect eirei , and C. pit.

memaimidem’ Of I his paper iltiw follows. In Section

3 t atenlelit if tilt problem and tate the main

2 Hilt1 %. In Sect jolt I I I Wi’ give a p ii it I I Thici ireull

iiseu’si’d above milaili channel mioi’eles. \\ ire-tap

Section 1 \. \\ e proVe the (‘ollverse Ito]] of Theorem 2.

‘a’ direct halt of that 1 hicoreni.

STATEMENT OF THE PROBLEM AND SUMMARY OF RESULTS

t\ e give a pieiist’ ‘tat eiaelit of t ftc pri ibleni t fiat wi

v at Section 1 We then suimnl1riZt’ our results.

ii out notation. Let ‘U be au arbitrary finite set. I)enote

(‘onider ‘it, tue set of \ vectors it h coin

1 I Ill’ members of ‘U l will he written as

U1 (ii. 1i. , (1.1’).

med itt ters deni te he conlpomlents amid hi uidfai’e supel’—

ifiO itt’ vectors. A sinlilili’ (‘onvt’ulti in applies to random

mit variables. winch are denoted I iv upper-ease letters.

ilsi at N of a vec t 1 ur is clear from the coat ext. we onìit

100 variables X. 1, Z. etc.. the notatiofl H (X), II (X Y),

1 Z), et c., denotes the standard information quantities

(allager.1 The logaritiulls in these4uantities are. as are

in this paper, taken to the base 2. Finally. for o 3, 4,

say that the sequence of random variables K is a

,iilll if (K1. K1. I1) and tX 1. ‘ ‘
K) are condi

1.nemideitt, given X(1 < ./ < o). We make repeated use of

if Xe X. K) is a Markov chain, then

HXX1.X1) = H(X X1).

dtt we call attention to Appendix A, iii which the data

t hetiu’eill aitti Fautos inequality are given in several fou’ms.

atm to the desert I ion iii te t.oniifl(tmiiciiti ii 5ytent. We

J tht ystenl designer is given a source and two channels

i tied as follows.

uiix i’ del died by tb’ sequence ,S1 , where the S. are

nih it, identically iIa.1 rihuf cd u’autdoni vau’iables that take
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values in the finite set S. We assume that the probabjljtr law
defines the ( } is known. Let the entropy H(Sk) H. In Appen
C we show how to extend the results of this paper to arbitrary statj
ary finite alphabet ergodic sources.
(ii) fh main channel is a discrete memorvless channel with

input alphabet . finite output alphabet ‘, and transition probabilit
.r). r. y ‘. since the channel is niemoryless tlw

tion probability for X vectors is

(2.y x) = QM y .e).

Denote the channel capacity of the main channel by CM.
(iii) The wire-tap channel is also a discrete memoryles

with input alphabet ‘. finite output alphabet . and transjtiaa
probability Qwz y), y ‘. c E b. The cascade of the main chan
and the wire-tap channel is another inernoryless channel with transit
probability

w (z .c) = Qw (2 y) QM ( y .r).
tiE

Occasionally, when there is no ambiguity, we use the transition pro
bility of a channel to denote the channel itself. Let Cw be the capacift
of channel Qmv.
With the source statistics and channels QM and (?w given, t

designer must specify an encoder and a decoder, defined as follov
(iv) The encoder with parameters (K, V) is another channel wifb

input alphabet 8K, output alphabet and transition proba
bilitv qr(x s), s S’, x ‘. When the K source variabl
SK (S1,

•, 8) are the input to the encoder, the output is tI
random vector X’. Let YV and Z be the output of channels QJ) and

respectively, when the input is Xx. The equivocation of the
source at the output of the wire-tap channel (corresponding to
particular encoder) is

II(S’Z).

We take as our criterion of the wire-tapper’s confusion. From the
system designer’s point of view, it is, of course, desirable to make d
large.

fl) The decoder is a mapping

fn: ,.

Let S = tS1, . .
, S) = fn(Y). Corresponding to a given encoder and

We re the above as an encoder-decoder (K, X, , Pr): The

plicai: of the above to the system in Fig. 2 should be obvious.

aav that the pair (I?. d) (where I?. d > 0) is ach ievabk if,

tor all > 0 there exists an encoder-decoder (V, K, , F,) for which

HK)
—

(9c)

our m is to characterize the set dl of achievable (I?, it) pairs.

Let u r tark here that it follows immediately from the definition

that a closed subset of the first quadrant of the (I?, d) plane.

l3eior -:tng our characterization of dl, we digress to discuss a certain

am—theoretic quantity that plays a crucial role in our solution.

(‘o ti r the channels Qi, Qw, and Qirw defined above. Let px(x),

x E Ic a probability mass function and let X be the random

varia. leflned by

Pr IX = .r = pxflv), .r

/ be the outputs of channels Qr and respectively, when

‘*(e input. For R 0, let cP(R) be the set of px such that

B. Of course, (R) is empty for I? > Cr, the capacity of

. Finally, for 0 B CM, define

F(R) sup I(X; YZ).
vx’(R)

We it ark here that, for any distribution px on , the corresponding

X, } forms a Markov chain, so that the definition of mutual infor

(7, matit a and (4) yield

F Z) = H(X(Z) — H1X( 1, Z)

H(X1Z) — H(X Y) I(X; F) — I(X;Z). (11)

TInt—, we can write (10) as

f ) = sup I(X; YZ) = sup [I(X; F) — I(X;Z)]. (12)

px’(R) px3’(R)

*

should be read as “. . an encoder-decoder with parameters (K, X, , P,).’

decO&t
ii, or-rate is

1
F,. = Pr {fl

1, = 1

Sb)

d —
(9b)

Let

x i

IX:

chan

(10)
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As an example, Suppose that = ‘ = = {O, 1 }. Let Q b.
noiseless (binary) channel, and let Qw be a binary symmetric ci
(Bsc) with crossover probability o. Then for arbitrary px.

I(V; 1) ILV;Z) = IRX) — [HZ) — 1I(Z X)]

= ‘(ps) + JLX) — H(Z) 10j1).

where 1 ) is defined in 3). The inequality follows from the w6j
known fact see, for example. Ref. 2) that the entropy of the OUtpUt

of a BsC, i.e.. II Z). is not less than the entropy of the input. H
Further. Hi X) = II Z) if and only if p 0) = pxt 1) l. Since th
distribution belongs to P R), for all 1?, 0 R (‘ = 1. we eonejud
that in this case.

