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Abstract
We describe the design of a string programming/expression lan-
guage that supports restricted forms of regular expressions, condi-
tionals and loops. The language is expressive enough to represent
a wide variety of string manipulation tasks that end-users struggle
with. We describe an algorithm based on several novel concepts for
synthesizing a desired program in this language from input-output
examples. The synthesis algorithm is very efficient taking a fraction
of a second for various benchmark examples. The synthesis algo-
rithm is interactive and has several desirable features: it can rank
multiple solutions and has fast convergence, it can detect noise in
the user input, and it supports an active interaction model wherein
the user is prompted to provide outputs on inputs that may have
multiple computational interpretations.

The algorithm has been implemented as an interactive add-in for
Microsoft Excel spreadsheet system. The prototype tool has met the
golden test - it has synthesized part of itself, and has been used to
solve problems beyond author’s imagination.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis

General Terms Algorithms, Human Factors

Keywords Program Synthesis, User Intent, Programming by Ex-
ample (PBE), Version Space Algebra, Spreadsheet Programming,
String Manipulation

1. Introduction
More than 500 million people worldwide use spreadsheets. These
business end-users have myriad diverse backgrounds and include
commodity traders, graphic designers, chemists, human resource
managers, finance pros, marketing managers, underwriters, com-
pliance officers, and even mailroom clerks – they are not profes-
sional programmers, but they need to create small, often one-off,
applications to support business functions [5].

Unfortunately, the state of art in spreadsheet programming is
far from satisfactory. Spreadsheet systems come with tons of fea-
tures, but end-users struggle to find the correct feature or succes-
sion of commands to use from a maze of features to accomplish
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their task [9]. More significantly, programming is still required to
perform tedious and repetitive tasks such as transforming entities
like names/phone-numbers/dates from one format to another, data
cleansing, extracting data from several text files or web pages into
a single document, etc. Spreadsheet systems like Microsoft Excel
allow users to write macros using a rich inbuilt library of string and
numerical functions, or to write arbitrary scripts using a variety of
programming languages like Visual Basic, or .Net. Since end-users
are not proficient in programming, they find it too difficult to write
desired macros or scripts.

We have performed an extensive case study of spreadsheet help
forums and identified that string processing is one of the most
common class of programming problems that end-users struggle
with. This is not surprising given that languages like Perl, Awk,
Python came into existence to support string/text processing, and
that new languages like Java/C# provide a rich support for string
processing. During our study of help forums, we also carefully
studied how these users were describing the specification of the
desired program to the experts on the other side of the help forums.
It turns out that the most common form of specification was input-
output examples. Since input-output examples may lead to under-
specification, the interaction between the user and the expert often
involved a few rounds of communication (over multiple days).

We describe a program synthesis system that is capable of syn-
thesizing a wide range of string processing programs in spread-
sheets from input-output examples. The synthesizer aims to replace
the role of the forum expert, which not only removes a human from
the loop, but also enables users to solve their problems in a few
seconds as opposed to a few days. Our synthesis system, which
is deployment ready, has the following important usability proper-
ties.
∙ Fully Automated: We do not require non-sophisticated end-

users to provide annotations/hints of any form.
∙ Real Time: Our system takes less than 0.1 second on average

per interactive round.
∙ Easy Interaction: Programming by examples is an interactive

process where examples are added in each round to make the
specification more precise. Our system helps identify the inputs
for which the user should provide examples.
∙ Fast Convergence: Our system typically takes 1-4 rounds of

iteration for convergence in practice.
∙ Noise Handling: If the user makes a small mistake in mostly

correct specification, our system can still compute the likely
solution and report the likely mistake.

This paper makes the following contributions.
1. We describe a string programming/expression language that is

expressive enough to represent a wide variety of string manipu-
lation tasks found during an extensive study of Excel online help
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forums, while at the same time also being restrictive enough to
enable efficient program search over that space (Section 3).

2. We describe an algorithm with several novel concepts that can
efficiently synthesize a set of programs in our language that are
consistent with a given set of input-output examples (Section 4).

3. We describe extensions to the above algorithm that enable sev-
eral usability properties (Section 5).

4. We discuss our experience with a ready-to-be-deployed proto-
type tool (Section 6).

2. Problem Definition
We start out by describing a representative case-study, picked up
from an online Excel help forum, that illustrates a typical interac-
tion between a user and an expert on help forums. We then use it to
motivate the key technical problem that we address in this paper.

EXAMPLE 1. The user intends to extract the following bold sub-
strings from the respective strings:
1. John DOE 3 Data [TS]865-000-0000 - - 453442-00 06-23-2009
2. A FF MARILYN 30’S 865-000-0030 4535871-00 07-07-2009
3. A GEDA-MARY 100MG 865-001-0020 - - 5941-00 06-23-2009
The user initially provides a few examples to the expert that are
similar to the first example above. The expert provides a program
P1 that uses the logic of extracting 12 characters after the first
occurrence of “]”. The user runs program P1 on other inputs in
her spreadsheet and observes that it does not perform the desired
extraction for the second example above and then presents that
to the expert. The expert then provides a program P2 that uses
the logic of finding the first occurrence of “-” and extracting 3
characters on left of it and 8 characters on right of it. The user
runs program P2 on her spreadsheet and observes that it does not
perform the desired extraction for the third example above and then
presents that to the expert. The expert then provides a program P3

that uses the logic of finding the first occurrence of a pattern of the
form “???-????-???”, where ? is supposed to match any character.
The user runs program P3 on her spreadsheet and is satisfied with
the produced results, and the thread is closed.

One might wonder why did the expert not suggest a program P4

which is similar to P3, but ? is supposed to match any digit as op-
posed to any character. Or why did the expert not suggest a program
P5 which is similar to P3, but the first three occurrences of ? are
forced to match only 865. Even though programs P3, P4 and P5

are semantically different, these programs may not yield different
outputs on the inputs the user has in her spreadsheet. Hence these
programs are observationally equivalent over the format of the in-
puts present in the spreadsheet.

