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The Wire-Tap Channel

By A. D. WYNER
(Manuscript received May 9, 1975)

We consider the situation in which digital data s to be reliably {rans-
tted over a discrele, menoryless channel {(DMC) that is subjected fo a

ire-tap al the receiver. We asswme that the wire-tapper views the channel
oulput via a second DMC. Encoding by the transmitter and decoding by the
ecetver are permnitted. However, the code books used U these operations are
assumed to be knoun by the wirve-tapper. The designer attempts to build
the encoder-decoder in such a way as to maximize the transmission rate R,
and the equivocation d of the data as seen by the wire-lapper. In this paper,
we find the trade-off curve between R and d, assuming essentially perfect
(“error-free”) transmission. In particular, if d is equal to H g, the entropy
of the data source, then we consider thal the transmission is accomplished
in perfect secrecy. Our results imply that there evists a C; > 0, such
that reliable transmission at rates up to C, is possible in approrimately
perfect secrecy.

1. INTRODUCTION

In this paper we study a (perhaps noisy) communication system
that is being wire-tapped via a second noisy channel. Our object is to
encode the data in such a way that the wire-tapper’s level of confusion
will be as high as possible. To fix ideas, consider first the simple special
case depicted in Fig. 1 (in which the main communication system is
noiseless). The source emits a data sequence Sy, Sz, - -, which consists
of independent copies of the binary random variable S, where
Pri{S =0} = Pr{S =1} = 4 The encoder examines the first K
source bits SX = (Sy, - - -, Sk) and encodes SX into a binary N vector
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Fig. 1-—Wire-tap channel (special case).

XV = (X1, -+, Xy). X¥in turn is transmitted perfectly to the decoder
via the noiseless channel and is transformed into a binary data Stream
SE = (&, -, Sx) for delivery to the destination. The “error prohg.
bility” is defined as
PezliPr{Sk¢§k}. (1)
K k=1

The entire process is repeated on successive blocks of K source bits,
The transmission rate is K /N bits per transmitted channel symbaol.

The wire-tapper observes the encoded vector XV through a (memaory-
less) binary symmetric channel (Bsc) with crossover probability
Po(0 < po £ 1). The corresponding output at the wire-tap is Z°
= (Z1, - -+, Zy), so that for r,z2=0,1(1 =n=N),

Priz, =2|X. = 2} = (1 — po)b.. + po(1 — 8z.2).
We take the equivocation

{2

al E|7N
A= R H(8S¥|Z¥) 2
as a measure of the degree to which the wire-tapper is confused. The
logarithms in H are, as are all logarithms in this paper, taken to the
base 2. The system designer would like to have P, close to zero, with
K/N and A as large as possible.

Consider the following schemes:

(1) Set K =N =1, and let Xy =85 This results in P, = 0,
K/N =1 and A = H(X1|Z1) = h(ps), where

RN = —Xogh — (1 —Nlog(1—%), 0<rx<1
(take 0log 0 = 0).

, (3)
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7 K =1, and let N be arbitrary. Let Co be' the Subset.of
) Séjt* ace ‘6 11V, consisting of those N vectors with even parity
A hs;] ﬁ(ullt;er of 1's). Let C'; € {0, 1}V be the subseit of vect(irs
- ande‘;;rit\'. The encoder works as follows. When S} SEN (= O,HZ,
3 Odo(ier (){ltput XV is a randomly chos.ep vector in (.. Thus, the
a channel with transition probability
o [rue, xEC,
Pr XS = x|$i = i) = g =
. _ 0. 1. Clearly, the decoder can recover Sy from XV penfe;i!y,t;o
z;) : 0. We now turn to the wire—.tapper vt'ho observe% 4 3 ‘bg
. utgof the Bsc corresponding to the input XV. Let z & {0, 1}
: p-;tor of, say, even parity. Then

L ene
der 13

v [ the Bsc makes an |
PriSi=012" = z = br | even number of errors |
= = (V) pia =0 = a b =20
=\
j]even

‘e last equality can be verified by applying the binomial formula to

) N /N (1 — )N )i
(1 — po) £ xpe)t = Jgo( i )Pé(l po)¥ ()
[hen
- N 2 . N
3 <\ ) pi(l = po)* = (1 = po+ L-po)¥ + (1 = po = 1-po)
3 jeven J =1 + (1 — 2p0)N

§.P. Lioyd). Similarly, for z € {0, 1}¥ of odd parity,

the Bsc makes an
Pr{S; = 012% =z} = Pr {odd number of errors
=3 — (1 — 2po)V.
Therefore, for all z & {0, 1}¥,
H(S:2Y = 2) = [k — 3(1 — 2p9¥],

that . N
o A = H(S1Z%) = h[} — 30 — 2p9)"]

—1=H(S), asN—w.

i 1 s the
Thus, as N — o, the equivocation at the wire-tap z'xpproachel.Shed
s, as | re-te ches
unconditional source entropy, so that commuzncatlon }xls zt[ccafil ' rpr)l jshed
in perfect secrecy. The ‘“‘catch” is that, as N — o, the tra

rate A/N = 1/N — 0.
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A central question to which this

paper is address
not it is possibl

e to transmit at a rate bounded aw

&y’fFOrn ZCPO;;”
vet achieve approximately perfect secrecy, 1l.e., A%H(Sl), Bef 3
o . . . IO
giving the answer to this question, we shall describe the

problem that is addressed in the sequel.

Refer to Fig. 2. The source is discrete and memoryless wit}, e

i re,
Hs. The “main channel” and the “wire-tap channel” are  disp s
memoryless channels with transition probabilities (), (. | 9

- . . N {
Qw (-1, respectively. The source and the tr

ansition probahi
- The encoder, as in the abov
Pwith the A vector SX as input and the A\
The vector XV is in turn the input to the
channel output and the wire-tap cl
channel output is ZV. The decoder
and the error probability P
given by (2), and the
channel input symbol.

and Qu are given and fixed € example_
channe " vector XV gq
main channel.
annel input is YV, T} R
associates a K vector §x Wwith Y
¢ 18 given by (1). The equivocation A
transmission rate is A ¢ '\ Source bitg .
Roughty speaking, a pair (R, d) is achieyyl,
If it is possible to find an encoder-decoder with arbitrarily smal p
and KHg 'V about R, and A about d (with perhaps \ and K vy
large). Our main problem is the characterization of the famj]
achievable (R, d) pairs, and such a characterization is given in Thegre
2. It turns out (Theorem 3) that, in nearly every ecase, there
“secrecy capacity,” €, > 0, such that (¢
for R > ¢, (R, Hy) is not achievab
transmit information
secrecy.

For the special case of our introductory example (Hg
corresponding to a noiseless channel and Qy to
of Theorem 2 specializes to the assertion that
and only if 0 < R EL0=d=1,and R4 = h
(¢) suggested above for this special

e wirg

eXists
sy Hg) 1s achievable [whils
le]. Thus, it is possible to reliaky

at the positive rate ¢, in essentially perfee

=1, Oy
a BsC), the conclugion
(R, d) is achievable if
(po). Note that scheme
case asserts that R = 1, ¢ = hip

MAIN CHANNEL
Om

SOURCE

SK
ENCODER

DECODER

WIRE-TAP CHANNEL
Qu

zN

Fig. 2—Wire-tap channel (general case).
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ed is whethep o

more gy,

ali
Itles r‘;

i

. wable. From Theorem 2, this value of d =/ (\po? 1\} ,theRm_an
s achict” f‘;})l() Jd.if R = 1. Scheme (i) above zlS‘St.,‘I‘tH t}gt f— ,
munm afwhlt""hiovnble, but this is distinetly Sll}z()})tlllizi]‘tﬂlll(je ’r(?nvl
g=1n i)‘ R = hipy, d =1 1is achievable. Thus, relm})]e trans-
Theoret® = - lt > hiipo) is possible with perfeet secreey, and €' :;‘ h (].)0).
sion 8 N‘; t’he remainder of this paper now follows. In bectlc?n
An ourlie “f' ‘mr‘ll statement of the problem and state tho main
o 2‘:11{(i 3). In Section 111 we give a proof of Theorem

Jiit

I, we give
! jts (Theorems

: . ‘ iseless, wire-tap
rest | seeidd ease diseussed above (main channel 11()1>elfeTi o )I
L < - . . . alf eor 0
2for t 11‘ ! ). In Seetion TV, we prove the converse half of Th
pl i B=O ).
channe

| in Section V the direct half of that theorem.
and 1130

LTS
RMAL STATEMENT OF THE PROBLEM AND SUMMARY OF RESU
#t. FO

I in =t 1 ) 1wve a RIS < t we
n } ction we g ) pre(— 1se ﬁt&t enlellt OJ[ 'lle pr()blem t h £} Ve
Ntate( " e h V . B SUs.

i 1Y '()I ]U‘I” Vo111 DeC th“ I ‘V e hen summarize Ol}r res l S5 .