FR)=hcp), 0RC’mj.

In Appendix 13, we establish the following lemma concerning ‘(1,

Lemma 1: The quantity F(R). 0 I? satisfies the followinq:

(i) The “supreniuin” in the deftnit ion of F[(1O) or (12)] is, in
a maximum i.e., for each R, there exists a px PcR) s4
that I(X; Y Z) = F(R).

I’ (R) is a concave function of I?.

F(R) is nonincreasinq in 1?.

F (I?) is continuous in II.

C F(I?) C’, — where C51 and Cmv are the capab.
ties oJ channels CJ v an (1 Q -, respectively.

We can now state our main result, the proof of winch is given in the
remaimng sections.

7heorem 2: The set 61, as defined above, is equal to 61, where

(R {(R,d): 0RC’w, 0dHs, RdH5F(R)}. (14)

Reniarlis:

(1) A sketch of a typical region 11 is given in Fig. 3. In the above ex

ample (Q noiseless and Qw a Bs() F (R) = h (po). a constant, so that

the curve Rd =H5F(R) is a hyperbola. Observe that in this case

the region 61 is not convex. Tins is in contrast to the up-to-now esse

tiall universal situation in multiple-user Shannon theory problema

where the solution is nearly always a convex region. Whether or

F R) R is always convex, as it appears in Fig. 3, is an open question.

(2) The points in 61 for which R = C correspond to data rates of

about the capacity of Qu. This is clearly the maximum rate at whit

reliable transmission over Q. is possible. An equivocation at th

wire-tap of about HsF(C1],C51 is achievable at this rate. An increa

in equivocation requires a reduction of transmission rate.

1362 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

3 points iii for which d = Ifs are of considerable interest.

Thee ( rrmo.pond to an equivocation for the wire—tapper of about

JR ‘rfec’t secrecy. A transmission mate of

= umax R
1?, II,5

fore achievable in perfect secrecy. We call (‘ the ‘‘secrecy

eapacio of the channel pair (Q . Qw). The following theorem

eiarifs- ts remark.

Ti.eon. 3: Ii’ (sj > C’.mjw, tI,eie e.rists a unique solution C. of

Fuiths . C’, satisfies

(ii)

(iii)

(iv)

C5 C R

Fig. 3 Region .

I C’, = (15)

and

(16)0 < C11 — C’w F (CM) C, Cu,

and C the mimaxinmumn I? such that (R, H5) E 61.

P”oo’ efinc 0(R) = F1l) H, 0 I? Cu. From Lemma I lv),

0(C51) F(C11) — Cu 0,

0(0) = F(0) C51 — C1 > 0.

Sinc! by Lemma 1, (iii) and (ii], 0(R) is continuous and strictly

WIRE-TAP CHANNEL 1363
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11 S X

,.n! r4’

Tiiaui

rhus

Let

th

n:iu

C.,

‘a
the fact that (S. X, Z) is a Markov chain and (4), so that

z x H(Z X).

ii) .
X. Z are the input and output. respectively, of a BsC.

z x \ Ii m), regardless ot the distribution for X.

a Fauo’s inequality [use mt’9. TX) with F = Xl. we have

Ji P.). Further, the entropy of the output of a BSC the

lit input [this follows from Mrs. Gerber’s lemma (Ref. 2.

o that H.X) — HZ) 0. Finally. II X S. Z) 0.

ieIds for any encoder-decoder (K, A, , P,),

V/p,) + KhPj.

h (P,,) + log

decreasing ill R, a Unique C, (0, CwJ exists such that
= P(C.,)

— C, = 0. This is the unique solution to (1.5). InequaJj I H(16) follows from C, (0, C11] and Lemma 1, (111) and c),from (15) and (16) we have (C,, ifs) = R. Also, if (R1, Hç) Rthen lisP, H,rR,) so that G(I?,) 0. i1ice (LR) isdecreasing iii P. we conclude that I?, C,. Thus, C, is the maxjrnof those P for which Pm, H) + R, completing the proof,
(4) It is (lear that the source statistics enter into t1i’ solution or,l.via the source entropy H. We also renmirid the reader that thesimple extension of Theorems 2 and 3 to a stationary, ergodje

5oureeis given in Appendix C.
(.5) If we define P,,, the wire-tapper’s” error probability, as tk nrerror rate at a decoder built by the wire-tapper [defined ana1ogo51to (X)], then it follows from Fano’s inequality 15cc Appendix A) th

Thus, a large value of the equivocation implies a large valueP, (which the system designer will find desirable).

III. PROOF OF THEOREM 2 FOR A SPECIAL CASE

In this section we prove Theorem 2 for the very special case discussc’d in Section I. All alphabets 8, , ‘. are equal to O, 1. Thsource ) satisfies Pr = Oj = Pr = I J = . Channel Q hnoiseless, i,e., Q (y ,r)
= and channel is a Bsc with crossoverprobability /0 (0 Pm ), i.e.,

Qw(2y) = (1
— po)35,, + po(l —

We show here that (R, ci) is achievable if and only if

P C,1 1, d ifs 1, Rd h (pm). (18)
Since, for this case, P(R) = h (pm), this result is a special case of theas-yet-unproven Theorem 2. We begin with the converse (“only if”)part of the result. Let SN, XX, Z’ correspond to an encoder_decoder(A, K, , F,) (note that Y = Xx). Then, making repeated use ofthe identity H(U, F)

= H(U) + Ii(T’ U), we can write (droppingthe Superscript on vectors)

cony

P

fun.
sati

[ hP,)] hp,). 20)

‘inOue that P. ci) isachievable. It follows from the ordinary

to the coding theorem Ref. 1, T. 4.3.4, p 1) that

= 1. Further, sinee H.’, = 1, we conclude that 4 1.

if we apply (20) to an encoder—decoder LV, K. . P..) that

9) with ! > 0 arbitrary, we have

— )[(cl
— C — he)] h pu).