We draw the following conclusions from this representative
case study. First, the user is communicating her intent using input-
output examples. Second, the user cannot be expected to provide
representative inputs in the first round. Hence, an example based
synthesis system must be interactive. However, in order to remain
usable, the system should allow the user to interact easily and
converge quickly (i.e., in a few rounds) to the desired intent [10].
In this paper, we describe such a program synthesis system. We
present an algorithm for synthesizing string manipulation programs
that are consistent with input-output examples. We also describe
how the algorithm can be extended to enable easy interaction and
fast convergence.

3. Expression Language for String Manipulation
We have identified a string expression language that is expressive
enough to describe various string manipulation tasks succinctly,
while at the same time concise enough to be amenable for efficient

learning. There is a tradeoff between the expressiveness of a search
space, and the complexity of finding simple consistent hypotheses
within that space [6, 18]. In general, the more expressive a search
space, the harder the task of finding consistent hypotheses within
that search space. However, it is also worth-mentioning that the
expressiveness-complexity tradeoff is not as simple as it seems, as
an expressive language can sometimes make a simple theory fit the
data, whereas restricting the expressiveness of the language means
that any consistent theory must be very complex. Our string expres-
sion language seems to enjoy the right tradeoff. We present a core
version of this language; extensions that enable easy adaptation of
the underlying algorithm are mentioned later in Section 4.7.1.

The syntax and semantics of the string expressions P is for-
mally described in Figure 1 and Figure 2 respectively. We use the
notation � to denote an empty string and ⊥ to denote an undefined
value. If any of the arguments to any constructor is ⊥, then it re-
turns ⊥. The notation s[t1 : t2] denotes the substring of s starting
at location t1 and ending at location t2.

The string expressions P map an input state �, which holds
values form string variables v1, ⋅⋅, vm (denoting the multiple input
columns in a spreadsheet), to a single output string s.

P : (String× . . .× String)→ String

The above formalism can also be used for string processing tasks
that require generating a tuple of n strings as an output by simply
solving n independent problems.

A trace expression refers to the Concatenate(f1, ⋅⋅, fn) con-
structor, which denotes the string obtained by concatenating the
strings represented by f1, f2, ⋅⋅, fn in that order. An atomic expres-
sion refers to ConstStr (denoting a constant string), SubStr or
Loop constructors, which are explained below.

3.1 Substrings
The SubStr(vi, p1, p2) constructor makes use of two position ex-
pressions p1 and p2, each of which evaluates to an index within the
string vi. SubStr(vi, p1, p2) denotes the substring of string vi that
starts at index specified by p1 and ends at index specified by p2-1.
If either of p1 or p2 refer to an index that is outside the range of
string vi, then the SubStr constructor returns ⊥.

The position expression CPos(k) refers to the ktℎ index in
a given string from the left side (or right side), if the integer
constant k is non-negative (or negative). Pos(r1, r2, c) is another
position constructor, where r1 and r2 are some regular expressions
and integer expression c evaluates to a non-zero integer. The Pos
constructor evaluates to an index t in a given string s such that r1
matches some suffix of s[0 : t-1] and r2 matches some prefix of
s[t : ℓ-1], where ℓ = Length(s). Furthermore, t is the ctℎ such
match starting from the left side (or the right side) if c is positive
(or negative). If not enough matches exist, then ⊥ is returned.

We use notation SubStr2(vi, r, c) to denote the ctℎ occurrence
of regular expression r in vi, i.e., SubStr(vi, Pos(�, r, c), Pos(r, �, c)).
We often denote SubStr2(vi, CPos(0), CPos(-1)) by simply vi.

Tokens and Regular Expressions A token is either some special
token or is constructed from some character class C in two ways:
C+ denotes a token that matches a sequence of one or more charac-
ters from C. ¬C+ denotes a token that matches a sequence of one
or more characters that do not belong to C. We use the following
collection of character classes C: Numeric Digits (0-9), Alphabets
(a-zA-Z), Lowercase alphabets (a-z), Uppercase alphabets (A-Z),
Accented alphabets, Alphanumeric characters, Whitespace charac-
ters, All characters. We use the following SpecialTokens.
∙ StartTok: Matches the beginning of a string.
∙ EndTok: Matches the end of a string.
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String expr P := Switch((b1, e1), ⋅⋅, (bn, en))
Bool b := d1 ∨ ⋅ ⋅ ∨ dn

Conjunct d := �1 ∧ ⋅ ⋅ ∧ �n
Predicate � := Match(vi, r, k) ∣ ¬ Match(vi, r, k)

Trace expr e := Concatenate(f1, ⋅⋅, fn)
Atomic expr f := SubStr(vi, p1, p2)

∣ ConstStr(s)

∣ Loop(�w : e)

Position p := CPos(k) ∣ Pos(r1, r2, c)
Integer expr c := k ∣ k1w + k2

Regular Expression r := TokenSeq(T1, ⋅⋅,Tm)

Token T := C + ∣ [¬C] +

∣ SpecialToken

Figure 1. Syntax of String Expressions P . vi refers to a free string
variable, while w refers to a bound integer variable. k denotes an
integer constant and s denotes a string constant.

∙ A token for each special character, such as hyphen, dot, semi-
colon, colon, comma, backslash, forwardslash, left/right paren-
thesis/bracket etc.

For better readability, we reference tokens by representative names.
For example, AlphTok refers to a sequence of alphabetic charac-
ters, NumTok refers to a sequence of numeric digits, NonDigitTok
refers to a sequence of characters that are not numeric digits,
HyphenTok matches with the hyphen character.

Addition of more tokens may make the language more power-
ful. (These tokens may be added either by the user or can be mined
by searching for frequently occurring substrings in a given spread-
sheet.) However, to stay true to our goal of avoiding any user anno-
tations, we aim to keep the language expressive without having to
depend on addition of problem-specific tokens.