Eu’\ , L © ; > 8 5 d

1 \\/()r(l ‘II)HU( n()l& 101. IJQ CL[ be an &I‘bl I‘il’\ hlll ¢ \e' l)e( (l 11‘
'*“‘I ’- S & )f ¥ Ccrors with ¢om-
[. 1 l‘ } | U, CrO b (l aU \ b : €

1 VDY i i Sonside £ l e setl «( Vv 't g tl
Lfﬁg ca d 5 .

< of UY wi written as
onents in U The members of UY will be
P :

uy = (uy, wa -, Uy,

= ST e e IS e e S f{ Ce super-
whe ‘Ub"(’ 'ip 'd l ers d note he Conlp()llell bl {Hld b()ld 1, I IO
. (ol = G i ) " ) < 2
! } i & l lt £rs (’lt" note VPC‘ Oors. A Slnll]{l]‘ convention d‘pplle\, 10 l‘ll l(] n
.("]‘lp C \tt ars . . . N R RS : rs.
; e = '”!d "Uld()n] V :U‘lablk‘s, \\'hlch are d( no ed b) uppel -case lette \.
' h o : ens V’ e 1 e i e o ft we omit
‘ﬁ/v(1 1 h(’ diln n ‘i()ll )\v ()f a ¢clor 1s Cl ar fr()lTl }1 > contex bl
er (5
l e Sup(‘l‘,\"(}I‘lpt. ) ' . .
r() 1 ‘1[1({()“] V le‘iableS ‘X y ) y Z, e C., ‘Ile no {.ithIl H <‘,\ )y 11 ‘EA& ‘ )' )i
I { X Y) ]( A\ 3 ) iZ) ete deIlOl‘eS }16 S' ﬁndard HlfOI‘Yﬂathn qu‘ T ‘l“ es
as | E‘Y . i \ 1 YI 1 g 7 ["he ¢ 1' h“ S5 i 1 lleqe 1é Il‘it.es are, as are
( d ﬁl el 1 (“ “‘). e L lOg‘l ' 18 JT1ES ql a 1e y ‘
2},7‘ Vg » th . } b se 2 Fin'l“ \ 1()1‘ n o= ) : 3
i 1 ¢ as . ally,
arit 5 118 ‘dp & (6] )
11 10 arl hnlb mn tlll‘\ p e 5 l&e 1 ‘ 1e sSe o : N ;L‘ ‘t
. we say t h&t 111@ S equellce Of I‘&ndom V drldbleb {)AX 7 } i=1 18 '1
. ‘ﬂ‘.‘ chai 4 X ) d (X 1, “ "y < are co l(]—
] ATK in"” 1 s 1) an A jrly y n
“Alarkov ("h&lfl lf (A‘X 1 }L 2y y <X 18 (S
:\ 1 :)V. epe e ( ~’Ve X (1 < ] < 71). e n)ﬁke I‘epea \ed use Of
i()na“ % H]d( p ,,Ild 1 y gl 3 A Qs 7 ' . A VV N
£ i if X 1 1S ¢ [& ¢cnain, the
th til(‘t’ h& y li 4\ y X‘?, 4X3 15 a Alar oV l y e

H(X)[X,, Xo) = H(X| X, &

e ] ix A, in which the data-
At this point we call attention to Appendix A mn -\xhw P
o ; 31 v ¢ TeT severa b
processing theorem and Fano’s inequality are giv en 1tn se erit n(\) 1\1{:
wﬁ : eseripti 3 ec ' ation system. We
e now tur «cription of the communica )
We now turn to the deserip : ‘ N
’e e SVS esigner 18 given a source a vo channels
assume that the svstem designer s given a source and tv
that are defined as follows.

S the S, are
(1} The source is defined by the sequence {Sg}; ,.\\l}}ere e S e
indepemlent identicallv distributed random wvariables tha
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values in the finite set 8. We assume that the probability |
defines the {S.} is known. Let the entropy H(S,) = Hg.
C we show how to extend the results of this paper to arbi
ary finite alphabet ergodic sources.

(i7) The main channel is a discrete memoryless channel wit}, finits
input alphabet &, finite output alphabet 9, and transition probabilis
Qu(ylr), 2 € X, y € Y. Since the channel is memoryless, the ir
tion probability for N vectors is

lnw thas
In Appendy
tl‘ary “:l!ih: -

ility

insg.

Q1% = 1T Qulyala).

Denote the channel capacity of the main channel by Cy.

(712) The wire-tap channel is also a discrete memoryless chypy,
with input alphabet 9, finite output alphabet 3, and transitig
probability Qw(z|y), y € Y, 2 € 3. The cascade of the main chanpe
and the wire-tap channel is another memoryless channel with transitigs
probability

Quw(zle) = T Quw(zly)Quy|2). .=
ye&y

Occasionally, when there is no ambiguity, we use the transition probg.
bility of a channel to denote the channel itself. Let (45 be the capacity
of channel Q.

With the source statistics and channels Oy and Qw given, tl
designer must specify an encoder and a decoder, defined as follows

(2v) The encoder with parameters (K, N) is another channel with
input alphabet 8%, output alphabet %Y, and transition proby-
bility ¢r(x]s), s €85, x € x¥. When the K source variahles
S = (Sy, ---, Sx) are the input to the encoder, the output is the
random vector X¥. Let Y¥ and Z¥ be the output of channels @§” and

%, respectively, when the input is X¥. The equivocation of the
source at the output of the wire-tap channel (corresponding to a
particular encoder) is :

A2 H(SK(ZY). G

=~

We take A as our criterion of the wire-tapper’s confusion. From the
system designer’s point of view, it is, of course, desirable to make 4

large.
(v) The decoder is a mapping
fp: Y¥ — gK, (Sa
Let § = (S, -+, 8g) = fo(Y). Corresponding to a given encoder and
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ler, the error-rate is

.ir."{li

P, = L3 pris. = 8. (8b)
K =

refer to the above as an encoder-decoder (K, N, A, Pg)’.' The
£ ieability of the above to the system in Fig. 2 should be obvxous..
‘\e(;('é, we say that the pair (R, d) (where R, dr > 0) is achxievabl{z‘lf,
. all € > 0, there exists an encoder-decoder (N, K, A, P,) for which

@.]SVIQ >R — e (9a)
P, = e (9¢)

Our problem is to characterize the set & of achievable (R, d)'p.a¥rs.
] us remark here that it follows immediately from the definition
-;.at & is a closed subset of the first quadrfant of thg (R, d) planp.
i;..-fore stating our characterization of &, we dlgrgss to d}scuss a cert'am
nformation-theoretic quantity that plays a crucial role in our solution.
¥ Consider the channels @, @w, and Qyw defined above. Let px(x),
. = x, be a probability mass function and let X be the random
variable defined by

PriX =z} = px(z), z&€ X.

let Y, Z be the outputs of channels @y and Quw, respectively, when
Y is the input. For R = 0, let ®(R) be the set of px such‘ that
I{X;Y) = R. Of course, ®(R) is empty for B > Cy, the capacity of
channel Q. Finally, for 0 £ R < Cy, define

r'R) 2 sup I(X;Y|Z). (10)
px &F(R)

We remark here that, for any distribution px on &, the corresponding

- X, Y, Z forms a Markov chain, so that the definition of mutual infor-

mation and (4) yield

1(X;Y|Z2) = HX|2) — HX|Y, 2)
= H(X|Z) - HX|Y) = I(X;Y) — [(X;Z). (11)

I

Thus, we can write (10) as

. = V) — I(X;2)). (12)
I'(R) = pxseuop(R)I(X, Y|Z) Sup [Ix;yv ( )]

* This should be read as ““. .. an encoder-decoder with parameters (K, N, 4, P.).”