Lett 0 yields Rd h (p,]. Thus, we have established the

(‘O1t’ ‘t Theorem 2, i.e.. that an achievable (8, ii) must satisfy ‘IS).

W(aiii the proof of the direct half of Theorem 2 with a digression

(17) abc t oup codes for the BsC. Let C {0, l}v be a group code (i.e.,

a p check code) as defined for example in Ref. 1, Chapter 6, or

Ret hapter 4. The group code C has 1W = 2” C cosets. Denote

the -.nts by C, = C, C1, C2, ‘ ‘, C1 ,. Of course, the cosets are

dhjo a and

M— 1

C, = 0, 1}.V,

le the word error probability when group code C (or for any of

.‘ts) is used on a BSC with crossover probabihtv o. with niaxi

ikehihood (mimmum distance) decoding. Thus, for each coset

I 111 — 1, there exists a decoder mapping D, fO, I }‘ —÷ C,,

hat if X is the input to a nsc with crossover probability p. and

he corresponding output, then for all x C,, 0 I 111 —

Pr I 1),(Z”) X’ Xv = x = X.

TI . regardless of the probability distribution for X
x,

Ka = Fl(SK Zv)
= H(S, Z)

— H(Z)

= I1(S, X, Z)
— H(X S, Z)

— 11(Z)
= 11(Z X, S) + HçX, S)

— 11(X S, Z)
— H(Z)

(a)

= H(Z X) + H(Sx) + H(X)
— H(X S, Z)

— HZ)b)

= Xhpo) + H(Sx) + [H(X)
— H(Z)]

— HX S, Z). (19)
These steps are justified as follows,

1364 THE BELL SYSTEM TECHNiCAL JOURNAL, OCTOBER 1975

Pr II),(Z1) X” X’ C] = i.,
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Letting x) = i. for x U C, 0 I if
— 1, we have, from Fano

inequality [use ineq. (76) with U Xv, V = ZN, U = D(N)]

HX’ Zv. h1X) + X log (

Therefore, for any X distribution which induces a ditributji of

HX’ hX) ± XIog (

We conclude this digression liv stating as a lenuna the ivell_knm
result of Elias that there exists a group code for transmitting reliably
over a BSC at any rate up to capacity. A proof of this result can befound in Ref. 1, Section 6.2.

Lc,,’n;a 4: Let > 0, r < 1 — h po) be arbitrary. Then, proiided N
sufficiently larq. there exists a group code C of block length N
C 2 , .‘uc/, that on the Bse nit/i ci’osso’(r pi’obabilit m the error
probability X i.

We now prove the direct half of Theorem 2 for our special case by
showing that any (R, d), where R is rational, which satisfies

R•d = hIp0),

0 (I < 1,

0Rj

is achievable, Thus, for (8, d) satisfying (22), and arbitrary >
we must show the existence of an encoder-decoder (N, K, , P) that
satisfies (9). We now proceed to this task.
Let K, N satisfy

=8.

Let (/ be a binary group code with block length N and with C
= 2(K. Thus, C has if = 2K cosets tCJ0, We can assume that
the set $K = 0, 1 is the set of integers {0, 1, , M — 1}. We
construct the encoder such that when the source vector SK * the
encoder output Xv is a randomly chosen member of coset C—i.e.,

= 2-IN—K) for x CPr {X = x S = i = C C ‘

LU, x

O I ii
— 1. Since SKis uniformly distributed on 0, 1, . •, if — 1),

XX is uniformly distributed on
= { 0, 1 } . Thus, in particular,

H(X-’) = HçZ.v) = N,

This is an abuse of notation, A more precise statement is that SK is a binary
representation of 1.

iways, Z is the output of the ire—tap channel v lien X

\iso let us observe here that the quantity ‘(X-”), defined

is)
daression, is identical to S”. Thus, (21) ields

HX Z”, SK) fi htX) -r XLV — K).

n e error probability for the group code C.

turn to the decoder. Letting 1) y) = I, when y C,, i e

dime the channel Qir is noiseles) that

= 0.

md 26) imply On) anti I Oc) . it remains to ‘how that a (I

a that the resulting encoder-decoder will satisfy 9b).

r;o invoke (19), which is valid for any encoder-decoder.

24) and c2.5 into 19) and invoking (26). which inplieo

0. e obtain

— li(\)
— — i).

No’, or 22a) arid (23), we have

x( 1) = 1).

- [Li) + x ( — i)j.

Fin , since from (23) and (22a) we have

C = 2” 2N1i_ipo)1,

we n invoke Lemma 4 with r = 1 — h(po)/d < 1 — h(po) [from

(221 j to assert the existence of a group code C with X sufficiently

sna’ to make the term in brackets in (28) e. Then d —

whid is (9b). This completes the proof of the direct half.

IV. CONVERSE THEOREM

Ir this section, we establish the converse theorem that the family

of, ijevable rates is contained in as defined in (14). Suppose that

(21)

25)

Since

exist
‘V

Soi c

II S

(26)

(22a)

(22b)

(22c)

(27)

and i 23),

Ii (po)
jç, hIp0) =

= (1,

(23)
Thi 27) yields

(28)

(24)
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I
mdi Umomm Ref I ,Threm

from the oidjnarv converse to t i Y’

froni

1
Pr yf A; I, Z,Y’-’ y)

= K’
SK Z) 111(SK) = Jf

I PrY’ ‘
= yF[miy)]

I hw. it reniajn tosliow that Rd I[f II). We do this via a Ienthe proot of which is givii at the conclusion of fhi section, Pr Y’ ‘ = Y } y)]

Li, “a .: I t S” X
-

(‘fl1(Sf) ( 0(1 /11 (lii iii ((jill
V J /

V\, k, . P,). T110 ‘-lrod çç I X F Y’)

i) [A — Pj . I X,: I Z,.. y-i> 295,
[(. Th —

P))