A regular expression r = TokenSeq(T1, ⋅⋅,Tn) is a sequence
of tokens T1, ⋅⋅,Tn. We often refer to singleton token sequences
TokenSeq(T1) simply as T1. We use the notation � to denote an
empty sequence of tokens. � matches an empty string.

It is worth discussing our restricted choice of regular expres-
sions. First, we allow for only a restricted form of the Kleene star
operator. The Kleene star is restricted to one or more occurrences as
opposed to zero or more occurrences (and that too at the innermost
level). Second, we do not allow for the disjunction operator. These
restrictions (together with the token partitioning optimization de-
scribed in Section 4.2) enable us to efficiently enumerate regular
expressions that match certain parts of a string. If we allowed ar-
bitrary Kleene star and disjunction, we would lose this ability. Use
of conditionals at the outer level allow us to recover some of the
expressiveness lost due to restricted form of regular expressions.

The following two examples illustrate the expressive power of
our substring constructor.

EXAMPLE 2. The goal in this problem, taken from an Excel online
help forum, is to extract the quantity of the purchase. Observe that
characterizing the substring that is being extracted is non-trivial,
in fact, not even possible using the character-class tokens that
our language provides. However, characterizing the (left) position
before the substring and the (right) position after the substring is
relatively easy and also expressible in our language.

[[Switch((b1, e1), ⋅⋅, (bn, en))]] � = if ([[b1]]�) then [[e1]]�
...

else if ([[bn]]�) then [[en]]�
else ⊥

[[d1 ∨ . . . ∨ dn]] � = [[d1]] � ∨ . . . ∨ [[dn]] �
[[�1 ∧ . . . ∧ �n]] � = [[�1]] � ∧ . . . ∧ [[�n]] �

[[Match(vi, r, k)]] � = Match(�(vi), r, k)

[[Concatenate(f1, ⋅⋅, fn)]] � = Concatenate([[f1]] �, ⋅⋅, [[fn]] �)

[[Loop(�w : e)]] � = LoopR(�w : e, 1, �)
LoopR(�w : e, k, �) = let t := [[e[k/w]]] � in

if (t = ⊥) then � else
Concatenate(t, LoopR(�w : e, k+1, �))

[[SubStr(vi, p1, p2)]] � = s[[[p1]] s : [[p2]] s],where s = �(vi).

[[ConstStr(s)]] � = s

[[CPos(k)]] s =

{
k if k ≥ 0

Length(s) + k otherwise

[[Pos(r1, r2, c)]] s = t such that ∃ t1, t2 s.t. 0 ≤ t1 < t ≤ t2,
s[t1 : t-1] matches r1, s[t : t2] matches r2,

and t is the ctℎ such position (in increasing/
decreasing order if c is positive/negative.

Figure 2. Semantics of String Expressions P .

Input v1 Output
BTR KRNL WK CORN 15Z 15Z
CAMP DRY DBL NDL 3.6 OZ 3.6 OZ
CHORE BOY HD SC SPNG 1 PK 1 PK
FRENCH WORCESTERSHIRE 5 Z 5 Z
O F TOMATO PASTE 6 OZ 6 OZ

The following string program identifies the left position to be the
one before the occurrence of the first number, while the right posi-
tion to be the one at the end of the string.
String Program (in our language):
SubStr(v1, Pos(�,NumTok, 1), CPos(−1))

EXAMPLE 3 (Directory Name Extraction). Consider the follow-
ing example taken from an excel online help forum.

Input v1 Output
Company∖Code∖index.html Company∖Code∖
Company∖Docs∖Spec∖specs.doc Company∖Docs∖Spec∖

String Program:
SubStr(v1, CPos(0), Pos(SlashTok, �,−1))

3.2 Loops
The string expression Loop(�w : e) refers to concatenation of
e1, e2, . . . , en, where ei is obtained from e by replacing all occur-
rences of w by i. n is the smallest integer such that evaluation of
en+1 yields ⊥. It is also possible to define more interesting termi-
nation conditions (based on position expression, or predicates), but
we leave out details for lack of space.

EXAMPLE 4 (Generate Abbreviation). The goal here is to extract
out all uppercase letters. This problem is taken from [21] and is
presented as an example of Advanced Text Formulas.
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Input v1 Output
International Business Machines IBM
Principles Of Programming Languages POPL
International Conference on Software Engineering ICSE

String Program:
Loop(�w : Concatenate(SubStr2(v1, UpperTok, w))).

EXAMPLE 5 (Split Odds). The goal in this problem, taken from
an Excel help forum, is to place each odd in a separate cell,
while ignoring any extraneous numbers or parenthesis. We reduce
the problem of generating multiple unbounded number of output
strings to that of generating one output string where the multiple
strings are separated by a unique symbol, say#.

Input v1 Output
(6/7)(4/5)(14/1) 6/7 # 4/5 # 14/1 #
49(28/11)(14/1) 28/11 # 14/1 #
() (28/11)(14/1) 28/11 # 14/1 #

String Program:
Loop(�w : Concatenate(SubStr(v1, p1, p2), ConstStr(“# ”)))
where p1 ≡ Pos(LeftParenTok, TokenSeq(NumTok, SlashTok), w))
and p2 ≡ Pos(TokenSeq(SlashTok,NumTok),RightParenTok, w).

EXAMPLE 6 (Remove excess spaces). The goal in this problem,
provided by the product team and also present in [21], is to re-
move all leading and trailing spaces and replace internal strings of
multiple spaces by a single space. Notice how the loop expression
prints out all but last sequence of non-whitespace characters (to
not print any trailing whitespace in the output).

Input v1 Output
Oege de Moor Oege de Moor

Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

String Program:
Concatenate(Loop(�w : Concatenate(SubStr(v1, p1, p2)),

ConstStr(“ ”)),
SubStr2(v1,NonSpaceTok,−1))

where p1 ≡ Pos(�,NonSpaceTok, w), and
p2 ≡ Pos(NonSpaceTok, TokenSeq(SpaceTok,NonSpaceTok), w).

