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Abstract—We consider the problem of generating a shared
secret key S between two parties over wireless channels, in the
presence of an eavesdropping adversary. We focus on information
theoretic approaches that, in contrast to existing cryptographic
solutions, aim to solve this problem without making any as-
sumptions about the adversary’s computational capabilities. We
first present information theoretic bounds on achievable pairwise
secrecy over broadcast channels with public discussion [8]. Next,
we describe two frameworks, that propose different approaches
towards building an information theoretically secure practical
system [15], [5]. Finally, we present preliminary results of a
practical framework that builds on computationally efficient
techniques from network coding.

Index Terms—secret key agreement, information theoretic
security, secrecy, wireless systems security

I. INTRODUCTION

THE secret key generation over wireless channels in the
presence of a passive adversary is a well studied problem,

and nowadays it can be solved by using asymmetric key
cryptography, like RSA [10] or Diffie-Hellman [4] algorithms.
These approaches rely on the adversary’s limited compu-
tational capabilities, such as prime number generation and
factorization, to guarantee that it is computationally infeasible
for her to derive the shared secret key.
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On the other hand, information theoretic security, or un-
conditional security, does not make any assumptions about
the adversary’s computing power, but it rather builds on her
lack of information that is essential to generate the secret
key herself. Wireless networks serve as a good starting point
to explain the idea, due to their noisy nature. Most real
wireless communication channels are noisy, and it is only
for applications that are converted into virtually error-free
channels by the use of error-correcting codes. In a wireless
setup when an honest node, Alice, broadcasts a message,
then it is unlikely that an other honest node, Bob, and an
enemy, Eve, will both overhear exactly the same information,
given that there exists sufficient noise in the channel. This
information mismatch can be exploited for the sake of secret
key generation.

In practice though, information theoretic security is not still
used in modern security systems. Although there already exist
theoretical results on the feasibility of the honest parties to
establish a shared secret secure from the enemy (eg. [3], [8],
[14]), and different efficient schemes for achievability (eg. [7],
[1]), there is a lack of practical system implementations on
actual wireless networks. A growing interest on this systems
domain has started only recently, with the appearance of tech-
niques that leverage different characteristics of the wireless
physical channel [6], [16], [13].

We first present information theoretic bounds on achievable
pairwise secrecy over broadcast channels [8]. As mentioned,
the noisy nature of the wireless channel may result in non
identical observations between receivers. Some natural ques-
tion arise: What is the theoretical highest possible rate of secret
key generation in such a setup and under which theoretical
network conditions does this hold? What is an achievability
scheme? etc. Next, we describe two approaches towards build-
ing practical information theoretically secure systems. The
first one [15] relies on the limited ability of Eve to intercept
every communication between Alice-Bob and on the link layer
retransmission mechanism in order to create a maybe not so
perfectly secret key. By XOR-ing many of these though, the
key becomes more secure in depth of time . The second one [5]
is a physical layer technique that applies jamming in order to
prevent Eve from getting information not intended for her. The
proposed solution includes a customized IEEE 802.11 PHY.

Finally, we describe a secret key agreement protocol. Our
protocol is provably information theoretically secure and in-
volves only polynomial time operations. In addition, we dis-
cuss the techniques for adapting our protocol to real wireless
networks and we present some initial experimental results. We
use commodity network devices without any modification to
the standard 802.11 MAC and PHY layers.
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II. SECRET KEY AGREEMENT BY PUBLIC DISCUSSION
FROM COMMON INFORMATION

The work of Maurer established the theoretical bounds of
secrecy capacity over noisy broadcast channels with public
discussion [8]. Interestingly, by allowing Alice and Bob to
exchange feedback over a public channel (assumed to be error-
free without loss of generality) in the presence of Eve, the
secrecy rate obtains a non-zero value, even if the channel
between Alice-Eve is better than the Alice-Bob channel.

A. The discrete memoryless broadcast channel case

We consider a discrete memoryless broadcast channel
with input variable X , chosen by Alice according to some
distribution PX , and output variables Y and Z received by the
legitimate receiver Bob and the adversary Eve respectively.
Variables X,Y, Z take their values from some finite alphabets
X ,Y,Z . The conditional probability distribution PY Z|X
defines the channel behavior. The following definition is
formally stated in [3].

Definition II.1. The secrecy capacity Cs(PY Z|X) of the
described broadcast channel is the maximum rate (in number
of bits per channel use) at which Alice can reliably send
information to Bob such that the rate at which Eve obtains
this information is arbitrarily small.

In analogy, one can define the secrecy capacity with public
discussion as follows.