K 1 I from 31) step I>) from the concavity of F [Lemma

—

Pd] 1 X, 1, Y’—’), 29b)
I lie definition of ., and step V d) from 29h) and

-

I V itV t F [Lemma I 01)1 \ppi ing 29a) to 32) yieId
,rheie

P) 1, (P,) ± P 10 S
[‘to Qtfi/ cocode,’-decoder V, K, , P,),

V _9c) -

and ir/,e,( the ,, 1 te,’,,i in 1/ic SUflHiiat/,,ns ( (29a 5) is qive,j [ —

tPJ I F - H5 — P,) ç33)

obvious znterp,’etatjo,,Ie that I X; Z, Y0) = I(X1 F1
ow for n = 2, 3, ••‘,v, any y ‘‘ set

i e P•

w- show that, if R, (1) C , then Rd H5rR). Let

p
, and let > 0 he arbitrary. Apply Corollary 6 to the

a,, (y) I(X, ),, y—i
= Y)• (30a) eiicod V oder V, K, , P,) that satisfies (9). Inequalities (33) and

Also let 9) V

= I(Xi; Yr). 30b) — )[ol
— —

6)] 115r[R — ) 1(e)]. ç34)

It follows from the definition of P(R) in Section 11 that tlìe distribution J,etti’
VV 0 and invoking the continuit of F [Lemma 1 (iv)] ield

j1 I’ V t I?). completing the proof of the converse. It remains to

= Pr X1 = }, C , prov i ma 5.

belongs to P(), Similarly, for 2 a , with y ‘ fixed define
uia P

I 5”. X\, V, Z\ correspond to an encoder-decoder (V, K, , Pd.
y[c) = Pr X,, = ,[ ynI

= y}, .C First rye that

from (10) and the fact that channels H S
V

Z, y.V) H( SK y\)

I (a)

IçX1;Liz1) 31a)
1iP,) P log ( $ 1) = o(P). (35)

and br 2 a V, y ‘ “i lneq t) t’ollO\vs from Fanos inequality [use 7) vitli T
= Yr].

N uing the definition of (7) and (35), write

IçX,,; F,, Z,,, Y’—
= y). 31b) = HSZ) II(S’1 ZVV) H(SK ZV\V, Y’) + Ko(P)

It folloxv that the right member of (29a) is (giving the a = 1 term
= I(SK; ZV) + K(P)

the obvious interpretation) I(XK: Y ZN) + K5(Pd. (36)
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=
[I(X, 1, Y” I) — I(X,,; Zr Y ‘)l

= [fI(X, Zr, Y’ 1) H(JV. I,, Y”’)

(e) V

= [HX,, Zr,, Y’’) — II(X,, Y,r, Zrr, Y’)1

= I(X,; YrZrr, Y’’).

r
he steps in (37) that require explanation are:

(a) that follows from the fact that Xx, Y”, ZV is a Markov chain
and (4);

tb) that follows from the standard identity

H(U) = II(U, U’),

and the fact that channels Q and are memorviess;

e) that follows from the fact that conditioning decreases entropy;

(d) that follows on applying (4) to the Markov chains (Z’’, Y’r
Zfl), (Y’ 1, X. Y Z)

1370 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

t)a . \vo have estal )lished )a rf (i) of Lei 010 a

\V* S X’. Y’. Z’, a in part (i) write

I

I
j(II

II1Sc) = [(SK;Y\) + HtSJr Y’)

LX’; Y’) j- Ko F,),

c. yialitv foihnvs from the data—proet sing theorem inee

5k, x Y i’ a Iarkov chain) and from Fano’s inetj11alit as in 3’(

ii S = KIf, 3S) yields

= [H Y, 1) 111. Xj

[H 1, Yr 1) H(Y, X,,Y” ‘>1

= I X.; F. Y’).

lows on application of II (Y \) ,. If F, Y ), and the

ms of (‘hannel Q(1\), and step b) from the fact that

I i a Markov ehai. I iwqualitv ($9) is 29h) , so that the

V. DIRECT HALF OF THEOREM 2

Iii sectioii ve establish the direct (existence) part of Tlworeiii 2,

thai 0 C c1. The first step is to establish two lemmas that are

valid r any encoder-decoder as defined in Section II.

Len Let Sic, X’, Y, Z correspond to an arbitrary encodei—dccoder

N, N Pt). Then

11(5K Z’) = H(SK) + I(XV;Z SK) — 1(X:Z). (40)

Pr’”i iIv repeatedly using the identity H U. 1) = 11> U) ± H F

we i,tain (we have omitted superscripts)

ii S Z) — H(S, Z) H(Z

IfS, Z, X) — IIX S, Z) — HZ)

IIZ X, S) -i- I1(X, S) — HXS. Z) — H(Z)

1I(Z X, S) + H(S) + [1I(X S) — fJ,X S, Z) — H(Z)

Il(S) + I(X; ZS) — [H(Z) — II(Z X, S)].

The last inequality in (36) foI1ow from the data-processing theor
since given ZV = z, (Y”, X”, S’) is a Markov chain (Appendix
Transposing the Kô P) term in (36) and continuing:

— Pd] IXV: YVZx)

— H (Xx Z)
— H (X” Z V y V>

=HX Z’)—IIX’ Y’)

= I(X’;Y’) — IX’:Z’)

= FLY’) HZ’) 1IrZ’ X’d — fly’ X”)

= [HçF yr1)
— HZ, Z ‘)

a ‘t$lOV from the fact that, given Y”’, ( ,\ ,,, F, , Z,) is a

\ 1’ V chain.

+ HiZ, X.) lfYr X,)1
‘)

)r Y’ ) II(Z Z’. Y’ ‘)

+ HçZ X,) H(F,, X,,)]
1 “

[IF Yrr Y’ ) — HZ. r 1) + R(Z,. N,

- II> F. X... Y’=’]

3’)

Step

flE’fl

y.

39)

ro’O ‘
- .) is (‘onplete.

(37)

I
I

(41)
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Nou, since S. X. Z is a Markov chain, JFZ X, S) = II x>(4)]. Thus, the tcrni iii brackets in the right member of (41) j5
completing t tic proof.
We now give some preliminaries for the second of the two lemFor the remainder of this section we take the finite set
1, 2, A Let X be a random variable that takes vaIu iwith probability (list ril)ution

1), V* ‘I *
I = ( = P.v i) 1 i

* ama I Z* In the Out iit if chanmieh Q,, and Ic repectjv
\Vhell X i the input. As always, Q ii is the cascade of Q a and Qso that Xb Pb i a Markov chain. Next for 1 l Ax define

i, x) card i: x, =
= number of occurrences Of the symbol i in the

\-veetor *
For V = 1, 2, define the *et of “typical” X secjuence* as the

7’*=T*.\)xA: iX)()J1

A
=

Let us remark in passing that the random \-vector XV consisting
\ iiidepeiiden copies of X satisfies E# (i, X) = Ypni), a[ (i, X)] = Vp(i)[i

— p-(i)], for 1 A. Thus, by
C’liehvshev’s inequality

Pr (X T*(V) 1r t.X*) *(.)]

