
Tutorials and Reviews

International Journal of Bifurcation and Chaos, Vol. 7, No. 8 (1997) 1699–1715
c© World Scientific Publishing Company

INTERACTIVE COMPUTATION, PARAMETER
CONTINUATION, AND VISUALIZATION

JOHN H. MADDOCKS∗, ROBERT S. MANNING, RANDY C. PAFFENROTH,
KATHLEEN A. ROGERS and JEREMY A. WARNER

Laboratory for Computation and Visualization in Mechanics,†

Institute for Physical Science and Technology
and Department of Mathematics,

University of Maryland, College Park, MD 20742, USA

Received November 22, 1996; Revised January 8, 1997

Nonlinear problems arising in modeling applications are frequently parameter dependent, so
that families of solutions are of interest. Such problems naturally lend themselves to interac-
tive computation that exploits parameter continuation methods combined with visualization
techniques. Visualization provides both understanding of the solution set and feedback for
computational steering. We describe various issues that have arisen in our investigations of
problems of this general type.

1. Introduction

The computation at the heart of many mathemat-
ical models of physical systems is the solution of a
parameter-dependent system of nonlinear equations
of the abstract form

g(u, λ) = 0 . (1)

Here u ∈ Rn are the basic unknowns, λ ∈ Rm are
parameters, and the function g maps Rn×Rm → Rn

so that there are the same number of equations as
unknowns, and the system is formally well-posed
when values of the parameters λ are prescribed.
Within our research group, there is an empha-
sis on the computation of equilibrium (or other
steady state) solutions of dynamical systems, in
which case Eq. (1) expresses the equilibrium con-
ditions. With this interpretation, there is a nat-
ural hierarchy of problem sizes. The simplest ex-
amples involve the dynamics of a function of time

alone, governed by an ordinary differential equation
(ODE) u′(t) = g(u, λ), and the equilibrium equa-
tions are exactly Eq. (1). Such problems typically
involve fewer than a hundred unknowns. Larger-
scale problems arise when one or more spatial vari-
ables are added, so that the dynamics involve a
partial differential equation (PDE) for a function
U(x, y, . . . , t) with appropriate spatial boundary
conditions. The equilibrium condition ∂U/∂t = 0
then gives a boundary value problem (BVP) in
space, which leads to a system of the form (1) after
U is discretized into unknowns u ∈ Rn. With one
spatial variable, the equilibrium equations involve
a two-point ODE boundary value problem, and the
number of unknowns n after spatial discretization
is typically on the order of a few thousand. With
several spatial variables, the equilibrium equations
typically involve an elliptic PDE, and n could be
much larger.
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The choice of spatial discretization (e.g. finite
element, finite difference, collocation) is a crucial
consideration in the choice of efficient computa-
tional algorithms. However, the focus of this pa-
per is on visualization tools, so we will not discuss
problem-specific numerics. Instead, we emphasize
techniques for visualization and interactive compu-
tation of families of solutions of Eq. (1). While in-
teractivity is not a precisely defined concept due
to large variations in available dedicated computa-
tional resources and the degree of patience of the
operator, the computational requirements of inter-
activity currently limit us to problems with either
zero or one spatial dimension. In addition, we only
vary m = 1 or 2 parameters at a time, since the
size of the computations grows exponentially in m.
We remark that even with only two parameters and
moderately sized problems, computational steering
is desirable in order to concentrate on interesting
regions of parameter space.

Our interests lie in the exploitation of the pres-
ence of parameters in the problem for both analysis
and computation. In particular, we solve Eq. (1)
numerically with parameter continuation: Solutions
at new parameter values are obtained using infor-
mation about solutions at nearby parameter values.
There are now a number of robust and well-tested
one-parameter continuation codes, e.g. PITCON
[Rheinboldt & Burkardt, 1983] and AUTO [Doedel
et al., 1991]. (We happen to use the AUTO code ex-
tensively in our computations.) One of our observa-
tions is that while one strategy for multi-parameter
continuation is to perform multiple one-parameter
computations, there are circumstances where such
a simple approach seems inadequate (see, e.g.,
Sec. 5), so that an explicitly multi-dimensional con-
tinuation algorithm [Henderson, 1993; Rheinboldt,
1988] would be preferable. An extensive survey
of available continuation software can be found in
[Allgower & Georg, 1992].