Definition II.2. The secrecy capacity with public discussion
Ĉs(PY Z|X) is the maximum rate (in number of bits per
channel use) at which Alice and Bob can agree on a secret
key by exchanging arbitrary messages over a public channel,
such that the rate at which Eve obtains information about the
key by observing the public messages and the Z-outputs is
arbitrarily small.

For the channel described above, in [3] it is proved
that Cs(PY Z|X) ≥ max

PX

[I(X;Y ) − I(X;Z)] =

max
PX

[H(X|Y ) − H(X|Y )]. Applying this result fro the

case when the previously described channel consists of two
independent binary symmetric channels, one from Alice to
Bob and one from Alice to Eve, with bit error probabilities ε
and δ respectively, the next lemma and proposition hold.

Lemma II.1. The secrecy capacity of the described binary
broadcast channel is

Cs(PY Z|X) =

{
h(δ)− h(ε), if δ > ε

0, otherwise

Proposition II.1. The secrecy capacity with public discus-
sion of the described binary broadcast channel is

Ĉs(PY Z|X) = h(ε+ δ − 2εδ)− h(ε).

Moreover, Ĉs(PY Z|X) ≥ 0, with equality if and only if
ε = 0.5, δ = 0 or δ = 1, i.e., if X,Y are statistically
independent or if Z uniquely determines X .

Lemma II.1 implies that the secrecy capacity is zero when
the quality of Eve’s channel is better than Bob’s, namely when
δ ≤ ε. In contrast, by allowing feedback from Bob and Alice

over the insecure public channel, the secrecy rate is strictly
positive even if δ ≤ ε, given that Alice and Bob know an
upper bound on δ.

The intuition behind the proof of Proposition II.1 is that the
legitimate nodes use their common information to publicly
discuss in such a way that they eliminate the adversary’s
advantage (δ ≤ ε). The notion of the ”conceptual” noisy
broadcast channel is introduced at that point. Here we omit
the whole proof, due to space limitations.

B. Upper and lower bounds on secret key rate

Consider a secret key agreement protocol, where Alice and
Bob are assumed to know PXY Z , as follows. At each step
of the protocol either Alice or Bob sends a message over the
public channel. During step i, where i is odd, Alice sends a
message Ci to Bob that is a function of X and all the messages
previously received from Bob, i.e. Ci−1. For i even, the roles
are exchanged (and also X is replaced by Y ). At the end of the
t-step protocol, Alice computes a key S (resp. Bob computes
S′) as a function of X (resp. Y ) and Ct 4= [C1, . . . , Ct].
Their goal is first to agree on the same value of S and S′

with very high probability , and second keep Eve’s uncertainty
about the constructed key close to the maximum, given that
she has knowledge of Z and also she has been tracking all the
public discussion, i.e., she knows Ct. The following equations
summarize formally the above.

H(Ci|Ci−1X) = 0, (1)
H(Ci|Ci−1Y ) = 0, (2)
H(S|CtX) = 0 (3)
H(S′|CtY ) = 0, (4)
P [S 6= S′] ≤ α, (5)
I(S;CtZ) ≤ β (6)

for some α, β small. Theorem II.1 expresses an upper bound
on the uncertainty of the established key S.

Theorem II.1. For any key agreement protocol satisfying
(1)-(4),

H(S) ≤ I(X;Y |Z) +H(S|S′) + I(S;CtZ).

If we assume that S, S′ are identical and also perfectly
secure from Eve, namely we let P [S 6= S′] = 0 and
I(S;CtZ) = 0, then what Theorem II.1 essentially says is
what intuition suggests: the quality of the secret key depends
on the amount of the common information that Alice and Bob
share, given that Eve knows the jointly distributed variable Z.

For the general case where α, β 6= 0 and small, the
following corollary holds as an immediate consequence of
Theorem II.1.

Corollary II.1. For every key agreement protocol satisfying
(1)-(6),

H(S) ≤ min[I(X;Y ), I(X;Y |Z)] +

+α+ h(β) + β log2(|S| − 1).

A natural assumption to make is that the random exper-
iment generating XY Z is repeated independently N times:
Alice, Bob, Eve receive XN = [X1, . . . , XN ], Y N =
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[Y1, . . . , YN ], ZN = [Z1, . . . , ZN ] respectively, where
PXN ,Y N ,ZN =

∏N
i=1 PXi,Yi,Zi

and PXi,Yi,Zi
= PX,Y,Z for

1 ≤ i ≤ N . For any secret key agreement protocol satisfying
equations (1)-(6) (replacing X,Y by XN , Y N and requiring
that 1

N I(S;CtZN ) ≤ β for N sufficient large) the quantity
secrecy key rate is defined and its bounds are derived.