Var [ (f, X*)]/X2 = o( ) 0, (44

We ‘ami now state the second of our leinnias, We give the proof tthe conclusion of this section.

Ia fl(1,u 4: Let X , Z V eorrnspnd to co arlit,’o1/encoder aml let X*, Z,
7’ coii’cspuiid 10 an ai bit iaiq p as abovc. hen

J( Z’) IiX. Z*) + (log A) Pr T*(V)i + f1LV).

(c/tric f1X) ÷ 0, a V — x

that, if the encoder is such that with high proba
hemi 1 ‘.V) I X Z \) cannot be nuich more than

hold for any encoder—decoder. Our next step is to
nd-hoc eiie )der-decoder and deduce several )f its

1,n ‘how that when the parameters of tile ad-hoc
‘tb (‘lio*eIl. the direct half of 1 heor’i’in 2 will follow

elis1( in of t he ad-hoc cllelile liv reviewing ome
coding. With the source given as iii ectiomi II.
there exbts a ‘source encoder’) mapping FE:
where

= Pr FD 0fE Sir) Sk

rl’ol’ proi)abilitv. It is very well known that there

st tO. K ( a pair F, 1+) such that, a K —

= Pr PD I 11) SI’ __ 0,
TV =

aIt our s stem to transmit lb using an (FE. ED) that

tv X

\,. ha

K

ppi1u.

if = 9K1, t’IJ, 45

Lt PD : 1, 2, , if S” be a ‘source decoder’

(43b

as .V —* x

46 a)

b will
iblies 4

i’put a
‘I — Fy S

(46b)

I et

inn to our ad-hoe system. çRefer to Fig. 4.) The source
vector and the output of the source decoder is

1 I if.

I
Fig. 4 _Ad—hoc encoder—decoder.
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I
Next, let 1f = ifif he a multiple of if to he specified later,

{ x, } ‘
1 e a subset of J h Clearly, x,,, can be viewed asac liannel cod,jchannel Q’ or channel Q11 . The channel encoder and hc4Fig. 4 n Oils a follot 5. Ille ehHIinel encoder and decoder each ewj Aa p:ii’tilion of x,,. )‘ into il suhcode (‘i. C.. ‘•, Ca, eachcardinalitt ,1f. .\ssun ie that

=
•, x.112). 1 ii!.

\\hon t he rziisd len variable II = a 1 hcii the channel cii colcr
X is a miii rn dv) randomly chosen iaeniber of the subcode C .

furl t li. I j if,,

1Pr = x
,, TI’ =

=

Pr X- x( 11
= 4h,

ow the set x, can be thought of as a channel code for Clia(1P Wit Ii prior prnbal)ilitv distribution on the iode words gives b49h). A decoder for the code is a mapping ( :)j — x,5 and tinword) error probahihi v is

= Pr (.4Y”) X’ , 3Oi
where Y V i the output of Q, when the input X has distrihutjgive liv 43b). W’e assume that the channel decoder in I ig. 4 hasstored t lie n ap )ing (. ‘Whei 1 t lie channel output is y E ‘)j -‘. the channel
decoder computes G y). When (Ry) (b, the channel decoder outputis i, 1 1 if. Letting ii’ he the output of the channel decoder,
we have

Pr hF I,.
The final step in the system of Fig. 4 is the emission by the sou7ce

decoder of SK = FD(W), where FD: 1, 2, 1I} — 8’ is chosen
that (46) holds. We have

Pr bS = S} = Pr {S — FD(ll)h
Pr S = F iF): W = l .

icrve that each of the subcodcs C can be considered
i Q with JI code words and uniform prior distri
Ic words. Let X, he the resulting w ord error proha

1 .11 ) wit Ii an (iptillilhl dec dee, and let

=

(111.41 oc 1 a codi -4 coder dji ntd abort

JX”:Z S lg.1f—[/’ X)logifJ

1 S he such that 11’ F ‘ SK 1. “Then the channel
,‘t x . a 11. = I has distribution given by 49a). I.e.. X js a
adon a tneiiiber of C . Since i the error prob’ri)il1t for
C . (hiamlel Ql) Farms inequality [use 76) with I’ = X ,
z tile decoded version of Z when code C, is used] yields

ii.x \ TV = 1) hX) X, log 412,

X’ IF = I) = log 1112, we have

; x:, z.V ii, = I) log 1112 h(X,) — . log iI.

vPrag , or i using the weighting q, }, and using the concavity
4 . , ‘ ‘rave

IiXr Z TV) log 1112 [1r(X) + X log un.

nallv, S. IL X. Z is a l ai’kov chriii, (4) yields

[X . Z TI’) = I1(Z W) — H(Z XIV)
= H(Z, II’, S) — H(ZX)
= H(Z TV, S) — H(Z X, S)
II(Z1S) H(ZX, S) = 1(X ;ZX 5). i54)

Iaequa 53) and (54) imply Lemma 9.
aow ready to combine tile above lemmas as:

‘u”oltq . Let o be cii arbitrai y probabtitty dist,ibuticn rn ní1
.4 \ Xh Yb Z be as ne/i ed aborc ncorrespondioti to p) .,l.,suii,e
at S X Y”. Z correspond to the above ad-hoc en(’OdeI’-de(’OdGi ri/It

V. K, 111. if1. iIo. X, . lId P. and correspond to this
:1hoc ,I e. Then

P. Ph’° + X

and

.52)

I

(53)

Thus,

F, Pr S S Pr S ID /W)
+ Pr II’ I F° + x (SY
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ala?