3.3 Conditionals
The top-level string expression P is a Switch constructor whose
arguments are pairs of (disjoint) boolean expressions b and trace
expressions e. The value of P in a given input state � is the value of
the trace expression that corresponds to the boolean expression sat-
isfied by �. Boolean expressions b are represented in DNF form and
are boolean combinations of predicates of the form Match(vi, r, k),
where r is some regular expression and k is some integer constant.
Match(vi, r, k) evaluates to true iff vi contains at least k matches
of regular expression r. We often denote Match(vi, r) by simply
Match(vi, r, 1).

Conditionals play a very important role in our string processing
language. They allow us to appropriately interpret/process data
that is in multiple formats. This is precisely the place where most
existing (data cleansing) tools that allow string processing through
tons of automated pre-canned features fail since they assume that
the input is in a fixed structured format. Conditionals also allow us
to express transformations that are beyond the expressive power of
the underlying conditional-free part of our language.

EXAMPLE 7 (Conditional Concatenation). The goal here is to
concatenate the first and the second strings v1 and v2 in the in-
put tuple as v1(v2), only if both v1 and v2 are non-empty strings.
Otherwise, the output should be empty string. This example is taken
from an Excel online help forum.

Input v1 Input v2 Output
Alex Asst. Alex(Asst.)
Jim Manager Jim(Manager)
Ryan � �
� Asst. �

String Program:
Switch((b1, e1), (b2, �)), where
b1 ≡ Match(v1,CharTok) ∧ Match(v2,CharTok),
e1 ≡ Concatenate(v1, ConstStr(“(”), v2, ConstStr(“)”)),
b2 ≡ ¬Match(v1,CharTok) ∨ ¬Match(v2,CharTok).

EXAMPLE 8 (Mixed Date Parsing). The goal here is to parse
dates in multiple formats into day, month, and year. This example is
taken from an internal mailing list. We show below the program for
day extraction (Month and year extraction are solved similarly.)

Input v1 Output
01/21/2001 01
22.02.2002 02
2003-23-03 03

String Program:
Switch((b1, e1), (b2, e2), (b3, e3)), where
b1 ≡ Match(v1, SlashTok), b2 ≡ Match(v1,DotTok),
b3 ≡ Match(v1,HyphenTok),
e1 ≡ SubStr(v1, Pos(StartTok, �, 1), Pos(�, SlashTok, 1))
e2 ≡ SubStr(v1, Pos(DotTok, �, 1), Pos(�,DotTok, 2))
e3 ≡ SubStr(v1, Pos(HyphenTok, �, 2), Pos(EndTok, �, 1))
EXAMPLE 9 (Name Parsing). The goal in this problem, provided
by the product team, is to parse names that occur in multiple
formats and transform them into a uniform format.

Input v1 Output
Dr. Eran Yahav Yahav, E.
Prof. Kathleen S. Fisher Fisher, K.
Bill Gates, Sr. Gates, B.
George Ciprian Necula Necula, G.
Ken McMillan, II McMillan, K.

String Program for extracting initial of the first name:
The logic used is that of extracting the initial of the first word not
followed by a dot: SubStr(v1, p1, p2), where
p1 ≡ Pos(�, TokenSeq(AlphTok,NonDotTok), 1), and
p2 ≡ Pos(�, TokenSeq(LowerTok,NonDotTok), 1).
String Program for extracting last name:
The logic used is that of extracting the word followed by a comma,
or the last word (if no comma exists): Switch((b1, e1), (b2, e2)),
where b1 ≡ Match(v1, CommaTok), b2 ≡ ¬Match(v1, CommaTok),
e1 ≡ SubStr2(v1, p1, p2), e2 ≡ SubStr2(v1, AlphTok,−1),
p1 ≡ Pos(�, TokenSeq(AlphTok, CommaTok), 1)
and p2 ≡ Pos(AlphTok, CommaTok, 1)

The above two programs can be concatenated together (after dis-
tributing conditionals at the top-level) along with some constant
strings to yield the desired program.

EXAMPLE 10 (Phone Numbers). The goal here is to parse phone
numbers that occur in multiple formats and transform them into a
uniform format, adding a default area code of “425” if the area
code is missing. This example was provided by the product team.

Input v1 Output
323-708-7700 323-708-7700
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139

String Program:
Switch((b1, e1), (b2, e2)), where
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P̃ := Switch((b1, ẽ1), ⋅⋅, (bn, ẽn))
ẽ := Dag(�̃, �s, �t, �̃,W ),

where W : �̃ → 2
˜f

f̃ := Loop(�w : ẽ)
∣ SubStr(vi, {p̃j}j , {p̃k}k) (1)

∣ ConstStr(s)

p̃ := CPos(k)

∣ Pos(̃r1, r̃2, c̃)

r̃ := TokenSeq(T̃1, ⋅⋅, T̃n)

[[Switch((b1, ẽ1), ⋅⋅, (bn, ẽn))]] = {Switch((b1, e1), ⋅⋅, (bn, en)) ∣ ei ∈ [[ẽi]]}
[[Dag(�̃, �s, �t,W )]] = {Concatenate(f1, ⋅⋅, fn) ∣ fi ∈ [[W (�i)]],

�1, ⋅⋅, �n ∈ �̃ form a path between �s and �t}
[[{̃fi}i]] = {f ∣ f ∈ [[̃fi]]}

[[Loop(�w : ẽ)]] = {Loop(�w : e) ∣ e ∈ [[ẽ]]}
[[SubStr(vi, {p̃j}j , {p̃

′
k}k)]] = {SubStr(vi, p1, p2) ∣ p1 ∈ [[p̃j ]], p2 ∈ [[p̃′

k]]}
[[ConstStr(s)]] = {ConstStr(s)}

[[CPos(k)]] = {CPos(k)}
[[Pos(̃r1, r̃2, c̃)]] = {Pos(r1, r2, c) ∣ r1 ∈ r̃1, r2 ∈ r̃2, c ∈ c̃}

[[TokenSeq(T̃1, ⋅⋅, T̃n)]] = {TokenSeq(T1, ⋅⋅,Tn) ∣ T1 ∈ T̃1, ⋅⋅,Tn ∈ T̃n}
Figure 3. Syntax and semantics of a language/data-structure for succinctly describing huge sets of string expressions.