WIRE-TAP CHANNEL 1361




As an example, suppose that € = y = 3 = {0, 1}. Let Q,, b .
noiseless (binary) channel, and let @w be a binary symmetrie chanpgl
(Bsc) with crossover probability pe. Then for arbitrary px,

I(X;Y) - I(X;Z) = HX) — [H(Z) — HZ|X)]
= hipo) + H(X) — H(Z) = h(py),

where A(-) is defined in (3). The inequality follows from the .
known fact (see, for example, Ref. 2) that the entropy of the outpyg
of a Bsc, i.e., H(Z), is not less than the entropy of the input, I} (Y
Further, H(X) = H(Z) if and only if px(0) = px(1) = §. Since (hi
distribution belongs to ®(R), forall R, 0 < R < Cy = 1, we conelyds
that, in this case,

I'(R) = hips), 0= R = Cyy. 13

In Appendix B, we establish the following lemma concerning I'( jg).
Lemma 1: The quantity T(R), 0 < R = Cy, satisfies the following:

(7) The “supremum’ in the definition of T[[(10) or (12)] s, in fau
a maximum—i.e., for each R, there exists a px & ®(I) sucl
that 1(X; Y|Z) = T(R). '

(#7) T(R) is a concave function of R.

(z21) T(R) 1s nonincreasing in R.

(w) T'(R) is continuous in R.

(@) Cy =2 T(R) =2 Cyr — Cyw, where Cyr and Cyrw are the capari-
ties of channels Qar and Qrrw, respectively.

We can now state our main result, the proof of which is given in the
remaining sections.

Theorem 2: The set ®, as defined above, is equal to &, where
®RE(Rd: 0SR=Cy 0=<d<Hs Rd=<HsT(R)}. (14)
Remarks:

(1) A sketch of a typical region ® is given in Fig. 3. In the above ex-
ample (@ noiseless and Qw a Bsc), ['(R) = h(po), a constant, so that
the curve Rd = HgI'(R) is a hyperbola. Observe that In this case
the region ® is not convex. This is in contrast to the up-to-now essen-
tially universal situation in multiple-user Shannon theory problems,
where the solution is nearly always a convex region. Whether or not
I'(R)/R is always convex, as it appears in Fig. 3, is an open question.

(2) The pointsin ® for which R = Cy correspond to data rates of
about the capacity of Q. This is clearly the maximum rate at which
reliable transmission over @ is possible. An equivoecation at the
wire-tap of about HgI'(Ca)/Cys is achievable at this rate. An increase
in equivocation requires a reduction of transmission rate.

1362 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

Fig. 3—Region ®.

'3) The points in ® for which d = Hg are of considerable interest.
[hese correspond to an equivocation for the wire-tapper of about
}l .—i.e., perfect secrecy. A transmission rate of

Ci=  max R
(R, Hg) €&

i« therefore achievable in perfect secrecy. We call C, the “secrecy

capacity”’ of the channel pair (Qu, Q@w). The following theorem

larifies this remark.
Theorem 3: If Cyr > Carw, there exists a unique solution Cy of
| C, = T(C,). (15)
Further, C, satisfies

0<Cy—Cuyw =T ({Cx) £ C, 2y, (16)
i C, 1s the maximum R such that (R, Hs) & &.
Proaf: Define G(R) = I'(R) — R, 0 £ R = Cy. From Lemma 1 (»),

G(Cy) = T'(Cy) — Cir £ 0,

A

G0) =T0) 2 Cyr — Cyw > 0.

Since by Lemma 1, (4%7) and (i), G(R) is continuous and strictly

WIRE-TAP CHANNEL 1363




decreasing in R, a unique C, € (0, C, ] exists such that ¢ p
=T(C,) — C, = 0. This is the unique solution to
(16) follows from €, & (0, Cy] and Lemma 1, (72i) and (»). Finaljy
from (15) and (16) we have (C, Hy) € ® = ®. Also, if (R;, Hgje |
then H4R, < HsT'(R1) so that G'(R;) z 0. Since G(R) is stpi
decreasing in R, we conclude that Ry < C,. Thus, C, is the Ina\n,,”,"
of those R for which (R, Hg) © @, completing the proof.

(4) It is clear that the source statistics enter into the solution onl

via the source entropy Hys. We also remind the reader that the fairly
simple extension of Theorems

2and 3 to 4 stationary, ergodic s01

is given in Appendix C.
(5) 1f we define P, the “wire-tapper’s”
error rate at a decoder built by
to (8)], then it follows from Fan

ey

error probability, g« i
the wire-tapper [defined anal EOously
0’s inequality (see Appendix A: that

A S h(Pu) + P log |8,

Thus, a large value of the equivocation A implies a large valye
Poo (which the system designer will find desirable).

(04

ill. PROOF OF THEOREM 2 FOR A SPECIAL CASE

In this section we prove Theorem
cussed in Section 1. All alphabets §,
source {S,} satisfies Pr {S, =
noiseless, i.e., Quylz) =
probability p, (0 < po =

2 for the very special case dis.
X, Y, 3 are equal to {0, 1}. T},
} = Pr {SA S 1} = . Channel 0y 18
8:,y; and channel Qy is a Bsc with CTOSSOVIr

1), le.,
Qwzly) = (1 = py)s,. + po(1 — 8y,2). 17
We show here that (R, d) is achievable if and only if
R=Cy=1 dx< Hg= 1, Rd < hip,). {18)

Sinee, for this case, T'(R) = h(py),
as-yet-unproven Theorem 2. We begin with the converse (“only if")
part of the result. Let S%, X¥, Z¥ correspond to an encoder-decoder
(N, K, A, P,) (note that YV = X¥). Then, making repeated use of

the identity H(U, V) = H(U) + H(V|U), we can write (dropping
the superscript on vectors)

KA = H(SKIZ‘Y) =H(S, Z) — H(Z)
= H(S, X, Z) — H(X]S,Z) — H(Z)
= H(Z|X,8) + H(X,S) — H(X|S, Z) - H(Z)
= HEZIX) + HSIX) + HX) - HEK[S, Z) — H(Z)
b}
2 Nh(po) + HSIX) + [HX) - HZ)] — HX|S,Z). (10)

These steps are justified as follows.

this result is a special case of the

1364 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

(15). Inequyjy,

i
|

From the fact that (8, X, Z) is a Markov chain and (4), so that
) ron g ’
. = H{(Z|X). . ‘
4 ,?IXS,'S)CG X <Z ‘are the input and output, respectively, of a Bsc,
‘—:ZE*X)Hi Vh’(po) regardless of the distribution for X.
HiLps) = "0 ’

Now from Fano’s inequality [use ineq. (78) with ¥ _ij];szejizz

1 -(f)\ < Kh(P,). Further, the entropy of the Outp}lt S sz 9
Hb}x}v :f the \input [this follows from Mrs. Gerber’s ler/m!n& ( e>. 61
,,u--op;no 1)), so that H(X) — H(Z) < 0. Finally, H(X[S,Z) = 0.
Iheore v

[hus, (19) vields for any encoder-decoder (K, N, A, P.),
KA £ Nh(pe) + Kh{P.),

2

% [A — h(P)] < h(po). (20)

Now suppose that (R, d) is achievable. It follows froin the g;()hr;i;yt

oorse to the eoding 1, Th. 434, p. 81) t

he coding theorem (Ref. 1, ,

I.i»llfe(r*se =tol t%‘eurther, gsince AL Hg=1, we conch}de that d t§h1£
I:I'zll;v if we apply (20) to an encoder-decoder (N, K, A, P,) tha
inally, ) . Lo
satisfies (9) with e > 0 arbitrary, we have

(R — e)[(d — ¢ — h(e)] = h(po).