K K
VHS+ VhU2 J(x*,Z*) 44) XiogM

‘V

1141 re f V) —> U as .\
- (ha i) Pr X1 Tc .\H — f .\ . 551

Pnnij: lliepualitv .55a) is the eime a 51). Imo1uaiitv ‘55i istamed by sui)st itUt ing the results of Leiiioas , and 9 in) 1) 40)using II S”) = Km.
Fiiali. we are ready to prove the (lirelt of T t’oren 2. W rjthis by showing that any pair I?, 1). \\ 10(11 sat Nfies

RI II,1 1?).

0 1? (‘M.

0 d I1.

hochievabie. Thus, for 1?. 1/) at isfving SU) and for orbit rar >we show that our ad-hoc sc}ieille with appropriately chosen aralnetsatisfies 9). To begin with, choose K to atisfv

K — K
\ H,

(5sUnlt’ that 1? H is rational.) Not1’ that (ai) illIplies On ) .. \lso, is’
Px be a distribution on f that belongs to cPtR) and achieves P 1?)
that is,

1(1*: *)
ItX*; *) — J(X*: Z5) = I(X5; } Z)

where X*, ) ‘, Z correspond to p. We now assume that an encoder-
decoder is constructed according to the above ad—hoc scheme with
the paralneter*

1Ii = ep {v [I(X*; }*)
2H5] I

where X*, * correspond to the above choice of Pv• With this choice
of and with .11 given by (45), we have

I V; Z5) — I?IK 21I

s from 51). step b) 11010 SUn) 0101 SUe OIUI step
hat A , ) . Z is a 4larkov chain ee Ii).
l’(Pl\ (‘oroliary 10 to the ad—hoe ‘o’lieme n dli till Ill ((VI’

and \Vil 11 the above ‘lluiee of j,. Ille(]lialit\ a

pa X.

it g 60) into issb) ieldS

i?) Ifs IX5: )‘) —. I’V5:Z) — ,h
= rl? — fi.V).

I
K K -ii._IiX.\1fs\11OJ9JJ5

11’(/ J1)“*. J?SK= ‘ “ ‘ ‘ (1 ‘us)

€1?I K5; )*) — F1J) — RoE 2II

El?
211

1’ i

1)11

1.11

(ii

51

:;

slier

(55 . .\‘ + R5 +
X1

+ (log A) Pr Xv T5K} ±f1hV). 6db)

ow rye h (K) and 4 depend on the choice of the set { x1, }
[lIe hg lemma assert the existence of ti . ., such that these
111/IIIT are small. Its proof is given at the end (If thi section.

LI/il . lid/i v J11, ilI as qiven aboee, t/IU’( Ui’lStS foi’ aIhdi’ai/J
(I I.I

cxp H [I(\*. y*) 1I.s . — ]1 60

Note that, from (57),

* Asslinle that the ii ght men (her It t) I (5 50 (II teger. If i 1, a I ii via] n I firati1I I
(If t he eIlI iet is neresarv. I

Pr iX” C 7’5V)},

0, as V —,

i
xJ

(64)
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Now let the set in the ad-hoc scheme he chosen t satic64). Then from 62) and (64) [using the fact that P,f) - oK — (46)], we can choose S (and K = SR H3) sufficiently
so that

this is 9c). It remains to establish (9b). But from (64) with IV
ciently large, we can make

R6K + +
X

+ (log A) Pr lX T 5) ± f’ \ <

Then 63) and 6a) yield
IIJ’(I?)

— — = (1—

which is (9b). Thus, (I?, d) is achievable and the proof of the directh
of Theorem 2, i.e., 1t C . is complete. it remains to provt’ LemmIi and S.

Pr’ujf f Lei,uaa ii: We begin with some notation. For x let

(x) — ii, x T*(S),
— tO, otherwise.

Also for a given set lx,,, } f”, let X ‘“ x1, ‘ x111) be the error proba
bility that results when {x,} is used as a channel code for ehanud
Q with prior probabilities (49b) when code word x,,, is transnijftea
and when maximum liklihood decoding is used. Thus,

.1! iM,
X = X°”hx, •, x.11).
i1 mi—1)M,+i 1112

Further, with X, defined as above as the error probability for codt
on Q1)-, write , = Xmv (x1 ji2-,i, ‘ X, y) = X11w(Ci), so that

the dependence of X, on ( is explicit. We have

I[Xv:Z

= Pr X’) = jI X :Z #X) = j)

+ I[lXv);Z\]. 67)

(log A) Pr {XX

H[(X’)]

Une t reillains in (67). Using the memoryiess property of channel
I Theorem 4.2.1), we have

1ItX;Z1i 0) I(X, ;Z, 0)
1i

70a)

sher ‘3 is the probahiht distribution for X giveil p = 0, i..,
for I h A,

p,,(i) = {X = x X E T*}.

The -r inequality in (700) follows from the concavity of J. From

w’ir,
fron

.n
i, 1+

I prt hot I

1 i

1 i)1’’

(0 ‘PP3

,.,
‘{)tl L’

establiSh the lemma by showing that E F3 (5).
front 9), 1 5) log M1 is bounded below It 5
I 5) log 1113 is bound below I X; Z). it follows

m rd random channel_coding theorem see, for example,
a 11.6.2) that LX” , JrXMII f1LVh 0. as IV —
Pr T 5) f.s.X) — 0. by 44). TIm-’. L

f f \) - 0. Hence the lemma.

$ Her-’ tan we 1 wgin with o1ne notation. Let p be i
rihutiofl on , and let P p) be the mutual information
-pnt alit1 tulput at channel ()aw when the input has
R known Ref. 1. Tlreoriri 4.4.2) that it p1 i 0

ii of p. Let p x he as in 611), and w rite for any

1
V

N Z I[X’,p Xv):Zj

(65k

11
X = q,X, = qX.irw(C,)

i= 1

a
(65)

t60)

Finally, define

• .,X) Pr IXv T(S) + X + X
$11 Ii!

= Z [p(x,,,) + X”bx1, .. ,

1 ,‘ p— 1,.iI,±i

+ gXw(C1). (6G

Now suppose that the set .m’, is chosen at random, with each x,
chosen independently from , with probability distribution p(Z

I
(70b)
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The defmitioii or T 43) and eq. 71) yields

j 1)
—
p i) 0. as

Since 4 p1 is a cont irlitajis fiiiiet ion of p. we have
4(p) 4 p) (/LV) 0, as —

Subtituting (72) into 70a), we obtain

Pr { = 0IX Z’ = 0) 4 p) ± g(X)
= 1(X*; Z*) + 1(X).