Intersect(Dag(�̃1, �
s
1, �

t
1, �̃1,W1), Dag(�̃2, �

s
2, �

t
2, �̃2,W2)) = Dag(�̃1 × �̃2, (�s1, �s2), (�t1, �t2), �̃12,W12), where

�̃12 = {⟨(�1, �2), (�′1, �′2)⟩ ∣ ⟨�1, �′1⟩ ∈ �̃1, ⟨�2, �′2⟩ ∈ �̃2}, and

W12(⟨(�1, �2), (�′1, �′2)⟩) = {Intersect(̃f, f̃
′
) ∣ f̃ ∈W1(⟨�1, �′1⟩), f̃

′ ∈W2(⟨�2, �′2⟩)}

Intersect(SubStr(vi, {p̃j}j , {p̃k}k), SubStr(v
′
i, {p̃′

ℓ}ℓ, {p̃m}m)) = {IntersectPos(p̃k, p̃m)}k,m)

Intersect(ConstStr(s1), ConstStr(s2)) = ConstStr(s1) if s1 = s2

Intersect(Loop(�w : ẽ1), Loop(�w : ẽ2)) = Loop(�w : Intersect(ẽ1, ẽ2))
IntersectPos(CPos(k1), CPos(k2)) = CPos(k1) if k1 = k2 (2)

IntersectPos(Pos(̃r1, r̃2, c̃), Pos(̃r′1, r̃
′
2, c̃

′)) = Pos(IntersectRegex(̃r1, r̃′1), IntersectRegex(̃r2, r̃
′
2), c̃ ∩ c̃′)

IntersectRegex(TokenSeq(T̃1, ⋅⋅, T̃n), TokenSeq(T̃
′
1, ⋅⋅, T̃

′
m)) = TokenSeq(T̃1 ∩ T̃

′
, ⋅⋅, T̃n ∩ T̃

′
m) if n = m

Figure 4. The Intersect function. The Intersect function returns ∅ in all other cases not covered above.

b1 ≡ Match(v1,NumTok, 3), b2 ≡ ¬Match(v1,NumTok, 3),
e1 ≡ Concatenate(SubStr2(v1,NumTok, 1), ConstStr(“-”),

SubStr2(v1,NumTok, 2), ConstStr(“-”),
SubStr2(v1,NumTok, 3))

e2 ≡ Concatenate(ConstStr(“425-”), SubStr2(v1,NumTok, 1),
ConstStr(“-”), SubStr2(v1,NumTok, 2))

4. Algorithm
In this section, we describe an algorithm for learning a string ex-
pression (in the language presented in Section 3) that is consis-
tent with the provided input-output examples. In fact, the algorithm
ends up learning a set of string expressions all of which are con-
sistent with the provided input-output examples. This enables the
algorithm to have several desirable properties discussed later.

The top-level structure of the algorithm is described in proce-
dure GenerateStringProgram in Fig 7, which we explain below.

Step 1: The algorithm first computes (in the loop at Line 2), for
each input-output pair (�, s), a set of all trace expressions that map
input � to output s. We refer to this set as a trace set. This is done
using the procedure GenerateStr (explained in Section 4.3). The
set of such expressions can be huge; a key enabling technology is
the data-structure (described in Section 4.1) for succinctly repre-
senting and manipulating such a huge set of expressions.

Step 2: If the target program does not contain any conditionals
(i.e., it is expressible as a trace expression, then the algorithm can
simply intersect the trace sets of all input-output examples. How-
ever, since this is not a valid assumption, the algorithm first parti-
tions the examples so that inputs in the same partition are handled
by the same conditional in the top-level Switch construct (and then

intersect the trace sets for inputs in the same partition). Partitioning
is performed (in Line 4) using the procedure GeneratePartition
(explained in Section 4.5.1). Inputs in the same partition have the
property that intersection of their trace sets is non-empty. The al-
gorithm uses a greedy heuristic to minimize the number of such
partitions by starting with singleton partitions and then iteratively
merging those partitions that have the highest compatibility score
(a notion defined in Sec 4.5.1).

Step 3: The algorithm then constructs (in the loop at Line 7) a
boolean classification scheme as a function of the inputs that will
place them in the appropriate partition. This is done using the pro-
cedure GenerateBoolClassifier (explained in Section 4.5.2).
This boolean classification forms the top-level switch construct for
the string program returned by the algorithm at Line 9.

Steps 2 and 3 are explained in detail in Sec 4.5. The GenerateStr
procedure used in Step 1 is explained in Sec 4.3. It makes use of two
key procedures GenerateSubstring and GenerateLoop, which
are discussed in Sections 4.2 and 4.4 respectively. We start out by
briefly describing the key data-structure (used by these procedures)
and the operations that it supports.

4.1 Data-structure for Manipulating Sets of Expressions
Figure 3 describes our data-structure/language for succinctly rep-
resenting huge sets of string expressions of various kinds and also
presents its formal semantics.
P̃ , ẽ, f̃, p̃, and r̃ denote respectively a set of string programs, a set

of trace expressions, a set of atomic expressions, a set of position
expressions, and a set of regular expressions. They are represented
using the data-structure shown in Fig 3. T̃ and c̃ represent a set
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Size(Switch((b1, ẽ1), ⋅⋅, (bn, ẽn))) = Size(ẽ1)× ⋅ ⋅ ×Size(ẽn)

Size(Dag(�̃, �s, �t,W )) = size(�t)

where size(�) =
∑
�′

(size(�′)×
∑

˜f∈W (⟨�′,�⟩)

Size(̃f))

and size(�s) = 1

Size(SubStr(vi, {p̃j}j , {p̃
′
k}k)) = (

∑
j

Size(p̃j))× (
∑
k

Size(p̃′
k))

Size(Loop(�w : ẽ)) = Size(ẽ)
Size(ConstStr(s)) = 1

Size(CPos(k)) = 1

Size(Pos(̃r1, r̃2, c̃)) = Size(̃r1)× Size(̃r2)× Size(c̃)

Size(TokenSeq(T̃1, ⋅⋅, T̃n)) = Size(T̃1)× ⋅ ⋅ ×Size(T̃n)

Figure 5. The Size function. The equations here also illustrate
the huge representation savings that our data-structures provide
compared to explicit representation.

of tokens and a set of integer expressions, and are represented
explicitly.