Some special structures of Eq. (1) that bear on
appropriate visualization techniques arise when the
underlying dynamics is a Hamiltonian or a gradi-
ent flow. In either case the steady-state equations
assume the gradient form

Gu(u, λ) = 0 . (2)

For Hamiltonian dynamical systems the conditions
for steady state solutions often specialize further
(see [Maddocks & Sachs, 1995] for example):

Fu(u, µ) ≡ Hu(u) +
∑
i

µiC
i
u(u) = 0 . (3)

Here H is a Hamiltonian, F is a variational
Lagrangian, and the parameters λi appearing in
Eq. (2) are now regarded as Lagrange multipliers
µi maintaining prescribed values of the functions
Ci(u).

In this article we discuss various aspects of visu-
alization that have arisen during the development of
two software packages: (i) PCR, by Paffenroth and
Domokos, a post-computational visualization tool
that aids in the understanding of solution sets, and
(ii) MC2, by Maddocks and Mesztenyi, a package
for the interactive steering of two-parameter contin-
uation computations.

PCR displays various projections of one-
parameter bifurcation diagrams and associated so-
lutions. The general implementation of PCR for
nonlinear two-point boundary value problems is de-
scribed in Sec. 2, and three example applications
involving rod mechanics are presented in Secs. 3,
4, and 5. The examples illustrate the use of
PCR graphics to display problem-specific informa-
tion, and a natural data compression available for
many two-point boundary value problems, namely
reconstruction of the full solution from stored ini-
tial data. In particular, PCR can be used to in-
teractively visualize different projections of a pre-
computed solution set. Certain special projections
are particularly useful, such as “topologically cor-
rect” projections, in which branches intersect only
if a bifurcation actually occurs [Domokos, 1994] or
“distinguished” projections, in which variational
structure such as Eq. (2) is exploited to reveal
maximal stability exchange information [Maddocks,
1987; Rogers, 1997].

Our discussion of visualization in the interac-
tive steering of computation is centered on the two-
parameter continuation package MC2 (an acronym
for Multiplier and Constraint Continuation). As
described in Sec. 6, MC2 is optimized for problems
of the particular form (3) where stability exchange
arises in a very special way that is highly amenable
to visualization of certain distinguished bifurcation
surfaces [Maddocks & Sachs, 1995]. Nevertheless
many features of the MC2 paradigm are perti-
nent to more general two-parameter continuation
problems.

2. The PCR Visualization Tool

In this section we describe the use of the package
PCR [Domokos & Paffenroth, 1994a, 1994b] as a
visualization post-processor for two-point boundary
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Fig. 1. The PCR interface shows the bifurcation diagram projection (on the left) and the solution projection (on the right).
The GUI at the bottom allows the user to select both projections.

value problems (BVPs) which depend on a sin-
gle parameter. After discretization, a problem of
the form (1) with m = 1 is obtained. The solu-
tion set, or bifurcation diagram, of such a prob-
lem is generally a union of one-dimensional man-
ifolds, or branches, embedded in Rn+1. The data
structure used in PCR therefore stores the bifurca-
tion diagram as a set of branches, with each branch
stored as a one-dimensional array of vectors, and
with each vector corresponding to a solution of
Eq. (1). The components of each vector are un-
knowns u, parameters λ, and possibly additional
related quantities of interest (such as an energy of
the solution) that are comparatively expensive to
recompute.