Finally, setting f .V) = (1 V) + g V), and substituting (68),arid (73 into 67) we have Lemma S.
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APPENDIX A
The Data-Processing Theorem and Fano’s Inequality
Let I’, F, he discrete random variables that form a Markovchain. Then the data-processing theorem can be stated as

H(fl F) JIçU U),

Inequahl y (74a) follows on writing
(a) (I,)H(U F) = H(U F. U) H(U. U),

where step (a) follows from (4), and (b) from the fact that conditioning ö(Pci)decreases entropy [Ref. 1, eq. (2.3.13)].

(7Db),

p(?) = p,(i) = Pr X = xX T}xT*

I
(?I

txt

that

L be a Markov chain as above, but now assume
a c values in O ( CU ). Let

Pr lU U. (75)

r 1 X) + Xlog U[ 1) h(X) + Xlog CU

dhne the random variable

to, U =
()

= ii, U U.

76)

ii U) HU. U)
[[ U) + H U L, )
Hv) + H U U, )

= HN + Pr 1 = OlH(U U, = 0)
Pr 4 = l}H(U U. 1)

hX) + (I — X).0 + H(U U, = 1)

It X) + X log U CU — 1) Ii X) + X log CU

1 i 76). Step ça) is (71a), and step b) follows from the fact

rha vi” 0, then [ = U, so that IIU U, = Dl = 0, and
tram the fact that, given = 1, U takes one of the CU — I

valu a U excluding U.
nation of Fano’s inequality is the following. Let SK, F. SK

be . \iarkov chain where the coordinates of SK and take the
valu - a’ the set S. Let

P,5 Pr S5 (77a)

01’ eqmvalently

an (1

f(U: F) I(U; U).

(74a)

74b)

1K
= — P.
1ki

We iii show that Fano’s inequality implies

HçSk F) h (PC) + P log ( S —1)

To ifv 78), write

ç77b)

(78)

F)
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vhicli is 75). Step a) is a standard niequalitv. step ( hI fol1ovs
applying 76) to the Markov chain S, I , S.. and ‘tel) c) from ticoncavity of I

APPENDIX B

Proof of Lemma I

i) W/itli 110 loss of generality, let = lI. 2. . .1 } .
probahilitx distribution x can be thought of as an
p = p1, p, p ). Since [ X; F) is a continuous function of
the set fi) I?) is a compact uhset of Lllclideail ,-spact’. Since I X: F
is also a colitilinoils fiinct i m of py. we coiieliih that I X: F Z h
a iflaxlniuni 011 P 1?). lliis iS part 0

ii) Let 0 R1. I?. < (‘,,,. and 0 0 1. We must ‘how that
r[081 -r I

— O)R1 OF’)?1) 1 — O)FRd.
For z — 1. 2, let p, Pçi?,) achieve F Rj. In other words, lettjn
Xe F,. Z correspond to p. I = 1, 2, then

l(X. F) I?,, 1(X1, F, Z) F(J?,).
Now let the random variable X he defined as in Fig. .. For > = 1, 2, the
box labeled p,’ generates tile random variable X that has prohabiIjt
distribution ‘‘p. The switch takes upper position position l”j
with probability 0 and the lower position (‘‘position 2) with proba—
bilitv 1 — 0. Let F denote the switch position. In the figure. h = 1.
Assume that 1, .Xi. X2 are independent. As indicated in the figure.
A’ = X,, when F = I, I = 1, 2. Now

(a)
I(X: F) 11(F) — H1F X) = IIçF)

— HF X, F)
H(F F) — II(F X, F) = I(X; 1r F)

— OI(X; yr V = 1) + (1 — O)f(X; F V = 2)
= OI(X1; F) ± (1 — O)I(X2:Y2)

ljch i I is i part ii).
(8) I i’ to] low immedat eb from the definition of F I?)

I 10 , ‘ ‘ I ) is >1 llollincreaslng set.
Ii e I?) is eo11ca C 011 [0. (‘a j and liollilici casing, it must

.e ,tqo ,.. a r 0 I? < (
j.
Thus, we need only verify tIn’ ‘on—

-inL’IiV I ‘t ,t I? = C i. Let p he a probability distribution on tt
! ‘.it-wc] •,.. .-O1 or iii Luclidean .—space, as jn the proof of paI’t 1).

Let p . p) be the values of IX: I’) and 1 X F Z). respec—
J (0”i’cspo]i(l to p. ii ji) and a p) ale continuous function’

1C, Since the set of probability A-xectors is compact,
a probability distribution p* on tr such that for some

( it)

Iroin tli’ fact that I. X, F is a Markov chain and
Sn’i L f’,]ows froni ‘50>. Inequality ‘Si) implies that the

1(r1bI1’ .,•.- ,tj1i A belongs to C[0R1 ‘1 — 0 I?J. lhlls, frOIl1
1’

1’[0R1 1 — O)R 1 X; F Z).

o I paralleling 51), we have

I 0)J?] II F Z) ii F XZ)
= II F Z) — II F XZ1d
ii F Zl’) II F XZI’>

= IX; F ZV) = 0IX: I’ Z, V = Ii
— 1 — 0(1 .V; F Z. l = 2>

= 01 A1: ) Z1> 1 — 01 Ad: r Zr
= UI Rd — 1 — 0)1’R>.

I
7ff, I

OR + ii — O)R2.
I

(SI)

If p,
1? } be a monotone iflcrcasmg sequence such that

I? — ( 1 1?; (‘11. We must show that, asj —sr,

F(R1) FtCv). (s3)

ow If i’ i’ inonotonicity of F R), liny+,. F I?,) exi’ts and

urn FrR,) F(C11).

xt1YDvz

Fig. .( I )etin.ing ihe random variable X.

I It ren’ to verify the reverse of ineq. ‘4). Let p2 satisfy

0(p1) 111, (p1) F(R2).