Definition II.3. The secrecy key rate S(X;Y ||Z) is the
maximum rate R (in number of bits per symbol per channel
use) at which Alice and Bob can agree on a secret key S
while keeping the rate at which Eve obtains information
about the key arbitrarily small, i.e., for every β > 0 there
exists a protocol achieving 1

NH(S) ≥ R− β.

Theorem II.2. The secret key rate of X and Y with respect
to Z is upper bounded by

S(X;Y ||Z) ≤ min[I(X;Y ), I(X;Y |Z)].

Theorem II.3. The secret key rate of X and Y with respect
to Z is lower bounded by

S(X;Y ||Z) ≥ max[I(X;Y )− I(X;Z), I(Y ;X)− I(Y ;Z)].

The upper bound stated in Theorem II.2 follows from
Corollary II.1. The lower bound in Theorem II.3 shows that
if Eve has either less information about Y than Alice or
less information about X than Bob, then such a difference
of information can be exploited in benefit of the secrecy
rate. In particular, the proof of Theorem II.3 builds on the
fact that both I(X;Y ) − I(X;Z) and I(Y ;X) − I(Y ;Z)
are achievable secret key rates when Alice and Bob publicly
discuss over conceptual broadcast noisy channels as discussed
in Section II-A.

Throughout this section we assume that X,Y, Z are jointly
distributed according to PXY Z . The broadcast channel de-
scribed in Section II-A is just a generalization of the key
agreement scenario described above, since we let Alice choose
PX given the channel transition probabilities PXY |Z . Hence,
the secrecy capacity with public discussion Ĉs(PY Z|X) can
be defined accordingly to the secrecy rate S(X;Y ||Z) by
allowing Alice to send consecutively the binary symbols
X1, . . . , XN . Finally, let Alice choose PX , where PX maxi-
mizes S(X;Y ||Z).

Theorem II.4. The secrecy capacity with public discussion
of a broadcast channel specified by PY Z|X is bounded from
below and from above by

max
PX

S(X,Y ||Z) ≤ Ĉs(PY Z|X)

≤ min[max
PX

I(X;Y ),max
PX

I(X;Y |Z)].

C. Secret agreement under realistic conditions

Consider a satellite generating and broadcasting random
bits B (PB(0) = PB(1) = 1/2) at a significantly low
SNR, such that an enemy Eve cannot receive without any
error probability, regardless her hardware equipment. Such
a scenario corresponds to X,Y, Z being symmetrically dis-
tributed with respect to PXY Z . It can be shown that for this
kind of probability distributions, it equivalent to case when

X,Z, Y are generated by three independent BSCs with error
probabilities εA, εB , εE respectively, where the input of the
channels is B.

Using Theorem II.3, it can be shown that for X,Y, Z
generated as above it holds that

S(X,Y ||Z) ≥max[h(εA + εE − 2εAεE)+

+ h(εA + εB − 2εAεB)]− h(εA + εB − 2εAεB).

Therefore, the secrecy rate is zero if εE < εA and εE <
εB , i.e., if Eve’s channel is superior than both Alice’s and
Bob’s. Nevertheless, even under these conditions, secret key
agreement with non zero secrecy rate is possible with public
discussion.

Let Alice randomly select a codeword V N from the code-
book of an error-correcting code C of length N . She sends this
to Bob (and thus also to Eve) over the conceptual broadcast
channel, i.e., by sending XN + V N over the public channel.
Bob and Eve receive the bits of V N with error probabilities
εA + εB − 2εAεB and εA + εE − 2εAεE respectively, where
the latter is smaller than the former unless εE ≥ εB . The key
observation here is that although Eve receives codewords V N

more reliably than Bob on the average, her conceptual channel
may be worse than Bob’s channel if we apply a specific
decision rule at Bob: Bob will accept a received word only
if he can make a very reliable decision, i.e., if it is very close
to some codeword in C. Namely, if one averages only over
the instances correctly received by Bob, then the advantage of
the adversary is canceled out. By adding modulo 2 many of
these codewords, Alice and Bob can decide on a common key
while keeping Eve’s information about it arbitrarily small.

III. SECURE WIRELESS COMMUNICATION WITH DYNAMIC
SECRETS

In this section we present a framework [15] that builds on
the inherent noisy nature of the wireless medium to enable
two honest parties to agree on a shared secret key under the
presence of a passive adversary. It consists of a set of low-
complexity algorithms that operate at the link layer level and
builds on Maurer’s framework of public discussion [8] and
privacy amplification [1].

A. System and adversary model

The basic goal of this framework is to secure wireless
communications at time periods when the underlying secret of
the cryptographic mechanism of the honest parties (symmetric
key or public key infrastructure) has been revealed to an enemy
(not by computational effort but just by directly accessing it
somehow) and thus she can decrypt every communication. The
idea is to provide an additional security mechanism on the
existing cryptographic schemes rather than an alternative to
traditional computational cryptography.