Since the bifurcation diagram exists in a high
dimensional space, it is necessary to project in order
to exploit visualization. To this end, PCR provides

various three-dimensional projections of the bifur-
cation diagram (cf. the upper left window in Fig. 1).
A given three-dimensional projection of the bifurca-
tion diagram can be viewed from different perspec-
tives using rotations and translations controlled by
the mouse or keyboard. Moreover, multiple projec-
tions of the same bifurcation diagram can be viewed
simultaneously in different windows (not shown).
The coordinates plotted in each projection can be
interactively selected from the components stored
in the data file. The projected curves can also be
colored by another component, giving a total of four
information fields in each projection.

A final graphics tool allows the user to select a
linear combination of two data components as one
of the projection coordinates. The linear combina-
tion is currently implemented as a rotation in the
plane defined by two components of the data file.
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The tool is especially useful when used to perturb
an existing projection by introducing information
from a fourth component, in which case it repre-
sents a 4D rotation of the original three-dimensional
projection.

Each point on the projected bifurcation dia-
gram corresponds to a solution of the BVP. The
mouse can be used to explore this correspondence
by interactively selecting a point on the bifurcation
diagram. The point is then marked, and a pro-
jection of the corresponding solution is displayed
in another window (cf. the upper right window in
Fig. 1). All of the visualization tools available in
the bifurcation diagram window are also available
to manipulate the solution projection.

The data structure in PCR could store the full
BVP solution. However, if the ODEs are not too
stiff, only initial conditions need be stored, since
the full solution can be regenerated with an IVP
solver. In particular, the reconstruction is fast
enough to maintain full graphical interactivity. It
is also worth noting that high accuracy reconstruc-
tion is generally not needed for visualization pur-
poses. In practice, we numerically solve the BVP
and immediately discard all data except for a set of
initial conditions that are stored in the PCR data
file. This is the sense in which PCR is a post-
processor. The storage savings provided by this re-
generation strategy can be substantial. In one ex-
ample we considered, full storage of the bifurcation
diagram required 1820 MB, but only 1.3 MB were
needed for initial conditions. All of the PCR ex-
amples described here use this “guaranteed shoot-
ing method” for regeneration of the solution to the
BVP.

The particular version of PCR seen in Fig. 1
was implemented using AVS5 (by Advanced Visual
Systems Inc.). Another implementation of PCR
uses Python, by Guido van Rossum, for the graphi-
cal user interface, and the OpenGL graphics system
for the three-dimensional manipulations. These two
libraries were chosen as the basis for the second im-
plementation because of their widespread availabil-
ity on many workstation architectures.

3. Twisted Loops of Elastic Rods

In the next three sections we discuss PCR within
the context of applications involving elastic rods.

Fig. 2. An elastic rod is modeled as a centerline, pic-
tured here as a green tube, along with a frame of directors
(d1, d2, d3) that give the orientation of the rod cross-section
at each point on the centerline. The director d1(s) is depicted
as a blue ribbon that tracks the twist of the rod.

A rod model involves a curve in space with an
associated frame of directors that describe twist,
cf. Fig. 2. The equilibrium conditions for a rod can
be written as a two-point boundary value problem
for a set of seven, second-order (Euler–Lagrange)
equations. These equilibrium equations express a
balance of the forces and moments acting across
each cross-section of the rod. The boundary load-
ings enter as parameters, and the discretized form
of the equations are accordingly of the general
type (1).

In this section we consider the problem of a rod
that is bent into a loop and then twisted through
an angle α, cf. Fig. 3. For a rod that is isotropic,
unshearable, inextensible, and has no inherent cur-
vature or twist, the boundary value problem has
explicitly known equilibria involving twisted circles.
The full set of equilibrium configurations can then
be found using numerical continuation from these
known starting points [Li & Maddocks, to appear].
Part of the resulting bifurcation diagram is depicted
in Fig. 4. The white ball shown there corresponds
to the quadrafoil configuration, shown in Fig. 5.1

Within the PCR data structure, this bifurca-
tion diagram is recorded as arrays of 21-vectors.
These vectors contain fourteen initial values for the
variables in the BVP, the parameter α, and six pre-
computed global quantities of interest (e.g. writhe,

1As evinced by the quadrafoil configuration, the formulation of rod equilibria used here does not account for self-contact forces
and the rod can pass through itself. More sophisticated codes incorporating self-contact effects have also been developed [Li
& Maddocks, in preparation].
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Fig. 3. The elastic loop boundary value problem: The directors are shown at the endpoints of the rod; the red axes at s = 0
and the gray axes at s = 1. The angle α between d1(0) and d1(1) is the continuation parameter.