1 ' s, we have established the
i 0 vields Rd < h(po). Thus, we tabhishec
Lettlng"e j)f—jfhe(irem 2 i.e., that an achievable (R, d) Inl.lbt sat1:8f3 (1‘8).
cor\l;’rer;égin the proof of the direct half of Theorvem 2 with a d1%r6s<§1011
bou?: grémp codes for the Bsc. Let ¢ & {0, I}N be a gro(ljlfl) cc; f 61.((3).;
. arity check code) as defined for example in %ef. Yl, ap eD I;Ote
Rt ‘Chapter 4. The group code (i has M = 2V/| G| cosets. De
}}ff' . t, agy C — G, C1, Cs -+, Cpy_y1. Of course, the cosets are
the cosets by Co = 0, y L2, )
disjoint and
M-1
U ¢:.= {01}V
=0
. Cof
Let A be the word error probability when grou}{) cg%th (or‘i?trha;}; ;1_
i ith crossover probability pe, wit
he cosets) is used on a BSC Wi [ .
fmin%likelihood (minimum distance) decoding. Thus, .fog efm}cil _c%osg.
C; 0 <i< M — 1, there exists a decoder mapping D | ,l , ana
SI;Ch ti‘tt 1~f X~ ig the input to a Bsc with crossover probib{ 13 [{?[Oy._‘ .
Z¥ is the corresponding output, then for allx € €, 0 =1 = ,
Pr{D(ZV) = X¥|XV = x} =\
Thus, regardless of the probability distribution for X¥,
Pr{D.(ZY) = XV|X¥ & Ci} = N
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Letting ¢(x) = 4, for x € C;, 0 £ ¢ £ M — 1, we have, from Fang
inequality [use ineq. (76) with [/ = XN,V =2¥ 0= Di(z¥)]

HXY[ZY, ¢ = ) £ h(\) + X log | €.
Therefore, for any X distribution (which induces a distribution of y;
HXY|ZY, ¢) < h(\) + Nlog |G, (21)

We conclude this digression by stating as a lemma the well-knaoyy,
result of Elias that there exists a group code for transmitting refiably
over a BSC at any rate up to capacity. A proof of this result can he
found in Ref. 1, Section 6.2.

Lemma 4: Let ¢, > 0, r < [ — h(pe) be arbitrary. Then, provided \ is
sufficiently large, there erists a group code (I of block length N i
|G| = 2V, such that, on the Bsc with crossover probability po, the erpar
probability X £ «,.

We now prove the direct half of Theorem 2 for our special case |

W
showing that any (R, d), where R is rational, which satisfies

R-d = h(po), 22g)
0=d<], (22h)
0 :—<. R § 1 (:2”

we must show the existence of an encoder-decoder (N, K, A, P,) that
satisfies (9). We now proceed to this task.
Let K, N satisfy

is achievable. Thus, for (R, d) satisfying (22), and arbitrary e > (),

N[% = R. (23)
Let G be a binary group code with block length N and with 16
= 20W=K_ Thus, (¢ has M = 2% cosets {C:}7Lo. We can assume that
the set 8% = {0, 11X is the set of integers {0, 1, ---, M — 1}. We
construct the encoder such that when the source vector SK = ,* the
encoder output X+ is a randomly chosen member of coset Ci—ie.,

1
&7 = 161 RS

0, xr QE C,’,

0 =7 =< M — 1. Since S¥ is uniformly distributed on 10,1, - -+, M — 1},
X" is uniformly distributed on %¥ = {0, 1}¥. Thus, in particular,

H(X¥) = H(z") = N, 24)

= 2~ (K,

Pr {XN=X|S = Z} =

* This is an abuse of notation. A more precise statement is that S¥ is g binary
representation of 1.
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wi
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as always, ZV is the output of the wire-tap channel wheq .0
“-..v! J’input. Also let us observe here that the quantity Y (X¥), defined
e above digression, is identical to S%. Thus, (21) yields

HXN|Z¥ 8%) < h(N) + NN — K), (25)

is ility for the group code G.
here \ is the error probability ‘ G .
...‘;e now turn to the decoder. Letting D(y) = ¢, when y € C;, we
pelude (since the channel @ 1s noiseless) that

P, =0. (26)

nee (23) and (26) imply (92) and (9¢), 1t remains t(') show that a ¢
. I:_.ts such that the resulting encoder-decoder will satisfy (9b).
I \We now invoke (19), which is valid for any encodgr-dgcodgr.
Substituting (24) and (25) into (19), and invoking (26), which implies
I,-',!(S{X) = (, we obtain

N h()\) N . 9
sz (X)he =" (% 1) (27)
Now, from (22a) and (23), we have
N h(po)
e h(po) = }73’0 = d,

and from (23),

* Thus, (27) yields

A;d—[%?+k<%—l”~ (28)

; Finally, since from (23) and (22a) we have

|G| = VK < oNU=hGo) /]

we can invoke Lemma 4 with » = 1 — h(pe)/d < 1 — h(po) I;froin
(22b) ] to assert the existence of a group code G with A sufficiently
small to make the term in brackets in (28) T§e. Then A = d —
which is (9b). This completes the proof of the direct half.

IV. CONVERSE THEOREM

In this section, we establish the converse theqrem that the family
of achievable rates ® is contained in ® as defined in (14). Suppose that
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(R,d) € ® That R < Cy follows from the ordinary

coding theorem (Ref. 1, Theorem 4.3.4, p. 81). That d < Hg foll

Howg
from

_ 1 Kizvy < L roqmy _
A= g H(SH|Z%) < 2 H(SY) = Hy,

Thus, it remains to show that Rd = HsT'(R)

the proof of which is given at the conclusion of this section.

Lemma 5: Let SX, XV Yy,
(N, K, A, Py. Then

ZY correspond to an encoder-decod,

a N
O §LA=8P)]s L 8 1, v. 12, vy
<+ iY p=1

3 (‘-"-'-‘l-
.. K 1 X - _
(”) A"\_v [HS - 6(Pe)] = X‘ 21 ](Xn; ¥ nIY" 1), (L_".Ii,.
where
8(P.) = h(P.) + P,log |$], (29¢)

and where the n = 1 term in the summations of (29a, b) is given the
obvious interpretation—i.e., that I X; Y12, Y = I(Xy; YilZy), ete
Now forn = 2,3, ..., N,any y € Y1 set
an(y) = I(X,; Y,|Y! = y). (30)
Also let

@] = ](Xlr Yl) (?-Ulri

It follows from the definition of ®(R) in Section I1 that the distribution
p1, defined by

pi(z) £ Pr (Xi=2}, 2€ a

belongs to ®(a4). Similarly, for2 < n < N, withy &€ yn fixed, define
D,y () 2 pr (Xo=2Y' =y}, »C «.
Then p..y € @[a.(y)] Thus, from (10) and the fact that channels

& and Q§ are memoryless,

Do) =2 I(Xy; Y4 Z), (31a)

and for2 < n < N,y € yn=t
Plan(V)] 2 I(X,; ValZ, Yt = y). (31h)
It follows that the right member of (29a) is (giving the n = 1 term

the obvious interpretation)
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converse tg the

. We do this via 5 leqpy,

é

| & 7(Xa; YolZn Y
\l et NY

Lty ¥

N n=1y&yrt

(2 %:Z S Priy~t = y}F[:an(Y):'
. noy

PriY = =y} [(X,; YV.|Z, Y =y)
(32)

{h)

) [ { Y X Priyt = yla, (iy)]
= N onoy

3]

:P<%ZIWJWTHO

(K- opo)

V y follows from (31), step (b) from the concavity of T ‘[:Lemmg
"‘i.:?](&d‘ep (¢) from the definition of a,, and gtep (d) from (igb)w&]l:i
?}rﬂ)olﬁ)f()n\i(‘ity of ' [Lemma 1(:i7)]. Applying (29a) to (32) yields

ollary 6: For any encoder-decoder (N, K, A, P,
: K . 33
%[A _s(P)] =T [NHS - 6(Pe)] (33)

We now show that, if (R, d) € ® then Rd = HSI:((}‘)E)‘é I{ﬁz
2.d) & ®, and let e > 0 be arbitrary. Apply Coroll.&Q o d
-‘Ic’oderAdec’oder (N, K, A, P.) that satisfies (9). Inequalities (33) an

0) yield

(R— ol(d—¢ —d(e] £ HsT[(R — ¢ — 8(e) ]
[etting e — 0 and invoking the continuity of T' [Lemma l(z'rv)]‘ yleid
;'.'.rl‘< HqI’(R), completing the proof of the converse. It remains to
;-rov—e Lemma 5.