Unlike other approaches that focus on the physical layer
and attempt to extract secrets by exploiting the channel’s
properties, the approach described here focuses on the layer
above, the data link layer, and exploits frame retransmissions
that happen between Alice and Bob. When a frame is not
retransmitted, it means that it has been sent over the air only
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once and it has been correctly received by the honest node.
The idea behind this motivation is that when we consider
only frames correctly received form Bob and aired once, it
is likely that an adversary has missed some of them. This loss
of information can be exploited by Bob and Alice to produce
in short time intervals bit sequences (referred to as dynamic
secrets), some of which are safe (or partially safe) from Eve,
and XOR these consecutively with the compromised secret
key in order to make it secret again from Eve.

The assumption on the adversary made above along with
some others define the adversary model considered in this
framework. First, as already stated, the Alice-Eve channel is
assumed to be of worse quality than that of Alice-Bob for
at least some non zero period in time. This also implies that
Eve does not posses special equipment (directional antennae,
multiple antennae in distributed space etc.) that would allow
her to ultimately have a better channel than Bob regardless
her relative position to Alice. It is also implied, that Eve
cannot be physically present in an arbitrarily small distance
from Bob or Alice. Second, Eve’s hardware is equivalent to
that of the honest nodes and she can either receive correctly
or partially correctly a MAC frame delivered from her custom
PHY layer. She does not apply any optimal guessing strategy
for the bits the PHY reports as corrupted. Third, Eve is only
a passive eavesdropper and she does not collude with other
eavesdroppers with higher capabilities and in such a way that
would potentially make her receive correctly the exact same
frames that Bob also received correctly. Finally, as already
briefly discussed, the compromised key is XORed with a
newly generated dynamic secret by the moment it is produced.
Eve does not apply any strategy to detect modifications by this
procedure on the system’s key and try to cancel them out.

B. Extracting dynamic secrets

An Automatic Error Tracing (AET) algorithm, based on a
Stop-and-Wait data link layer retransmission protocol, is used
to monitor the link layer error retransmission process at both
the sender and the receiver. The goal is to identify the “one
time frames” (OTFs), namely the frames that are transmitted
only once by Alice and correctly received by Bob.

The algorithms for Alice (the sender) and Bob (the receiver)
are defined in Algorithm 1 and Algorithm 2 respectively. In
each frame, there is a retransmission flag and sequence num-
ber, denoted by the postfix .retran and .serial respectively.
Ψs and Ψr are the sender and receiver sets, which are empty
before the protocol starts, and they contain a certain number
of frames N at the end (depending on how often one would
like to produce a dynamic secret, the value of N is selected
accordingly). The two algorithms essentially enable the two
parties to agree on a set of common frames Ψ = Ψs = Ψr

that they both possess correctly. This technique can be seen in
analogy to Maurer’s framework, where Alice and Bob publicly
agree on a set of commonly correctly received codewords.

Once the set Ψ has been identified by Alice and Bob,
the next step is to exploit any lack of information about
this set that Eve might have. If Eve has perfectly overheard
every frame and acknowledgment between Alice and Bob,

Algorithm 1: AET sender

foreach frame mi do
mi.retran = 0;
send mi;
while true do

wait on ACK or time out;
if ACK received then

Jump out the loop;

mi.retran = 1;
send mi;

if mi.retran = 0 then
add mi to Ψs;

Algorithm 2: AET receiver

foreach received frame mi do
if mi integrity check pass then

send ACK;
if mi.serial 6= mi−1.serial,mi−1.retran = 0
then

add mi−1 to Ψr;

then of course she can herself identify set Ψ, and therefore
generating a secret is impossible. If, nevertheless, a weaker
adversary model is considered (as the one described in
Section III-A), then it is possible that Eve misses some
information about Ψ. The next step is to deal with the fact
the we do not really know which frames Eve has (maybe
partially) lost. The solution is provided by Bennett et al. in [1],
where the technique of privacy amplification is used, which
depends on the concept of universal hashing introduced in [2].

Definition III.1. A class G of functions A → B is universal
if, for any distinct x1 and x2 in A, the probability that
g(x1) = g(x2) is at most 1/|B| when g is chosen at random
from G according to the uniform distribution [2].

Definition III.2. Let X be a random variable with alphabet
X and distribution PX . The collision probability of X is
defined as PX =

∑
x∈X PX(x)2, i.e., the probability that X

takes the same value twice in two independent experiments.
The Rényi entropy is defined as R(X) = −log2Pc(X) [9].