Fig. 4. The bifurcation diagram for the elastic loop projected onto the space spanned by the twist moment (M3), x-component
of force (F), and energy (out of the page): The solution set consists of straight lines connected by curved segments. The
straight lines represent trivial branches of planar circular solutions. The curved arcs represent nontrivial branches of nonplanar
equilibria. The diagram is colored by writhe, which is a measure of nonplanarity of the equilibria.
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Fig. 5. The quadrafoil configuration depicted here corresponds to the white ball in the projected bifurcation diagram shown
in Fig. 4.

a singular double integral) that are more conve-
niently stored than re-computed. PCR allows an
interactive choice for plotting space curves with
any three of the 21 quantities as components, and
with a fourth quantity displayed through color, see
e.g. Fig. 4. Another projection of the same bifurca-
tion diagram can be seen in Fig. 6.

Visualization of the bifurcation diagram and
corresponding solutions facilitates the understand-
ing of the set of equilibria, and can generate mathe-
matical conjectures. For example, the intricate con-
nectivity of the bifurcation diagram was discovered
as a result of visualization. If we denote the num-
ber of coverings of the twisted circles as N , index
the bifurcation points on each straight line by M ,
and denote the straight lines with positive slope as
+ and the straight lines with negative slope as −,
then the connectivity of the diagram is given by
(M, N, +)↔ (N, M, −).

When projecting bifurcation diagrams from
higher to lower dimensions, pointwise intersections
or multiple coverings of entire branches may ap-
pear purely as an artifact of the projection. Such is
the case in Fig. 4 where all the nontrivial branches
are actually double covered. A perturbation us-

ing the 4D rotation feature of PCR can alleviate
this difficulty. For example, Fig. 7 is a perturba-
tion of Fig. 4 in which the three coordinates of the
projection are energy, twist moment, and a linear
combination of force and a bending moment. Simi-
larly, Fig. 8 shows two branches from Fig. 6 with a
point of intersection (marked by a white ball), and
the same diagram after application of a small 4D
rotation.

A projection of the bifurcation diagram where
intersections arise only at bifurcation points is de-
scribed as topologically correct [Domokos, 1994].
The projection in Fig. 7 is topologically correct for
example. Topological correctness is one possible cri-
terion for choosing a projection.

Whenever the equilibrium equations are of the
gradient form (2), additional information concern-
ing stability, or equivalently the second variation,
can be obtained from special distinguished projec-
tions of the bifurcation diagram [Maddocks, 1987].
For many problems involving twisted rods, the dis-
tinguished diagram is the projection with twist mo-
ment plotted versus angle α [Rogers, 1997]. For
example, Fig. 9 shows the nontrivial (1, 1, +) ↔
(1, 1, −) branch along with two segments of the
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Fig. 6. Another projection of the elastic loop bifurcation diagram: The displayed coordinates are two bending moments and
the twist moment. The branches are colored by force.

single-covered twisted-circle trivial branches. The
ratio γ of twist stiffness to bending stiffness is cru-
cial to stability exchange in this problem. Figure 9
depicts distinguished diagrams for three values of
γ. The diagram is colored by the constrained in-
dex, where red corresponds to index zero (min-
ima) and other colors correspond to nonzero con-
strained index (saddles). For γ = 1.3, the entire
nontrivial branch is unstable. For γ = 1.7, the non-
trivial branch is stable from the trivial branch to
the fold, then unstable until the second fold. For
γ = 2.1, the nontrivial branch is stable. Figure 10
depicts the distinguished diagram with the branch
shown in Fig. 9 along with several other nontrivial
branches. In all cases, the color changes occur at
folds, as predicted by the distinguished diagram

theory. However, in the projection of Fig. 11 which
plots the x-component of force (F ) versus twist mo-
ment (M3), the stability exchanges do not occur at
any notable feature of the diagram.