Proof of Lemma 5:

‘9 Let S&, X¥, YV, ZV correspond to an encoder-decoder (N, K, A, P.).
First observe that

(34)

1

Lasezy, vy < £ HSKYY)
FH(SK|ZV, YY) = &

= h(P) + P.log (8] — 1) = (P, (35)

i Q) wi 7 — YN
Inequality (a) follows from Fano’s inequality [:use. (78) with 1 YV]
Next, using the definition of A (7) and (35), write

KA = H(SK|ZY) < H(SX|ZY) — H(SK|ZY, YY) + K&(P.)
= I(SK;YV|Z%) + Ks(P.) -
< I(XX;YY|ZY) + K5(P.).
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The last inequality in (36) follows from the data-processing the Orer
since given Z¥ = z, (Y¥, X¥, SX) is a Markov chain (Appendiy \“
Transposing the K§(P.) term in (36) and continuing:
KfA —s(Py)] = I(XY; YY|Z%)

— H(X‘\ IZV) — H(X\IIZN’ Y‘V

(a)

= HXV|Z¥) — H(XY¥YY)

= [(XV; YY) — I(XV; ZY)

= H(YY) — H(Z") + H(ZV{X"Y) — H(YV|XY)

o ;é [H(Y. YY) — H(Z.|Zw

+ H(ZJX.) — HY. | X)]
e é CH(Y.|Y™Y — H(Z,|Z%, Y
. + H(Z.|X,) — H(Y.|X.)]

N
- 'L:,l CH(Y . |Y™Y) — H(Z,Y"™Y) 4+ H(Z,|X,, YY)
+ H(Y.| X, Y]

N
= 21 [I(Xn, }/Yn Yn—l) — I(XH;ZHEYIL-I):I

N
= 2_:1 [H<anZn, Yn*l) — H an I/’n’ Yn—l):]

= Z LH(X7[Zn, Y1) —

n=1

H(Xo|Yw Zn, Y1) ]
N
= le(Xn; Yo lZ,, Y. 37)
The steps in (37) that require explanation are:

(a) that follows from the fact that X¥, Y¥, Z% is a Markov chain
and (4);
{(b) that follows from the standard identity

N
HUY) = 3 H(U,|UY),
n=1
and the fact that channels @ and Q%) are memoryless;
(c) that follows from the fact that conditioning decreases entropy;

(d) that follows on applying (4) to the Markov chains (Z»!, Y*!
Zn)7 (Yn‘-l’ Xn; Yn; Zn),
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) that follows from the fact that, given Y, (X, V., Z,) is a
Markov chain.

e (37) 18 (29a), we have established part (7) of Lemma 5.
with 8%, XV, YV, Z¥, as in part (2) write
H(S¥) = 1(S¥; YY) + H(S¥|Y)
I(XY; YY) + Kb§(P.), (38)

A

.re the inequality follows from the data-processing theorem (since
X” Y¥, is a Markov chain) and from Fano’s inequality as in (35).

Qi ce H(S¥) = KHs, (38) yields
KHs — 5(P)] = T(XY; YY)
. r > b
= Zl [H<y i Yn‘l) - H<y rl“xn)]

2 S [H(Y. Y1) — H(Y,[X,, Y]

n==1

= Z I{X,; Y.[Y"). (39)

n=1

Step (a) follows on application of H (YY) = S H(Y, YY), and the
memorylessness of channel Q§, and step (b) from the fact that
y»1 X, Y, is a Markov chain. Inequality (39) is (29b), so that the

sroof of Lemma 5 is complete.

" V. DIRECT HALF OF THEOREM 2

In this section we establish the direct (existence) part of Theorem 2,
that is, ® € ®. The first step is to establish two lemmas that are
valid for any encoder-decoder as defined in Section II.

Lemma 7: Let SE, XN, YN, ZN correspond to an arbitrary encoder-decoder
(N, K, A, P.). Then

KA & H(SK|ZY) = H(SK) + I(X¥;ZV|SK) — I(XV;Z¥). (40)
Proof: By repeatedly using the identity H(U, V) = H(U) + H(V|U),

- we obtain (we have omitted superscripts)

Ka

i

H(S|Z) = H(S,Z) — H(Z)

H(S,Z,X) — HX[S, Z) — H(Z)

H(Z|X,S) + H(X,S) — H(X|S,Z) — H(Z)

H(Z|X,S) + H(S) + [HX|S) — H(XIS,Z)] — H(Z)

H(S) + [(X;Z!S) — [H(Z) — H(Z|X, S)] (41)

il

if

ff
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Now, since S, X, Z is a Markov chain, H(Z|X, S) = H(Z|X) 1.
(4)]. Thus, the term in brackets in the right member of (41) ig 7 x_.“z"'
completing the proof. '

We now give some preliminaries for the second of the two -
For the remainder of this section we take the finite set « i,
11,2, -, A}, Let X* be a random variable that takes valy

. RO Sin g
with probability distribution

PriX* =4 = pi(d), 15ixA.

Let I"* and Z* be the output of channels Qurr, and Q respectiyul,
when X* is the input. As always, Quw is the cascade of Qs and Qs
so that X* T* Z* is a Markov chain. Next, for 1 <7 < 4

» 4l
X & XV define

. A .
#(,x) = card {n:x, = ¢}
number of occurrences of the symbol 7 in the

i

N-vector x. 2

For ¥ =1,2 ... define the set of “typical” X sequences as the o
T* = T*(N) = {x & av: ﬂ’i) —px()| 6y, 1 <7< A} g
43a
where
6N é 17\r_i- ‘l;}l

Let us remark in passing that the random N-vector X*¥ consisting of
A" independent copies of X* satisfies K# (i, X*V) = Npx(z), and
Var [# (1, X*)] = Np%()[1 — px(0)], for 1 <7< A. Thus. by
Chebyshev’s inequality

PriX* @ T*N)} £ 5 Pr{[#(, X% — Npk()| > No]

1=1
A 1
; 252 - (44)
< 3 Var [# G, X9 )/N's} 0( W) 0, (44

as N —x.

We can now state the second of our lemmas. We give the proof at
the conclusion of this section. )
Lenima 8: Let XN, Z~ correspond to an arbitrary encoder and let X*, Z*,
T* correspond to an arbitrary ple as above. Then

1 S , ; "

N XY ZY) < TX* 2% + (log 4) Pr (X¥ & T*(N)} + f(V),

where f1(N) — 0, as N — 0,
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be _
Lorties.

g implies that, if the encoder is such that with high proba-
: fﬂE 7% then (1/MI(XY;ZY) cannot be much more than
X . n (1 ;
§5")- c der. O xt step 18 to
s 7 and S hold for any encoder-decoder. Our next step 1s '
i certain ad-hoe encoder-decoder and deduce several of its
a :

We then show that when the parameters of the ad-hoc

re properlv chosen, the direct half of Theorem 2 will follow
e 8 g o

: "0 gin the discussion of the ad-hoe scheme by reviewing some
A € o

pout source coding. With the source given as in Sec'tion 11,
3 01 o there exists a (‘‘source encoder”) mapping Fg:
i1 3: <o, MY, where

3 A = 2K1{,g(1+61()7 (\45‘)
K-t Let Fp: {1,2, -+, M} — 8% be a (“source decoder”)
| 0K = . e y -
ping, and let
P = Pr {FpoFg(SF) # 8K}

the resulting error probability. It is very well known that there

Lwiz (for each K) a pair (Fg, Fp) such that, as K — =,

PE = Pr {Fp(W) = SK} -0, (16a)

W = Fg(SK). (46b)

will design our system to transmit W using an (Fg, Fp) that

tisfies (40).