Theorem III.1. [2] Let X be a random variable with alpha-
bet X , distribution PX and Rényi entropy R(X). Let G be
the choice of a member of a universal class of hash functions
X → {0, 1}r, and let Q = G(X). Then

H(Q|G) ≥ R(Q|G) ≥ r − log2(1 + 2r−R(X))

≥ r − 2r−R(X)

ln 2
.

Corollary III.1. [2] Let PVW be an arbitrary probability
distribution and let v be a particular value of V observed by
Eve. If Eve’s Rényi entropy R(W |V = v) is known to be at
least c and Alice and Bob choose S = G(W ) as their secret
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key, where G is chosen at random from a universal class of
hash function from W to {0, 1}r, then

H(S|G,V = v) ≥ r − log2(1 + 2r−c) ≥ r − 2r−c

ln 2
.

We see from corollary III.1 that when r < c Eve’s entropy
of the secret key is close to maximal, i.e. the distribution
of p(S|G,V = v) is close to uniform. In particular her
information about the key S, namely H(S)−H(S|G,V = v),
is arbitrarily small. In addition, in [1] it is shown that if the
probability that V takes on a value v satisfying R(W |V =
v) ≥ c is at least 1− δ, then we have

H(S|G,V ) ≥ (1− δ)(r − log2(1 + 2r−c)).

Let now variable W represent the common information
of Alice and Bob in set Ψ, obtained after running the AET
algorithms, and let V be the knowledge of Eve on Ψ. Let also
Alice and Bob publicly agree on a function g from a universal
class of hash functions. Then, according to Corollary III.1, the
generated shared secret key S is secure from Eve, given that
a lower bound on c is provided, since we can choose r (the
length of the secret key) accordingly.

In not very clearly stated though, nor experimentally demon-
strated, how this framework guarantees that the value of c is
provided for the legitimate nodes or that the probability of V
being v is at least (1− δ) under realistic network conditions.
The only experimental result provided is the minimum time
for Eve to loose a frame at a random position, but this does
not provide any intuition of the practical secrecy rate.

IV. PHYSICAL LAYER WIRELESS SECURITY MADE FAST
AND CHANNEL INDEPENDENT

In this section we discuss iJam [5], a physical-layer ap-
proach for pairwise secret key generation under the presence
of a passive adversary Eve. Although most state of the art
physical layer protocols exploit channel variations to extract
secret bits, the one described here follows a different direction
by applying the idea of jamming, that is, the deliberate
injection of artificial noise in the channel. The goal is to
ensure that an adversary cannot demodulate a wireless signal
not intended for her.

A. System and adversary model

The iJam framework defines a set of physical layer algo-
rithms than enable Alice and Bob to agree on a secret key
of B bits. Each honest node is equipped with specialized
hardware on top of which the stack of iJam is implemented.
The basic idea underlying the framework is the following: the
sender repeats its transmission as shown in Figoure 1. For each
sample in these repeated transmissions, the receiver randomly
jams either the sample in the original transmission or the
corresponding sample in the repetition. Since the eavesdropper
does not know which signal sample is jammed and which one
is clean, she cannot correctly decode the data. In contrast, the
legitimate receiver can pick the clean samples from the signal
and its repetition, rearrange them to get a clean signal, and
then decode. The bits decoded correctly by Bob and not Eve
are the commonly shared secret bits between Alice-Bob.

Fig. 1. The sender repeats its transmission. The receiver randomly jams
complementary samples in the original signal and its repetition, and stitches
together the unjammed samples to create a clean symbol.

At the signal level, the honest nodes use OFDM transmis-
sions, that is, BPSK, 4/16/64 QAM over OFDM, that are
typical PHY configurations for the IEEE-802.11 standard. The
motivation of using OFDM results not only by the fact it is
nowadays widely used in commercial wireless devices, but
also for an interesting property: the OFDM signal time samples
approximately take values from a zero-mean random Gaussian
distribution [12]. If one picks the jamming signal also from a
zero-mean random Gaussian distribution, then the combination
of the jamming and the original signal will also have Gaussian
statistics, namely zero-mean and variance equal to the sum of
the two variances. This will incommode Eve in her task of
guessing which sample is clean or jammed.

The adversary considered in this framework is passive,
static, has hardware equally powerful as that of the legitimate
nodes and she could be anywhere in the range of the com-
municating nodes, i.e. she can listen to all communications
in the network. Then, as implied above, Eve applies guess-
ing techniques in an attempt to distinguish jammed samples
from clean samples. More precisely, she applies an optimal
hypothesis testing strategy: Let S1, S2 denote two OFDM
samples received by Eve corresponding to two samples from
two consecutive transmissions by Alice. Let H1, H2 denote the
hypothesis that S1, S2 is jammed, respectively. A maximum
likelihood test would be:

H(S1 is jammed|S1, S2)) H1≷H2
H(S2 is jammed|S1, S2).