The Concatenate constructor used in our string language is
generalized to the Dag constructor Dag(�̃, �s, �t, �̃,W ), where �̃
is a set of nodes containing two distinctly marked source and tar-
get nodes �s and �t, �̃ is a set of edges over nodes in �̃ that in-
duces a DAG, and W maps each � ∈ �̃ to a set of atomic expres-
sions. The set of all Concatenate expressions represented by a
Dag(�̃, �s, �t, �̃,W ) constructor include those whose ordered ar-
guments belong to the corresponding edge on any path from �s to
�t. The Switch, Loop, SubStr, Pos, and TokenSeq constructors
have all been overloaded to accept a set of values of the correspond-
ing type for its arguments with the expected semantics.

The data-structure supports the following two interesting oper-
ations, both of which are required for the partitioning procedure.

Intersection Operation Given two sets of expressions of the same
kind, construct a set of expressions that are common to the two
given sets. The intersection function is described in Fig 4. The most
interesting part is the intersection of two DAGs, which is similar to
intersection of two regular automatas. The challenge, compared to
regular automata case, is to intersect the labels on the edges - in case
of automata, the labels are simply a set of characters, while in our
case, the labels are sets of string expressions. We intersect sets of
string expressions using the intersection operation supported by the
data-structure used for representing those sets of string expressions.

Size Operation Given a set of expressions of some kind, estimate
the size of the set. The size function is described in Figure 5.
Observe the succinctness benefits provided by the factorization
used by each set construct.

4.2 Learning Substring Extraction Logics
In this section, we describe how to learn the set of all SubStr ex-
pressions in our language that can be used to extract a given sub-
string from a given string. (This is an important component of the
procedure GenerateStr.) The number of such expressions may be
huge, in which case, explicit representation and computation of all
these expressions would be infeasible with respect to both time and
space. For example, following is a small sample of various logics
for extracting “706” from the string “425-706-7709” (call it v1).

∙ Second number: SubStr2(v1,NumTok, 2).
∙ Second last alphanumeric token:
SubStr2(v1, AlphNumTok,−2).
∙ Substring between the first hyphen and the last hyphen:
SubStr(v1, Pos(HyphenTok, �, 1), Pos(�,HyphenTok,−1)).
∙ First number that occurs between hyphen on both ends.
SubStr(v1, Pos(HyphenTok, TokenSeq(NumTok,HyphenTok), 1),

Pos(TokenSeq(HyphenTok,NumTok),HyphenTok, 1)).
∙ First number that is preceded by a number-hyphen sequence.
SubStr(v1, Pos(TokenSeq(NumTok,HyphenTok),NumTok, 1),

Pos(TokenSeq(NumTok,HyphenTok,NumTok), �, 1)).
The GenerateSubstring procedure performs this task effec-

tively, and is built around the following two key observations.

Decomposition into independent sub-problems The substring-
extraction problem can be decomposed into two independent
position-identification problems, each of which can be solved inde-
pendently. Note the two independent calls to GeneratePosition
procedure at Lines 3 and 4 in GenerateSubstring procedure in
Figure 7. The solutions to the substring-extraction problem can
also be maintained succinctly by independently representing the
solutions to the two position-identification problems. Note the rep-
resentation of the SubStr constructor in Eq. 1 in Figure 3.

Partitioning of Tokens into Indistinguishable Sets A given
string does not often distinguish between several sets of tokens.
Hence, for any position-identification problem, the choice of reg-
ular expressions for a given string can be restricted to using only
one token from each set of indistinguishable tokens. We define this
more formally below.

DEFINITION 1 (Indistinguishability). We say that a token T1 is
indistinguishable from token T2 with respect to a string s if the set
of matches of token T1 in s is same as the set of matches of token
T2 in string s.

Note that indistinguishability is an equivalence relation.

DEFINITION 2 (Indistinguishability Partition). Given a string s
and a set of tokens, let IPartss denote the partition of tokens into
indistinguishable sets, and let Repss denote some set of representa-
tive tokens, one from each partition. We use the notation IPartss(T)
to denote the set in which token T lies.

We use this observation to restrict the choice of tokens used
in constructing regular expressions to come from the set Repss at
Lines 2 and 3 in procedure GeneratePosition. This significantly
reduces the number of regular expressions that get considered at
Lines 2 and 3 without affecting the completeness of the algorithm.

4.3 Learning Traces
In this section, we discuss how to learn the set of all trace expres-
sions (i.e., Concatenate constructors) that can be used to gener-
ate a given output string from a given input state. The number of
such expressions may be huge. For example, consider the prob-
lem of transforming phone numbers in Example 10. Consider the
second input-output example, where the input state consists of one
string “(425)-706-7709” and the output string is “425-706-7709”.
Figure 6 shows a small sampling of different ways of generating
parts of the output string from the input string using SubStr and
ConstStr constructors. (Each substring extraction task itself can
be performed in a huge number of ways as explained in Sec 4.2).
Following are three of the trace expressions represented in the fig-
ure, of which the second one (also shown in bold in the figure),
would lead to the correct answer.
1. Extract the substring “425”. Extract the substring “-706-7709”.
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Figure 6. Small sampling of different ways of generating parts of
an output string from the input string.

2. Extract the substring “425”. Print constant “-”. Extract the sub-
string “706”. Print constant “-”. Extract the substring “7709”.