4. Rod Model for DNA Cyclization

A significant motivation in studying the twisted
loop arose from the study of cyclized DNA. Some
DNA molecules are intrinsically curved and have
been modeled as elastic rods with inherent curva-
ture [Manning et al., 1996]. A particularly inter-
esting feature of these curved DNA molecules is
their predilection to form cycles [Kahn & Crothers,
1992]. To model this cyclization, we study the same
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Fig. 7. A small 4D rotation breaks the double-covered symmetry of the nontrivial branches in the projection of Fig. 4. The
resulting diagram is a projection onto the space spanned by energy, twist moment, and a linear combination of the force and
a bending moment. A skew view of the same three-dimensional projection is shown in Fig. 1.

boundary value problem as in Sec. 3 (cf. Fig. 3), but
now for rods which are intrinsically curved. We call
this an imperfect problem as opposed to the perfect
problem of Sec. 3.

PCR visualization of the perfect diagram plays
a central role in the efficient computation and un-
derstanding of the imperfect problem. The perfect
diagram (Fig. 4) is intricately connected because
of the rod’s high level of symmetry. For an in-
trinsically curved rod, these symmetries are broken
and the imperfect diagram consists instead of mul-
tiple, disconnected components. Since parameter
continuation can only trace out solutions on a single

component, this disconnectedness poses a challenge
in formulating a computational strategy. However,
armed with the understanding of the perfect dia-
gram from Sec. 3, the components of the imperfect
problem can be computed efficiently.

We introduce a homotopy parameter δ which
gradually adds intrinsic curvature to the rod, so
that δ = 0 corresponds to the perfect rod, and δ = 1
gives the actual DNA curvature. With PCR-style
visualization, we can understand the splitting of
the connected perfect diagram, as shown in Fig. 12.
The ancestry of the various components of the im-
perfect diagram is apparent. This then suggests
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Fig. 8. On the left, the white sphere marks a point of intersection that is an artifact of the projection. The point is not
a true bifurcation point because it corresponds to two different values of force, as seen by the difference in color of the two
branches. On the right, a small 4D rotation separates the two branches.

which points on the perfect diagram will generate
a particular component of the imperfect diagram
after homotopy. Without this understanding, it is
difficult to be sure that the component of interest
is being computed.

In order to model DNA cyclization experi-
ments, we seek low-energy DNA equilibrium con-
figurations that are also local minima. The energy
versus twist moment projections in Fig. 12 make it
clear that the lowest-energy configurations lie on the
green branch. Furthermore, by plotting the twist
moment versus angle projection of this branch (see
Fig. 13), we can determine which equilibria are lo-
cal minima using the test described in Sec. 3. The
closed loop of solutions (or isola) shown in green
in Fig. 12 has a distinguished projection in which
α increases from 0 to 4π. The diagram in Fig. 13
with γ = 1.1 contains two folds between which so-
lutions are unstable. If instead γ & 1.5, no folds in
angle occur, and we have an isola comprising only
stable solutions. In general an isola can be expected
to have an unstable region because there will be at
least two folds in any continuous parameter, but
here the multi-valued nature of angle allows an en-
tirely stable “loop”.

DNA cyclization requires not only that the cen-
terline form a loop, but also that the twist angle,
α, be an integer multiple of 2π, so that the dou-
ble helix closes. Thus, only select points on the
computed bifurcation diagrams represent cyclized

DNA. For example, in Fig. 13 the configurations
with closed helices are marked and fall in the stable
region.

This DNA example illustrates that even when
only isolated equilibria are of physical interest, it
may be worthwhile to introduce additional param-
eters (such as the imposed twist angle and the
imperfection homotopy parameter) and compute
solutions by parameter continuation. Visualiza-
tion of parameter-continued solutions gives infor-
mation for organizing solution sets and for de-
termining stability properties which may not be
available from algorithms which only compute iso-
lated equilibria.