Using Bayes’ rule, this reduces to:

H(S1, S2|S1 is jammed)) H1≷H2 H(S1, S2|S2 is jammed).

After substituting the Gaussian probabilities the maximum
likelihood test reduces to:

|S1|2 H1≷H2
|S2|2.

Therefore, Eve’s best guess is to assume the sample with the
smaller magnitude is the clean sample. Eve can apply this test
to all the samples and their repetitions to optimally estimate
the bits of the Alice-Bob secret key.

A theoretical evaluation of the performance of such an
eavesdropper is shown in Figure 2 . It is assumed that Eve
can receive the transmitted signal with infinite SNR. The plot
in Figure 2 depicts the bit error rate of Eve as a function
of the ratio of the jamming power to the sender’s power at
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Fig. 2. The figure shows the BER for different modulations as a function of
the ratio of the jamming power to the transmitter power at the eavesdropper.
The graph can be divided in three regions. Region 1 where the power of the
jammer is lower than the transmitter, Region 2 where the power ratio si such
that it maximizes the BER, and Region 3 where the power from the jammer
is significantly higher than the transmitter.

Eve, for different modulation schemes over OFDM. Ideally
the adversary should experiences 50% bit error rate, i.e. she
cannot do better than a random guess for every bit of the
secret key. Figure 2 reveals that there are scenarios where Eve
experiences very low BER. The iJam protocol described next,
follows a design philosophy oriented towards solving these
issues.

Finally, the adversary could launch an interference cancel-
lation attack, by simultaneously attempting to decode the jam-
ming and the original transmission. Nevertheless, by making
the jammer transmit at very high rate (by making the jamming
signal samples i.i.d’s and using a very dense modulation, for
example 65536 QAM), then Eve cannot decode both signals
since the total information rate is outside the capacity region
[12].

B. Protocol description

Let Alice and Bob want to exchange a secret key of B bits,
referred to as salt. They perform the following steps:

1) Alice generates L different sequences, each one of which
consists of M consecutive salts (of B random bits each)

2) Alice sends the L sequences consecutively and Bob jams
each of these sequences with a different power level.

3) Alice and Bob now exchange roles. Bob performs steps
(1), (2) while Alice acts as receiver/jammer.

4) The final key is constructed by XOR-ing all the ACKed
salts out of the 2ML salts totally exchanged.

Each one of the above operations aims to ensure high bit
error rate, as much closer as it gets to 50%, to Eve regardless
her location and the modulation scheme used for transmission.

(a) Location independence: As already remarked in Figure 2,
Eve’s BER depends on the power ratio Pj→e

Ps→e , the jammer’s
power level at Eve over the sender’s power level at Eve,
namely on her location with respect to Alice and Bob. Both
scenarios where this ratio is either very low (less than 1),
i.e. the jamming power is not enough to jam what Alice
sends, or very high (more than 9), i.e. the jamming power
is too high so Eve can identify the jammed samples with
high probability, are problematic. The problem is that for
a given jamming power there are eavesdropping locations

for which this ratio is either very low or very high. By
making the jammer use L different power levels, so as to
cover the whole range from maximum hardware supported
power to noise power, and by repeating the protocol while
exchanging roles of Alice and Bob, iJam attempts to
solve this issue. With this technique, there exists at least one
salt for which the power ration is neither too high nor too low.

(b) BER amplification: Figure 2 shows that even if the power
ratio is in Region 2 still Eve’s BER is not that close to the
ideal 50%. For this reason at each power level L there is a
sequence of M salts sent and not only one: say the BER in
each of the individual salt is p, the probability of the ith bit not
being corrupted in all M salts decreases exponentially with M
as (1−p)M . By choosing M large enough the probability that
Eve knows exactly the value of a bit, after XOR-ing all these
salts, gets very small.

C. Experimental evaluation

The iJam protocol has been implemented on USRP2 nodes
on top of GNU Radio software and was evaluated in an indoor
testbed, consisting of 20 nodes. One should remark that the
nodes are not extremely closely spaced and most of them do
not have pairwise line-of-sight. Some interesting outcomes are
the following:

1) For all modulation schemes, the BER, of an adversary
applying the optimal hypothesis testing, versus the power
ratio Pj→e

Ps→e follows the simulated behavior of Figure 2.
Also for smaller values of SNR (not infinite as implied
in Figure 2) the BER is even higher.

2) The BER amplification is possible for all modulations.
The number of salts M per power level, needed to reach a
50% BER, can be empirically defined. It is not explicitly
stated, though ,if these values can be reused in future
setups.