We now turn to our ad-hoe system. (Refer to Fig. 4.) The source
ub is the vector SX, and the output of the source decoder is

o= FE(SK) Let

-
A RY — 7 <1< M. 47
g & Pr{W =Fg(SF) =i}, 1Si<] (47)
" 8K = W
a - YN W | source | SF=Fp
K W=Fe(S) | opannel [ XN | CHANNEL CHANNEL N
} Esceggocsgn ENCODER Q:AN' DECODER PECODE
CHANNEL
INY
W
ZN

Fig. 4—Ad-hoc encoder-decoder.
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1

Next, let My = M,M be a multiple of M to be specified
{Xm } ;»!1

be a subset of &V, Clearly, {x,.] can be viewed as a channel ¢, .
channel Q" or channel Q{.. The channel encoder and deco, ]
Fig. 4 work as follows. The channel encoder and decoder each

later, L

R LTS

a partition of {x,}7* into M subcodes Ci, Cy, -+, Cu, ench
cardinality M, Assume that
= {Xm;nuﬁl,‘ Ty Xz’M2}, 1.2 M. I
When the random variable W = ;, then the channel encoder Ol
XVis a (uniformly) randomly chosen member of the subeode '|',|'._‘
forl =/ M 1= <M,
PriXy = x| W =1} = ! 44
¢ e ﬂ[gy
and
. q:
ProiXy = x 1y, = A’T]fz 101

Now the set {x,,1%* can be thought of as a channel code for chany
Q4§ with prior probability distribution on the code words given |
(49b). A decoder for the code is a mapping 1YY — 1x, 17 and 4
(word) error probability is

N = Pr (YY) = X}, 0 |

where YV is the output of Q, when the mput XV has distributio
given by (49b). We assume that the channel decoder in Fig. 4 has
stored the mapping (. When the channel output is y & YV the chanm
decoder computes (/(y). When (G (y) € (', the channel decoder output
87, 1 £7 = M. Letting W be the output of the channel decoder
we have

Pr{W = W} <\

The ﬁnalAstep in the system of Fig. 4 is the emission by the soures
decoder of SX = Fp(W), where Fp: {1, 2, <o, M} — 8% is chosen s
that (46) holds. We have

Pr{s = §}

f

Pr{S = Fp(W)}
PriS=Fp(W), W = W}.

1%

Thus,
P, < PriS =8} < Pr{S = Fp(W))
+Pr{W =W, <pP® 4\ (4
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+ et us observe that each of the subcodes C; can be c.onsid.ere.d
\I:\ i,'or channel Q&% with M, code words and uprorm prior distri-
on the code words. Let \; be the resulting (word) error proba-
v for code C; (1 =7 = M) with an optimal decoder, and let

2

=

1

i

now establish
a 9: For the ad-hoc encoder-decoder defined above
I(X¥;27|8%) 2 log Mz — [h(X) + Xlog M. ],

. Let S* be such that W = Fg(8%) = 1. Then ?he (fhfrm(%l
. XV given W = 7 has distribution giyen by (49a), 1.e.,, X is a
mlv chosen member of . Since A, is the err(’)_rlpr(?bablrhty f(zvr
IC,v llsed on channel Q% Fano's inequality [use (/()).thh U = XV
5 z¥, U = the decoded version of Z¥ when code C: is used ] ylelds

HXN[ZY W = 1) £ h(N) + Ailog Mo,
|, since HXN|W = i) = log M,, we have
V TXN,ZY|W = 4) = log Ms — h(N) — \;log M.

\veraging over ¢ using the weighting {¢:}, and using the concavity
h{-), we have

I(XN,ZV|W) = log My — [A(X) + X log M.]. (53)
Caally, sinee S, W, X, Z is a Markov chain, (4) yields
I(XY,ZN|W) = HZ|W) — H(Z|XW)
= H(Z|W,S) — H(Z|X)
= H((Z|W,S) — H(Z|X,S)
< H(Z|S) — HZ|X,S) = I(XN;ZV[8). (54)

[nequalities (53) and (54) imply Lemma 9.
We are now ready to combine the above lemmas as:

ollary 10: Let p% be an arbitrary probability dz‘str’ibution,*on X, and
T"J}(J\"‘Y), X* Y* Z* be as defined above (corresponding to px). Assw?ze
it S XY YN, ZV correspond to the above ad-hoc encoder-decoder with

7 vameters N, K, M, My, M., A, X. Let P, and A correspond to this

-hoc scheme. Then

P, < P + ) (55a)
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and

K K 1 e (X X log A1,
i > o — loe 3., — * ¥y M N Ts e
NAZ T Hs + v log M — X% 70 - 1 2

— (og A4) Pr XY & T3 ()} — fi\), (551
where f1{N) — 0 as N — «.
Proof: Inequality (55a) is the same as (H1). Inequality Hdb) is 4
tained by substituting the results of Lemmas S and 9 into (40)
using H(S¥) = KHg.
Finally, we are ready to prove the direct half of Theorem 2. W, |
this by showing that any pair (R, d), which satisfies

R'(Z = HSI‘(R), (,‘.l.
0 =R =y, (561
0 = d § Hs, (51'..

is achievable. Thus, for (R, d) satisfyving (56) and for arbitrary e >

we show that our ad-hoe scheme with appropriately chosen parametur

satisfies (9). To begin with, choose K, .\ to satisfy

K R L
N (57
(Assume that R/Hg is rational.) Note that (57) implies (9a). Also, I
px be a distribution on « that belongs to ®(R) and achieves T(R)~
that 1s,
I(X*; V*) = R,
T(X*; V%) — I(X*; Z*% = I(X*; Y*|Z*) = I'(R),

(58

where X*, 1'* Z* correspond to p%. We now assume that an encoder-

decoder is constructed according to the above ad-hoc scheme with
the parameter*

My = exp, {x [1(3{*; v — fg” , (59)
2Hg

where X*, V* correspond to the above choice of px. With this choice

of My, and with M given by (45), we have

oo Mo [ o K
J[g = j: = exps IA\ [I(‘X ,) ) — ATYHS —

el

K )
+ Hsox — %]} (60

A\
Note that, from (57),

* Assume that the right member of (39) is an integer. If not, a trivial modificatior
of the sequel Is necessary.
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1 log M = T(X*; 1) — %HS ~ ]% Hdx — :f]%
g[‘iX*; 1*) — R — Rox — %T
< I(X*;1*) — I'(R) — Réx — 5}{%
= J(X*: Y*) — [(X*;, Y*|Z* — Rox — %{{5
(;’ I(X*: 7% — Rég — _f—]{]fg o)

Step (a) follows from (57), step (b) from (56a) and (56(‘),\ and step (¢)
;mrn'l the faet that X% Y* 2% is a Markov chain—see (11).

Let us now apply Corollary 10 to the ad-hoc scheme with the above
choice of My, M, and with the above choice of . Inequality (55a)
remains N N

P, < P& 4 ), (62)

and substituting (60) into (55b) yields
(RA)/Hs = T(X*; %) — I(X*; 2% — fu(Y)

= I'(R) — f2(N), (63a)
where
o R Ly Xlog M.
f2(N) = _;]—[‘g + Réx + I + N
+ (log 4) Pr {X¥ & T*(N)} + fi(N).  (63b)

Now ohserve f2(N) and X depend on the choice of the set {x,|{"

The following lemma asserts the existence of a {2,] such t.hat these
quantities are small. Its proof is given at the end of this seetion.