5. Ratcheting and Imperfections

The final example illustrating applications of
PCR in rod mechanics arose as a computational
model of experiments designed to investigate the
“ratcheting” observed when various intravenous
surgical procedures (such as angioplasty) are per-
formed using highly elastic guide wires [Warner,
1996]. Ratcheting is a general term used to describe
a phenomenon in which there is a highly nonlinear
response, including hysteresis and associated dis-
continuous snaps, between an imposed twist and the
elastic response of a highly bent rod. A schematic
of the appropriate BVP is provided in Fig. 14.
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Fig. 9. Distinguished diagrams for the elastic loop for varying γ: The straight lines are the trivial branches. The s-shaped
curve is the nontrivial branch connecting the (1, 1, +) to (1, 1, −) bifurcation points. The stability of the nontrivial branch
depends on the values of γ (see text).

Fig. 10. Distinguished diagram for the elastic loop for γ = 1.7: The straight lines are the trivial branches and correspond
to planar equilibria and the s-shaped curves are the nontrivial branches which correspond to nonplanar equilibria. The red
segments of the branches represent stable equilibria while other colors represent unstable equilibria of differing index.
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Fig. 11. The x-component of force (F ) versus twist moment (M3) projection of the bifurcation diagram: Colors indicate
index corresponding to γ = 1.7 as in Fig. 10. The shapes of the branches in this projection are independent of γ, but the
regions of given index vary with γ.

For the purposes of this article, the impor-
tant point is that this BVP is intrinsically multi-
parameter; the distance r between the end points
controls the shape of the reference configuration
(α = 0), and the angle α is varied in any given ex-
perimental run. If the rod were exactly transversely
isotropic (i.e. had an equal response to bending in
any direction) ratcheting would not occur. Instead
the rod would respond to the imposed end angle by
smoothly rotating everywhere about its own tan-
gent without changing the shape of the centerline.
The point of interest is that imperfections involving
quite small natural curvatures of the unstressed rod
can have dramatic effects on the overall response
of the system. Thus, in addition to the two pri-
mary parameters α and r, the problem has a num-
ber of imperfection parameters (in principle an in-
finite number) describing the intrinsic curvature of
the rod.

Figure 15(a) is a one-parameter bifurcation di-
agram in which the unstressed state was taken to
be a shallow circular arc. The angle α was held
fixed at zero as the distance between the ends r

was varied over both positive and negative values.
The diagram is plotted in (n1, n2, q3) space, with
n1 and n2 being two components of force in the
rod, and q3 = sin α. The bifurcation diagram is
entirely planar in this projection because α = 0
for all of these solutions. Investigation of the dia-
gram using PCR (not illustrated here) reveals that
the straight-line branch corresponds to planar con-
figurations, while the curved branch corresponds
to non-planar configurations. Each point on this
one-parameter bifurcation diagram can be used as
the starting point for another one-parameter con-
tinuation calculation in which r is held fixed and
the angle α is varied. A selection of such curves
is depicted in Fig. 15(b). Here the branch of
part (a) is retained, with the additional branches
superimposed.

This example shows that multiple one-
parameter computations may not be an efficient
way to compute a two-dimensional manifold of so-
lutions. While Fig. 15(b) gives some sense of the
complicated self-intersecting surfaces that can arise
in bifurcation diagrams, the computed points are
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Fig. 12. Bifurcation diagrams for intrinsically-curved rods as the homotopy parameter δ is increased from 0 (no intrin-
sic curvature) to 1 (full intrinsic curvature). The top series of frames shows the force versus twist moment projection of
the bifurcation diagram (as in Fig. 4) and the bottom series shows the energy versus twist moment projection. The per-
fect diagram (δ = 0) is shown in all frames in red. Two components of the imperfect diagram are shown in green and
blue.

not particularly well distributed over the projected
solution surface. In particular it would be better
to compute a triangularization of the surface using
an inherently two-parameter, adaptive continuation
strategy. Similarly, a steered calculation could con-
centrate computations on the most interesting re-
gions of the bifurcation surface.