3) For every modulation scheme and for all adversary loca-
tions in the testbed, aggregated results show that the BER
experienced experimentally is between 40% and 60%,
with median of 50%, showing that half of the adversaries
cannot do better than a random guess for the secret key
of Alice and Bob. There exist adversaries that can do
slightly better than that, hence making the framework not
completely information theoretically secure.

4) The measured secrecy rate is 3-18 Kbps. These values
occur from measurements and are not compared against
theoretical ones, since these are not derived for the system
and adversary model considered in the iJam framework.

V. PRELIMINARY RESULTS

In this section we present our preliminary results [11] of a
pairwise secret key agreement protocol, along with algorithms
and techniques that enable this protocol to work on an actual
wireless network, consisting of commodity wireless devices.

We consider n nodes, T1, . . . , Tn and a passive adversary
Eve, all connected to the same broadcast channel. We slightly
differentiate from the standard pairwise setup discussed so
far and we consider a simultaneous everyone-with-everyone
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pairwise key generation. We hence assume that each terminal
Ti is ”honest but curious” toward the other terminals, i.e., Ti
runs the protocol honestly but may eavesdrop on other ter-
minals’ communications. The protocol described next enables
each pair of terminals Ti−Tj to create a secret Sij , such that
any other terminal Tl 6=i,j or Eve obtain very little information
on Sij .

A. Protocol description

The protocol consists of two phases. In the initial phase
the terminals exchange traffic (packets of fixed length) to
ensure that each terminal pair shares some information, and in
the privacy amplification phase the terminals create pairwise
secrets by compressing this shared information.

Each terminal Ti maintains n− 1 queues Qij , j 6= i. In the
beginning, these are empty.
Initial Phase

In round k = 1 . . . n:
1) Terminal Tk transmits N random packets (we will call

them x-packets).
2) Each terminal Ti 6=k reliably broadcasts the identities of

the x-packets it received.
3) Each terminal Ti adds to queue Qij the identities and

contents of the x-packets it shares with terminal Tj 6=i.

At this point, Qij contains all the packets shared by termi-
nals Ti and Tj .
Privacy Amplification Phase

For i = 1 . . . n− 1:
1) Terminal Ti constructs Mij linear combinations of the

packets in the queue Qij , for all j > i (we will call them
y-packets).
It determines the number of y-packets Mij and constructs
the y-packets as described in Appendix-A.

2) Terminal Ti reliably broadcasts the coefficients it used to
construct the y-packets.

3) Each terminal Tj>i uses the broadcasted coefficients and
the contents of its queue Qji to reconstruct the Mij y-
packets.

At this point, terminals Ti and Tj>i share Mij y-packets.
Their secret Sij is the concatenation of these y-packets.

We define the theoretical network conditions as follows:
1) When a terminal Ti transmits, a terminal Tj (or Eve)

either misses the entire packet with probability δij or
receivers the entire packer correctly.

2) The erasure probability δiE of the Ti − Eve channel is
known, for all i.

3) The Ti – Tj channel is independent from any Ti – Tl 6=j

channel1 and the Ti – Eve channel, for all i, j, l.
Under these theoretical network conditions, by using the

result in [7] it is proved that our protocol is information
theoretically secure against a passive adversary. In addition,

1Assuming that the channels between terminals are independent is not
necessary for any of our results, but simplifies the proofs of our theoretical
results. Our protocol works as long as we know the joint distribution of the
erasure channels between the terminals (which we can measure in practice).

since the most demanding operations a terminal need to
perform is linear combining to create the y−packets, our
protocol executes an algorithm that is polynomial with respect
to the number of x−packets transmitted N and the number of
terminals n.

Finally, let us denote the efficiency of our protocol as:

E =
Mij

Nn
.

Lemma V.1. If the theoretical conditions hold and we as-
sume non-colluding eavesdroppers, then there exists a suffi-
cient large N for which our protocol achieves E = δE(1−δ),
for n = 2 terminals.

The above lemma essentially states that the efficiency we
achieve for n = 2 reaches Maurer’s upper bound (see Theo-
rem II.2).

B. Adapting to real networks

When considering real wireless networks, we do not assume
that the theoretical network conditions hold. Instead we are
trying conservatively to estimate the amount of information
missed by Eve, based on the amount of information missed
by the honest terminals. We do the following operation in order
to be able to compute Mij , the number of y−packets that are
constructed at step 1 of the privacy amplification phase:

Terminals Ti and Tj estimate that, at the end of the initial
phase, from their shared x-packets, Eve misses the following
number:

VE =

n∑
k=1

min{ V k
1 , V

k
2 , . . . V

k
n },

where:
- V k

l is the number of new x-packets shared by terminals
Ti/Tj and missed by terminal Tl during round k of the
initial phase.