Lenma 11: With py and 3, M, as given above, there exists for arbitrary
N a set
{Xnlmks

such that

Pr (XY  TH(V)}, |
Ao 2 f(N), (64)

X

where 51 V) — 0, as N — ».
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Now let the set {x,}" in the ad-hoc scheme be chosen to

‘:lli\]’-
(64). Then, from (62) and (64) [using the fact that P _:\
K —= (46)], we can choose N (and K = NR/Hy) sufficiently larg,

so that
P, £ ¢

b

this is (9¢). It remains to establish (9b). But from (64) with N

suffi.
clently large, we can make

h{X Xlog M, . s
Rég + % + -% + (log A) Pr{X¥ & T*(N)} + f1(V) < !’f
Then (63) and (56a) yield
He(R)
Az — 5 e = €,

which 1s (9b). Thus,_(R, d) is achievable and the proof of the direct half
of Theorem 2, i.e., ® & ®, is complete. It remains to prove Lemumg.
11 and 8.

Proof of Lemma 11: We begin with some notation. For x c aV, let

L x & T*(N),
0, otherwise.

Also for a given set {x,}3" let A0 (x,, - - -, Xur,) be the error proby.
bility that results when {x,} is used as a channel code for channg
Qi with prior probabilities (49b) when code word x,, is transmitted
and when maximum liklihood decoding is used. Thus,

M

A= d:

i1 m=G—1) M1 My

u(x) = (63

M,

AW Xy, -, Xay).

Further, with \; defined as above as the error probability for code

Ci on QJ(QV;);, write A = }\MW(X(i—l)MZ-Hy ey, X,‘MZ) £ }\MW(Ci), so that
the dependence of \; on C; is explicit. We have

- M
A= _ZI qhi = 2 giharw (C).

Finally, define

®(x1, -, Xary) 2 Pr (XY @ TH(N)] 4+ A + X
M T My qQ:
= Z .A—IL [“(xm) + )\(m)(xly ) xMz)}
i=1 m=0G—1)M:+1 2

M :- o~
+ 'Zx (Zz‘)\MW(Ci). (o)

Now suppose that the set {z,}¥' is chosen at random, with each x.
chosen independently from ¥, with probability distribution p{¥(x)
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1

h

| st

v ph(z.). We establish the lemma by showing that & = F3(N).
fls=1 P tnhat from (59), (1/N) log M is bounded below I (X* Y*).
y ob rv(efﬂ) GI/N) log M, is bound below I(X*;Z*). It follows
. hms tal’ld;rd random channel-coding theorem (see, for example,

-. e’I‘heorem 5.6.2) that EX™, Ehyw = f4(N) — 0, as N —’;~
her, Eu = Pr{X* @ Tx(M)} < fs(N) =0, by (44). Thus, Be
rth (};’7) + f5(N) £ f4(N) — 0. Hence the lemma.

‘of Lemma §: Here too we begin with some notation“ Let p bfﬁ a
L hility distribution on X, and let 9(p) be the mutual 1nf0rmatil(?11
E n t?he input and output of channel Quw w}}en the input has
vihution p. 1t is known (Ref. 1, Tl)feorenl 4.4.2) thz.tt g(fp) is Zt

”ve function of p. Let u(x) be as in (65), and write (for any

der-decoder)

Lz - L, w(x); 2]

1 )
LK 2V (RN T + g (LX) 27]

J)

= b % PriuXY) = Y 2V |a(RY)
Nj:O

+ 4 (X240 (6)

Now

LHI[XY; Z¥ | u(XY) = 1]

Lpr (u(X¥) =
" < (log 4) Pr {X¥ & T*(N)},

(68)

1

AY
One term remains in (67). Using the memoryless property of channel
01} (Ref. 1, Theorem 4.2.1), we have

1 &
=S (X, Zulu=0)
v 2 1 B

i 1 XN
%n‘é g(pa) £ 9 (an; pn>, (70a)

1 1 1
Iw(XY); 2] = 5 HIw(XN)] = 5 (69)

=

IEGZu=0)

i

here p, is the probability distribution for X, given p = 0, le,
orl <7 < A,
pr(i) = T 8, Pr{XY = x|XV & T*.

xET*

(70b)

[Le last inequality in (70a) follows from the concavity of 9. From
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(70b),

A1 N

PO 25 L puli) = T Prixy = x|Xx e 7% FOX)
N,z = N

7l
The definition of T* (43) and eq. (71) yields
1P — px(D| S oy —0, as N —w.
Since 9(p) is a continuous function of », we have
[9(0) = 9(pX)| = g(N) =0, as N -, :

Substituting (72) into {70a), we obtain

FPr e = OJI(XY 25 = 0) 5 9% + ()
= I(X*; Z*) 4+ g(N). (73

(L]

Finally, setting f,(V) = (1/N) 4+ g(N), and substituting (68), (6
and (73) into (67) we have Lemma S,
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APPENDIX A
The Data-Processing Theorem and Fano's Inequality

Let U, V, U be discrete random variables that form a Markoy
chain. Then the data-processing theorem can be stated as

HU|V) = HU|D), (74a)
or equivalently

LU, v)yz I(U; D). (74b)
Inequality (74a) follows on writing

(a) . ()
Vy=HU|V,0) < HU|D),

where step (a) follows from (4), and (b) from the fact that conditioring
decreases entropy [Ref. 1, eq. (2.3.13)7. '

HU
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let {7, V, U be a Markov chain as above, but now assume
- \ Ut’ U takye values in w(juU] = «). Let
B A= Pr{Us= Uj. (75)
rg snequality 13
HWUIV) £ A + Nog (Ju] — 1) £ h() + Nlog [uf. (76)
(76), define the random variable

0, U=17,
1, U=UT,

[ verify

(U, 0) =

?

then write

X

HU|D) < HU, 2| 0)

HUY) = s ¥
= H@®|U) + HU|U, @)
< H@®) + H{U\|U, @) )
= H(@®) + Pr{®=0HU|U, &= 0)
+Prid=1HU|U®=1)
v BN + (1 — N0+ NH(UIU, @ =1)
2 10 + nlog (Ju] — 1) = hO) + N log |ul,

‘hich is (76). Step (a) is (74a), and step (b) fol}ows from the fac(‘;
-.'at give\n ® =0, then U = U, so that H({U|U,® = 0) = 0, anl
py(c) from the fact that, given ® = 1, U takes one of the [U]

lues in U excluding U. o ‘ ) -
\ﬂflj variation of Fano’s inequality is the folloxvlpg. LeE KS", kV, ti
be a Markov chain where the coordinates of §% and §% take the

values in the set 8. Let

Pa = Pr {8, = S} (77a)
and L
P, = ® kgl P (77b)
We will show that Fano’s inequality implies
LH(SK|V) S h(P) + Pulog (Is|=1) £a(P). (79)

To verify (78), write

1 dR 74 (a)_ > 1%
g HEEV) = & H(S:|V)

(c)
=< = 5(Pek) = 6<P8):

1
>
F=1
® 1 N
Kk§1
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which is (78). Step (a) is a standard IIIGQUAIItV, step (b) follows o
applying (76) to the Markov chain S, V7, S;, and step (¢) from 1
concavity of 6(-).

APPENDIX B
Proof of Lemma 1

(z) With no loss of generality, let a = {1,2, e A) A

probability distribution px can be thought of as an A-veet

P = (p1, py -+, pa). Since I(X;Y) is a continuous function of Py
the set ®(R) is a compact subset of Euclidean A-space. Since I(X; y 2
is also a continuous function of px, we conclude that I(X;YZ) ha
a maximum on ®(R). This is part (7).

(17) Let 0 = Ry, Ry = C'y, and 0 < 6 < 1. We must show that

PLOR: + (1 — 0)R,] = 6T (Ry) + (1 — O)T(R.). 70

For =1, 2, let p; € ®(R;) achieve I'(R,). In other words, letting
Xy, Yy, Z; correspond to p;, 7 = 1, 2, then

](Xiy 71‘) g Ri, ](Xiy }Y}Z

= T'(R). S0

Now let the random variable X be defined as in Fig. 5. Fori = 1,2 1k
box labeled “‘p,” generates the random variable X, that has prob: Wbility
distribution “p.”” The switch takes upper position (* position 1"

with probability 6 and the lower position (‘“position 2"’} with proba.
bility 1 — 6. Let 1 denote the switch position. In the figure, V = |
Assume that V, X, X, are independent. As indicated in the figure

X = X;, when V=4 ¢=1, 2. Now
I(X;Y) = H(Y) - H(Y}X) =H(Y) - H(Y|X, V)
= H(Y|V) — YIX ) =I(Y'YIV)
=0l X;VIV=1)+0—-0IX;YV|V =
=01(X1; V) + (1 — 0)1(X,; Vo)
)
=60k + (1 — OR.. (S1)
X4
] —
v=1 X y z
‘> V= Qpm Qu
I d
X3
P2

Fig. 5—Defining the random variable X.
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! 1,.