54)

or 1
here ‘

suhseq
- rC

(S5)

mu p1 =
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It follows from the continuity of g ). and (.5) that (prn) >
that p1’ P (‘ ,‘) Therefore, fu an the ((lilt inuitv of J ,, and
we have
Ii RI?-) = F I?-,) = P1) = 4 p*) I’ (‘.

where step a) follow- froiii p’iP (‘). Inequalities S4) and ‘-
yield $) and part fl

v) From 12).
1’R)= sup [IX:1’)—IX:Z)]

fl

sup I(X; F) (ir,
PxEn> 10

which is the first mequalitv in part v). Also, using (12)
P () = sup [I(X F) — IX: Z)]

Px 0-j (‘1

sup [1X: F) — Crw] = C11 - Cjiw.
ii,uP e,o

Since F K) is liollmcreasing, 57) yields F ( K) PC1) C —
completing the proof of part (v).

APPENDIX C

Source with Memory

In this appendix, we show how to modify our definitions and re
sults foi’ a source with memor. We ill take the source output
sequence Si. to he a stationary. ergodic sequence (where 5r takes
values in 8) with entropy tas defined in Ref. 1, Section 3.5) of H. Ar
in Section II, we continue to assume that $ < , and that tb
source statistics are known.
The channels Q and Qw remain as in Section II, as does the defluF

Con of an encoder-decoder with parameters V and K. The definition
of F, also remains unchanged. but a new definition for is necessary.
To see this, let us suppose that the source was binary, i.e., S = {0, 1).
with entropy II. and with JIS) > H. Suppose also that the channel
Q is a noiseless binary channel, and that Qw has zero capacity. A
possible encoder-decoder has K = X = 1 and takes Xi = Si. Such
a scheme has P. = 0. but with as defined in (7) given b

H(S1) > H5. Using (9), this would lead us to accept the pafr
[H5,H(S1)] as achievable, which would not be reasonable. Accord
mgh , we give a new defimtion of .
Let SK, ZV correspond to an encoder with parameters K. V as

defined in Section 1 J. Let S’5 j), Z’( .1). f = 1, 2, ‘ ‘ ‘. v. correspond to

succi v repetitions of’ the encoding pro(ess. Then define the
a the wire-tap as

1 o(

1
L KVS(1), ..., SK v) ZV 1). , Z’ v)]

- !l1H(S Z).

ned Lv S). u e defuie the et 6 and 6 as iii Section 11.
‘. ,‘Iam Theorem 2 remaiii valid.
Inc p ‘ d the converse—half of Theorem 2 given in Section IV
ve the case where the source has memory with only trivial
3tnges hr, the results in Section V are all valid exactly for the

-
y,emorv. They yield that. if (K, d) satisfies (56), then we
0 arbitrary find an encoder—decoder with parametem .V,for

a. and I’ .1i1h satisfies

I? —

Z) d —

f rther, ran do this for arbitrarily large K. We show below that
i re cx function f K), K = 1, 2, ueh that for any code
ith par’’ -ters K, _V

— urn Z) H(SK Z’) —

here hr ((K) 0, and f(K) depends only on the source statistics.
Crnbinir 90) with (89c), we have

(1 — — fK).

uwe ,1 I —‘ 0, we conclude that (R, d) is achievable. This is the
rect ha of Theorem 2. It remains to verify (90).
First, Igine that the encoder-decoder begins operation infinitely
a in tl t. Let [S (j), Z (j)] be the (S’, Z’) corresponding to tile
th enc g operation, — < j < . Thus, S = (5 . . ., S)
[S 1 5(v)] and Z = [Z(1), ‘.‘,Z(v)], v = 1, 2, ‘. Let
= [ . Z(—1), Z(0), Z(+1), ...] Of course,

HS’ Z) HS”’ Z5).

85)

(S9a)

(S)b)

(89c)

(90)

(91)
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Further. 1’ 0 ) eid 94) 1)11 Ii Y3). \V0 lla C

where S’ = [S 2, S :3’). ]. Step a) is a taridard idelltitV. St09 9-,iollow (miii th0 stationaritv of the siquenne and the memory1e
ness of the channel ci . and teI cf fnllows froni the fact
(‘ollditionillg (Iecre:rscs entropy Now let

S_-S”--_Sl), S’=[S2),S3],...],
Z = Z = Z1), Z’ = C..., Z —1), Z.O). ZH-2’). . .

f1 ‘ 91) and 92) heuonw

HS’Z’) 11(S Z.Z’,S’)Ky

=1[H(SZ Z’S) — H(Z Z’S’)]K

= [HS Z’S’) + HZ SZ’S’) — IIZ’Z’S’)]
(a) 1
= [H(S S’) + ILZ S) — HZ Z’S’)]

[H(S S’) + H(Z 5) — 11(Z)].
— K

Step a) follows from the fact that Z’, 5’. S and 5’, Z’),
Markov chains, and 4). Now

H(SS’) = 1I(& S’,&1,

REFERE ES
[rOn’ nOon ) h on and JO ( otitt nfl UOlofl, Ne \ ork
1 Zn, \ T}n’.oi, ‘n 1 (e’’nin I(nn11\ e

- ,‘.r I’ti’ I ii 1 1. Tin’ ,i ‘ii “ n 1 t ron’ ,“l TIii’,,r , lJ—i-
( )0 77’

0 “‘rn 11,0 , N0 \ irk ii ‘ -. nil, e 110,5
Ii mO, ‘PLo Ii,flmr ‘lintiiir, Tin no:.n Ap11i nil ‘ii npis,g’,npii,’’

I I i—rn, ( (inter In! 5”) —1(111- lttneai, 1 pnil 0)71
( t i1,mrlnI( anon TIit’nr ti e( ‘e( Si )enn ‘ B S T J , 28, No 4

> rs Ik5b 71.5

H(SK Z*’) = 11[S1), ‘..,S ) Z]
a) 1’

= Zf1[S[ Z5.S •...S.1-o]

H[S 7’ Za. S 2). . - ‘. S’ 9]
nII[S 1) Z, S 2). ‘‘‘5 v)] vII[S 1) Z*, 5’]

ZH) > [11 5) d 11 Z 5) 11(Z)] — f K)

= jii S Z — .1 K.

(I
S, Z a

I
Also,

1Ir

= K H, =

fK)O, asK
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