6. Two-Parameter, Steered
Continuation

We now describe a research code by Maddocks and
Mesztenyi that implements two-parameter continu-
ation with a graphical interface providing compu-
tational steering. The code is optimized for the in-
teractive exploration of the set of critical points of
two-parameter constrained variational principles,

and is accordingly called MC2, an acronym for Mul-
tiplier and Constraint Continuation. MC2 has been
applied to investigate relative equilibria in finite di-
mensional Hamiltonian systems as arise, for exam-
ple, in the steady spins of satellites driven by inter-
nal momentum wheels (cf. Fig. 17). Such systems
give rise to constrained variational principles with
associated first order conditions of the particular
form (3) and n ≈ 10 unknowns (see [Maddocks &
Sachs, 1995] for example).

The compute engine in MC2 is a version
of a multi-parameter Fortran continuation code
of Rheinboldt [Rheinboldt, 1988] that was spe-
cialized and extended to treat constrained varia-
tional problems. The code was tailored to run
the numerics interactively from within a three-
dimensional graphics environment (again based on
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Fig. 13. Distinguished diagram for the lowest-energy branch
of a DNA molecule with γ = 1.1: As in the perfect prob-
lem, stability changes occur at folds. The figure is qualita-
tively like the upper right picture in Fig. 9, except that the
straight lines corresponding to the trivial branches have be-
come slightly curved in this imperfect case. As in Fig. 9,
there is a region of instability between the two folds. The
configurations with closed double helices, marked with cir-
cles, fall in the stable region. The closed configurations at
α = 0 and α = 4π are in fact the same physical solution.

Fig. 14. The ratcheting BVP: The ends of a rod are held
a distance r from each other, with the end tangents anti-
parallel and perpendicular to the line between the ends. A
twist angle α is imposed and the elastic response of the rod
calculated.

the AVS5 package). The operator can control the
extension directions of the two-dimensional mani-
fold of solutions using information extracted from
the simultaneous viewing of certain distinguished
projections.

An example of the MC2 interface is displayed
in Fig. 16. The two large windows display user-
selectable projections of the two-dimensional solu-
tion manifold that has been approximated by a nu-
merical calculation based upon a rectangular mesh.
The four corners of this mesh are labeled A–D, and
the GUI allows extension of any edge of the mani-
fold for a prescribed number of steps. This exten-
sion can be done in real time by calling an external
computational routine.

The user may also explore the variation of other
quantities over the solution manifold through the
interactive display of one or more contour plots (the
white tubes in Fig. 16). In the particular exam-
ple shown, the coloring of the surface encodes an
integer representing the constrained index of each
critical point. This index is determined from the
signs of the principal curvatures of the solution
manifold in certain distinguished projections [Mad-
docks & Sachs, 1995], namely the Hamiltonian pro-
jection (H, C1, C2) and the Lagrangian projection
(F, µ1, µ2) (cf. the notation introduced in Eq. (3)).
For example, Fig. 16 shows the Lagrangian projec-
tion on the left, in which the transition from con-
strained minima of index 0 (green) to saddles of
constrained index 1 (yellow) arises at a line of in-
flection points in the solution surface. The same
transition arises along a cusp line in the Hamilto-
nian projection shown on the right. In summary,
the interactive graphical interface provides imme-
diate access to much of the interesting information
concerning the solution set, which can be exploited
to steer further numerical exploration of parameter
space.

As shown in Fig. 17, MC2 can be used to con-
struct quite elaborate bifurcation diagrams. For
each component to be computed, the user must
supply an initial guess that converges to a solution
in that component. The computation can then be
steered to compute as much of that component as
desired.