L]

- Now let {R;}F
R.— CM, and R;‘ <

Now from the monotonicity of I'(R), limj..,

a) follows from the fact that V, X, ¥ is a Markov chain and
step (b) follows from (80). Inequality (81) implies that the
‘.i.ution defining X belongs to ®[0R; + (1 — 8)R.]. Thus, from

- Jefinition of T,
T[6R, + (1 — )R] = 1(X; Y |Z). (82)

tinuing (82) and paralleling (81), we have

p[oR: + (I — OR.] = H(Y|Z) — H(Y|XZ)
- (Y| XZV)
> H(Y IXZV)
= I(X;Y|ZV) =0I(X;Y|Z,V =1)

4+ 1 —-—0{X;Y|Z 1V =2)
= 0I(Xy; V4| Zy) + (1 — OI(X.; ¥,
= (K1) + (1 — 0)T(Ry),

Z:)

wich is (79). This is part (27).

#i) This part follows immediately from the definition of T'(R)
103, since ®(R) 1s a nonincreasing set. . ‘ .

{#9) Since T'(R) is concave on [0, Cy ], and nonincreasing, it must

w eontinuous for 0 £ R < Cy. Thus, we need only verify the con-
tinuity of I'(R) at R =

Ci. Let p be a probability distribution on &
wwed as a vector in Fuelidean A-space, as in the proof of part (7).
3(p) and 4(p) be the values of [(Xj V) and I(X; Y|Z), respec-

ively, which correspond to p. 9(p) and d(p) are continuous functions

‘p.
be a monotone increasing sequence such that
Csr. We must show that, as j — =,

I'(R;) — T(Cu). (83)
I'(R;) exists and

Im T'(R;) =

Fro

I'(Ca). (84)

It remains to verify the reverse of ineq. (84). Let {p;} 1 satisfy

9(p;) = R;, 4(p;) = T'(R)), (85)

r1 )< ». Since the set of probability A-vectors is compact,
ere exists a probability distribution p* on @ such that for some

“ubsequence {p;,lie,

lim p;, = p*.

k>0
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It follows from the continuity of 4(-), and (85) that g(p*) >
that p* € ®(C). Therefore, from the continuity of (- ), and
we have

lim T'(R)) = hm L(R;,) = hm g(p]k) = g(p*)

Jroc

F(( ‘LI) S

where step (a) follows from p*©®(Cy). Inequalities (84) and (4
vield (83) and part (iv).
(v) From (12),

IRy = sup [I(X;VY)—I(X;Z)]
Py EF(R)
= sup I(X,;Y) = Cy,
px P (R)

which is the first inequality in part (v). Also, using (12),

I(Cy) = sup [I(X;Y)—I(X:2Z)]
Py @ (Car)
=z sup [H(X,;Y)— Cuw]l=Cy — Cuw. (87
px €@ (Cy)
Since I'(R) is nonincreasing, (87) yields T'(R) = T(Cy) = Cy — Cxl

completing the proof of part (v).

APPENDIX C
Source with Memory

In this appendix, we show how to modify our definitions and re
sults for a source with memory. We will take the source output
sequence {Si} to be a stationary, ergodic sequence (where S, takes
values in 8) with entropy (as defined in Ref. 1, Section 3.5) of Hs As
in Section II, we continue to assume that |8| < o, and that the
source statistics are known.

The channels @y and Qw remain as in Section I1, as does the defini-
tion of an encoder-decoder with parameters N and K. The definition
of P. also remains unchanged, but a new definition for A is necessary.
To see this, let us suppose that the source was binary, i.e., s = {0, 1],
with entropy Hs, and with H(81) > Hs. Suppose also that the channel
@ is a noiseless binary channel, and that Qw has zero capacity. A
possible encoder-decoder has K = N = 1 and takes X; = S, Sueh
a scheme has P, =0, but with A as defined in (7) given by
A = H(S)) > Hs. Using (9), this would lead us to accept the pair
[Hs, H(S1)] as achievable, which would not be reasonable. Accord-
ingly, we give a new definition of A.

Let SX, Z¥ correspond to an encoder with parameters K, N a
defined in Section II. Let S%(j), ZV¥(j), j = 1,2, - - -, », correspond o
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80
“-'1.

#

['he proof of the converse-half of Theorem 2
. gver to the case where the source has memory with only trivial

ere limg ., f(K)
mbining (90) with (89¢), we have

.uccessive repetitions of the encoding process. Then define the
\ ~ation at the wire-tap as

lim - H[S¥(1), -

waK SK(V):Z\(l)r T

Z¥(»)]

i

A
(88)

i

lim K— H(SK»|ZN7),

p- o

. A as defined by (88), we define the sets & and & as in Section II.
t,im that Theorem 2 remains valid.
given in Section IV

gos. Further, the results in Section V are all valid exactly for the

.« with memory. They yield that, if (R, d) satisfies (56), then we
jor ¢« > 0 arbitrary find an encoder-decoder with parameters N,
and P. which satisfies

K]? S> R — (89a)
Pe é €, (89b>
%H(SKiZN) >d— e (89¢)

Vz-':,;er, we can do this for arbitrarily large K. We show below that
re exists a function f(K), K

=1, 2, ---, such that for any code

th parameters K, N

= lim 1 H(S®|z¥) = LH@SKZY — $(K),  (90)
Ky K

p 0

= 0, and f(K) depends only on the source statistics.

Az=d— e — fIK)

¢ f(K) — 0, we conclude that (R, d) is achievable. This is the

rect half of Theorem 2. It remains to verify (90).
First, imagine that the encoder-decoder begins operation infinitely
in the past. Let [S(j), Z(7)] be the (S¥, Z¥) corresponding to the

'ncoding operation, — o < j < . Thus, 887 = (S, ---, Sk,)
‘5(1) ,S(»] and ZK» = [Z(1), -, Z(W], v =1, 2, ---. Let

Z( 1), Z(0), Z(+1), ---]. Of course,
H(SK»|ZN")y = H(SEY|Z%). (91)
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Further,
H(S%|Z%) = H[S(1), -+, S(»)|Z*]

= 5 HIS() 2%, S+, -+, S0)]
= 5 HIS() (25,82, -+, ()]
2 HSM)|Z55@), 8] 2

where 8" = [S(2), S(3), -

conditioning decreases entropy. Now, let

S =8%=8(), §=[S(2),S(3), -],
Z=2V=12(0), Z =[-,2(~1),2(0),Z(+2),---]

Thus, (91) and (92) become
L sz 2 Lusizoz sy
Ky =K r

- TI{EH(SZ]Z’S) — H(Z|Z'S))]

%;[H(S[Z’S’) + H(Z|SZ'S) — H(Z|Z'S')]

.
=

Z[H(SIS) + H(zls) - 1Z|28)]

> %[H(S]S’) + H(Z|S) — H(Z)]. o

Step (a) follows from the fact that Z’, S, S and (§/,2'), S, Z an

Markov chains, and (4). Now

FH(SIS) = % g HS:S, Seer, -, S)
o stzHS- (94
K =
Also,
LH(S) — Hy| £ f(B) =0, asK .
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vH[S(1)|Z*%, 8],

<+ ]. Step (a) is a standard identity, st ep (i}
follows from the stationarity of the sequence {S; } and the memopryju.

ness of the channel Quyw, and step (¢) follows from the fact g

| rituting (95) and (94) into (93), we have

L sz 2 L (1) + HEZIS) - HZ)] — [(K)
Kv
1 :
~ L H(812) — (K),
his (90).
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