3. Extract the substring “425”. Extract the substring “-706”. Print
constant “-”. Extract the substring “7709”.
GenerateStr procedure performs this task effectively (by us-

ing the DAG data-structure introduced earlier to succinctly repre-
sent all trace expressions). It uses the following crucial observa-
tions.

Independence of (unknown) sub-problems First, observe that
the logic for generating some substring of an output string is com-
pletely decoupled from the logic for generating another disjoint
substring of the output string. Hence, the problem of generating
the output string can be decoupled into independent sub-problems
of generating different parts of the output string.

In particular, assume that we have an oracle (as in a PBD system
like [11]) that provides us with the decomposition of a given out-
put string into n disjoint adjacent substrings, where each disjoint
substring gets generated by a different argument of the enclosing
concatenate operator. Given such a decomposition, we can decom-
pose the problem of identifying the trace expression for generating
the output string, into n independent sub-problems of generating
each of the disjoint adjacent substrings using at atomic expression
constructor. These problems can not only be solved independently,
but their solutions can also be stored independently to succinctly
represent an exponential number of solutions in linear space. How-
ever, unfortunately, we do not apriori know the appropriate decom-
position of the output string into various parts for which we can
independently seek a solution. The naive strategy of enumerating
all possible decompositions would not scale since the number of
decompositions is exponential in the size of the output string.

Number of possible sub-problems is quadratic Second, observe
that the total number of different substrings/parts of a string is
quadratic (and not exponential) in the size of the output string. This
leads to a succinct representation of all possible decompositions of
a string using a DAG representation, and hence allows us to de-
compose the problem of generating the output string (using a trace
expression) into a quadratic number of independent sub-problems
of generating different substrings of the output string (using some
atomic expression).

With the above two observations, we are now ready to explain
the effective functioning of the procedure GenerateStr. The pro-
cedure GenerateStr generates a Dag(�̃, �s, �t, �̃,W ) constructor
that represents the set of all trace expressions that can generate a
given output string from a given input state. The key idea is to
construct a node corresponding to each position within the out-
put string and create an edge from a node corresponding to any
position to a node corresponding to any later position. Observe

that each edge here corresponds to some substring of the output.
Each such edge is annotated with the set of all atomic expressions
that can generate the corresponding substring (Lines 5 and 6 in
procedure GenerateStr). The set of all such SubStr and Loop
expressions is generated by Procedures GenerateSubstring and
GenerateLoop respectively. The following theorem holds.

THEOREM 1. Procedure GenerateStr(�, s) computes the set of
all trace expressions e with the following properties:

A1. (Soundness) e generates the output string s from the input state
�, i.e., [[e]] � = s.

A2. (Completeness Restriction) Any loop that occurs in e is non-
nested and executes at least twice on �.

PROOF: The procedure GenerateSubstring(�, s) generates the
set of all SubStr expressions that can generate s from �.
The procedure GenerateLoop(�, s,W ) extends the map-
ping W (k1, k4) with all Loop expressions that can generate
s[k1, k4] from � and furthermore satisfy the restrictions in A2.
Hence, the theorem follows.

4.4 Learning Loops
In this section, we discuss how to infer the set of all Loop construc-
tors that can be used to generate some unknown part of a given
output string s from a given input state �. In the process, we would
also identify the unknown part of the output string that the Loop
constructor can generate. Procedure GenerateLoop performs this
task effectively, and involves the following steps:
1. Guess three positions within the output string k1, k2, and k3.
2. Unify the set of trace expressions that can generate s[k1 : k2]

with the set of trace expressions that can generate s[k2 : k3] to
obtain a new set of string expressions, say ẽ that uses the loop
iterator w. The unification algorithm is explained below.

3. Obtain the set of substrings obtained by running the string ex-
pressions ẽ on input �. If this set contains a singleton string that
matches s[k1 : k3] for some k3, then we conclude that s[k1 : k3]
can be generated by Loop(�w : ẽ). Otherwise ignore.

The unification algorithm is same as the intersection algorithm
except with the following replacement to Eq. 2 in Figure 4.

IntersectPos(k1, k2) = (k2 − k1)w + k1 if k1 ∕= k2

The key idea above is to guess a set of loop bodies by unifying the
sets of trace expressions associated with the substrings s[k1 : k2]
and s[k2 : k3], and then test the validity of the conjectured set
of loops. For performance reasons, we do not recursively invoke
GenerateLoop (in the call that it makes to GenerateStr). This
allows us to discover all single loops. Nested loops may be discov-
ered by controlling the recursion depth.

4.5 Learning Conditionals
In this section, we discuss how to generate the top-level Switch
constructor, after having learned, for each input-output example,
the set of all trace expressions that can generate the output string
from the input state. There are two important components that
enable learning of appropriate conditionals: partitioning of input-
output examples into disjoint partitions, and learning classifiers
based on inputs for those partitions. The classifiers provide the
conditionals, while the intersection of the trace sets associated with
various inputs in a partition yields the computational branch for the
corresponding conditional.

4.5.1 Learning Partitions
In this section, we discuss how to appropriately classify the input-
output examples into different partitions - the idea being that exam-
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GenerateStringProgram(S: Set of (�, s) pairs)

1 T := ∅;
2 foreach (�, s) ∈ S
3 T := T ∪ ({�}, GenerateStr(�, s));
4 T := GeneratePartition(T );
5 �̃′ := {� ∣ (�, s) ∈ S};
6 foreach (�̃, ẽ) ∈ T:
7 let B[�̃] := GenerateBoolClassifier(�̃, �̃′-�̃)
8 Let (�̃1, ẽ1), . . . , (�̃k, ẽk) be the k elements in

T in increasing order of Size(ẽ).
9 return Switch((B[�̃1], ẽ1), . . . , (B[�̃k], ẽk));