In short, we assume that, in each round of the initial phase,
Eve missed as few (of the x-packets newly shared by Ti/Tj
in this round) as any other terminal. This of course is an
empirical estimation, thus we cannot guarantee its accuracy
theoretically. Nevertheless, we can evaluate its performance
through experimental results.

We experimentally evaluate our adapted secret key agree-
ment protocol on a wireless indoor testbed. The testbed
comprises 6 nodes (HTC Wildfire Android Smartphones) set
to 802.11 ad-hoc mode and with high fixed transmission rate
to 36Mbps. In order for our approach to work, the wireless
network must provide a certain level of channel variability.
The simplest scenario where such variability exists is when the
nodes are not in direct line of sight, e.g., they are separated by
office walls. This is the scenario we implement in our testbed.

We are interested in measuring the secrecy rate achieved by
our protocol and also the level of reliability of the generate
keys. In other words, we are interested in knowing how well
we do with our technique (for estimating how many packets
Eve missed in the end) compared to what we could do if we
were assisted by an oracle to know exactly that information
(in our setup we choose one node to be Eve and we collect the
actual information loss from her). We define, thus, reliability
as the ratio: ideal number of secret bits over estimated number
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of secret bits. Ideally, we would like to achieve reliability 1.
Some interesting experimental results we got are the following:

1) The minimum ideal secrecy generation rate (among all
the pairs and different positions of Eve) at 15dBm (a
typical transmission power for the 802.11 standard) was
35Kbps. The corresponding minimum estimated secrecy
generation rate was 38 Kbps, yielding a 0.92 reliability
ratio.

2) The minimum reliability observed was 0.82 for 5dBm
transmission power.

VI. DISCUSSION AND RESEARCH PLAN

We first investigated information theoretic bounds on
achievable pairwise secrecy over broadcast channels [8], and
we saw that by allowing the two honest nodes to exchange
feedback over a public channel we obtain non zero secrecy
capacity, even if Eve’s channel is better. Next, we presented
two approaches towards building practical information theo-
retically secure systems [15], [5].

Along to these lines, we presented preliminary results of
a pairwise secret key agreement protocol and the techniques
for adapting it to a real wireless network. As a first step
of investigation, we aim to build protocols that leverage
the secret key generation from common information between
the honest nodes. We use well established techniques [7] to
prove that our protocol is information theoretically secure and
we aim to practical implementations that involve polynomial
time operations. For adapting to real networks we propose
a heuristic algorithm and we test its efficiency. Unlike to
the other two state-of-the-art practical frameworks presented
here, our approach, first, works on commodity network devices
without demanding any software or hardware modification,
second we evaluate our performance against theoretical results,
aiming to optimal scheme construction, and finally, we achieve
high secrecy rates (in the magnitude of Kilobits). We envision
the use of our scheme in realistic scenarios where there is a
continuous need for freshly generated secrets keys, and the
participating nodes would prefer not to spent resources in
computationally expensive operations.

They key challenge when considering real wireless networks
is that the theoretical network conditions may not hold any
more. We expect that investigating this problem may lead us
to system development that simulate these theoretical network
conditions or impose specific channel conditions known to the
honest parties. Introducing artificial noise by jamming as in
[5], might bring us one step closer towards this direction. Also,
developing sophisticated inference techniques based on col-
laborative schemes (as our proposed heuristic) for estimating
accurately the capabilities of Eve, is of great interest too.

The above discussion may not stay restricted to pairwise
secret key generation, but it can be extended to multiterminal
shared secret key generation [7]. In addition, so far we assume
that all nodes are connected to the same wireless broadcast
domain. Exploring multi-hop schemes and the corresponding
practical implementations would be a natural future step of
this work.
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APPENDIX
SECRET CONSTRUCTION IN SECTION V-A

Terminals Ti and Tj construct the following number of y-
packets in the privacy amplification phase:

Mij = min { VE , V1, V2, . . . Vn } ,

where:
- VE is the expected number of x-packets that are shared

by terminals Ti/Tj and missed by Eve.
- Vl is the number of x-packets shared by terminals Ti/Tj

and missed by terminal Tl.
We compute VE as

∑n
k=1 UEk , where UEk = δkE · Uk, and

Uk is the number of x-packets transmitted by terminal Tk and
received by both terminals Ti/Tj in round k of the initial phase.
In short, we count, for each terminal and for Eve, how many
of Ti/Tj’s shared x-packets this terminal/Eve has missed (or
is expected to have missed, in Eve’s case), and we set Mij to
the smallest of these numbers.

Terminals Ti and Tj construct the y-packets using simple
constructions as described in [7].