Figure 18 shows two distinguished projections
of part of the solution manifold for a constrained
variational principle governing the steady motions
of point vortices. The output illustrates difficul-
ties that arise for multi-parameter continuation
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Fig. 15. Bifurcation diagrams for the ratcheting BVP: (a) α = 0 is prescribed and r is varied over positive and negative
values, to yield a one-dimensional manifold of solutions; (b) twenty additional curves are added by fixing r and varying the
angle α.

that do not arise for one-parameter continuation.
The manifold of solutions may have nontrivial
topology, for example as created by a singularity
in the solution set. Within MC2 it is sometimes
then necessary to compute one component of the
solution set with multiple meshes generated from
multiple initial guesses. At junctions between two
meshes, overlap occurs, which is often acceptable,
but which is also wasteful of computation. A re-
lated issue is that a uniform rectangular mesh in
the parameter discretization may not be suitable,
perhaps due to the presence of a nearby singularity
(cf. projections (a) and (b) in Fig. 18). Adaptivity
in the parameter step sizes would accordingly be
desirable. While some analysis and effective codes
addressing these issues for two-parameter problems
are available (e.g. [Henderson, 1993]), the numerical
treatment of nontrivial topology and mesh adaptiv-
ity in the computation of multi-parameter solution

manifolds still presents challenging computational
problems.

7. Summary and Future Work

We have surveyed a number of application prob-
lems which exploit visualization in their computa-
tion. In particular, we have described two soft-
ware packages, PCR and MC2, developed within
our group. PCR focuses on the post-processing
of solution sets for one-parameter ODE boundary
value problems using a variety of interactive visu-
alization techniques. MC2 focuses on the interac-
tive steering of two-parameter continuation, but is
currently only implemented for small problems and
does not provide the full assortment of visualiza-
tion tools found in PCR. Accordingly, merging
the capabilities of these two codes is an ongoing
project. The combined software is called AvA, an
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Fig. 16. The interface for the steerable, two-parameter continuation code MC2: The two large windows show projections
of the solution manifold calculated on a parameter mesh. The smaller panels are part of a GUI used to steer the compute
engine and to choose the displayed projections. The computation can be continued by extending the solution surface along any
edge.

acronym for AUTO visualization Application. It is
currently implemented for one parameter, two-point
BVPs, and combines the visualization tools of PCR
with graphically controlled interactive steering to
drive a computational engine based upon a parallel
(PVM) implementation of AUTO. AvA is designed
to run on a local graphics workstation, but can con-
trol distributed computations on remote comput-
ers. Current networking and computing technology
make such a project feasible for either one or two-
parameter continuation in two-point BVPs.

Two-parameter continuation offers a level of
parallelism in addition to the parallelization of the
underlying solution algorithm: Processors can si-
multaneously compute solutions for different values
of the parameters. In particular, large-scale multi-
parameter computations are well-suited for high-

performance parallel computing resources, such as
parallel supercomputers or workstation farms linked
by high-speed networks, e.g. ATM. One of our
current objectives is to extend AvA to such two-
parameter continuation problems which will repre-
sent a complete merging of the capabilities of MC2

and PCR.
Extension of this paradigm to more param-

eters and more spatial variables requires essen-
tially the same numerical routines, but the size of
computation grows rapidly. Consequently, interac-
tive remote computation for large problems may
also require design of data compression strategies
analogous to the one implemented in PCR. In
addition, visualization of three or higher dimen-
sional manifolds is in itself a topic of continuing re-
search, giving rise to many interesting visualization
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Fig. 17. Two distinguished bifurcation diagrams con-
structed by the MC2 package: In each projection there are
four distinct sheets. In projection (a) there is one smooth
sheet (entirely green), one self-intersecting sheet (entirely
blue), and two bi-color, folded sheets that are cusped. The
color coding of the surface is automatically generated by
MC2, and indicates the constrained index of each critical
point. Notice that the change in constrained index occurs
along lines of cusps in projection (a), but along lines of in-
flection points in projection (b). Some of the features of
the projections are comparatively hard to recognize from still
views, but are easily visualized when the surfaces are interac-
tively manipulated on the computer screen or seen on video
(see for example the MPEG on http://www.lcvm.umd.edu.)

issues, e.g. appropriate cross-section or projection
methods, and exploitation of contour and texture
mapping.
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