GeneratePartition(S: Set of (�, s) pairs)
1 while exists (�̃, ẽ), (�̃′, ẽ′) ∈ T s.t. Comp(ẽ, ẽ′)
2 Let (�̃1, ẽ1), (�̃2, ẽ2) ∈ T be s.t. CS(ẽ1, ẽ2)

is largest.
3 T := T − {(�̃1, ẽ1), (�̃2, ẽ2)}∪

{(�̃1 ∪ �̃2, Intersect(ẽ1, ẽ2))};
4 return T;

GenerateBoolClassifier(�̃1,�̃2: Set of inputs)
1 �̃′

1 := �̃1; b := false;
2 while (�̃′

1 ∕= ∅)
3 Old�̃′

1 := �̃′
1;

4 �̃′
2 := �̃2; �̃′′

1 := �̃′
1; d := true;

5 while (�̃′
2 ∕= ∅)

6 Old�̃′
2 := �̃′

2;
7 Preds := {Match(vi, r, c),¬Match(vi, r, c) ∣

[[Match(vi, r, c)]]�, � ∈ �̃1 ∪ �̃2};
8 Let � ∈ Preds be s.t. CSP(�, �̃′′

1 , �̃
′
2)

is largest.
9 d := d ∧ �;

10 �̃′′
1 := �̃′′

1 − {�1 ∣ �1 ∈ �̃′′
1 ,¬[[�]]�1};

11 �̃′
2 := �̃′

2 − {�2 ∣ �2 ∈ �̃′
2,¬[[�]]�2};

12 if (Old�̃′
2 = �̃′

2) then FAIL.
13 �̃′

1 := �̃′
1 − �̃′′

1 ; b := b ∨ d;
14 if (Old�̃′

1 = �̃′
1) then FAIL.

15 return b;

GenerateStr(�: Input state, s: Output string)
1 �̃ := {0, . . . , Length(s)};
2 �s := {0};
3 �t := {Length(s)};
4 �̃ := {⟨i, j⟩ ∣ 0 ≤ i < j ≤ Length(s)};
5 Let W be the mapping that maps edge ⟨i, j⟩ ∈ �̃ to the set

{ConstStr(s[i : j − 1])} ∪ GenerateSubstring(�, s[i : j − 1]);
6 W ′ := GenerateLoop(�, s,W );

7 return Dag(�̃, �s, �t, �̃,W ′);

GenerateLoop(�: Input state, s: Output string, W)

1 W ′ :=W;
2 foreach 0 ≤ k1, k2, k3 < Length(s):
3 ẽ1 := GenerateStr(�, s[k1 : k2]); ẽ2 := GenerateStr(�, s[k2 : k3]);
4 ẽ := Unify(ẽ1, ẽ2);
5 if ([[Loop(�w : ẽ)]]� = {s[k1 : k4]}) for some k4
6 W ′(⟨k1, k4⟩) :=W ′(⟨k1, k4⟩) ∪ {Loop(�w : ẽ)};
7 return W ′;

GenerateSubstring(�: Input state, s: String)

1 result := ∅;
2 foreach (i, k) s.t. s is substring of �(vi) at position k
3 Y1 := GeneratePosition(�(vi), k);
4 Y2 := GeneratePosition(�(vi), k + Length(s));
5 result := result ∪ {SubStr(vi, Y1, Y2)};
6 return result;

GeneratePosition(s: String, k: int)
1 result := {CPos(k), CPos(-(Length(s)-k)};
2 foreach r1=TokenSeq(T1, ⋅⋅, Tn) matching s[k1 : k-1] for some k1:
3 foreach r2=TokenSeq(T′1, ⋅⋅, T′m) matching s[k : k2] for some k2:
4 r12 := TokenSeq(T1, ⋅⋅, Tn, T′1, ⋅⋅, T′m);
5 Let c be s.t. s[k1 : k2] is the ctℎ match for r12 in s.
6 Let c′ be the total number of matches for r12 in s.
7 r̃1 := generateRegex(r1, s);
8 r̃2 := generateRegex(r2, s);
9 result := result ∪ {Pos(r̃1, r̃2, {c, -(c′-c+1)})};

10 return result;

generateRegex(r: Regular Expression, s: String)

let r be of the form TokenSeq(T1, ⋅⋅, Tn).
return TokenSeq(IPartss(T1), ⋅⋅, IPartss(Tn));

Figure 7. Algorithm for learning string programs that are consistent with a given set S of input-output examples.

ples that end up in the same partition are those that require similar
computational processing. We attempt to achieve this by requiring
the partitioning to satisfy the following two properties.
∙ Utility: For each partition, there is at least one trace expression

e that is consistent with all examples in that partition.
∙ Minimality: Number of partitions should be as small as possible.

Observe that the utility requirement can be satisfied trivially on
its own by placing each example in its own partition, but then it
would not lead to any generalization, which in turn would not lead
to any convergence. The minimality requirement can be satisfied
trivially on its own by placing all examples in the same partition,
but it may lead to failure because there might not be any trace
expression that can express the transformation for all the examples.
It is the combination of these two requirements that leads to faster
successful convergence.

It would be computationally expensive to try out all possible
partitioning choices and select the one that contains smallest num-
ber of partitions. We present a partitioning algorithm (based on

greedy algorithmic design pattern) that is not only efficient, but in
practice, yields the smallest number of partitions.

The algorithm for learning partitions is described in procedure
GeneratePartition in Figure 7. We start with singleton parti-
tions that contain one input each, along with associated trace sets.
We then merge two partitions only if their associated trace sets have
at least one trace expression in common. (This criterion leads to sat-
isfaction of the utility requirement). We refer to such trace sets as
being compatible with each other.

DEFINITION 3 (Compatible). We say that trace sets ẽ1 and ẽ2 are
compatible with each other, denoted Comp(ẽ1, ẽ2), if

Comp(ẽ1, ẽ2)
def
= Intersect(ẽ1, ẽ2) ∕= ∅

Often there are multiple choices of pairs of partitions that can
be merged with each other. We select a pair that has the highest
compatibility score. The compatibility score is designed to facilitate
partitioning decisions that, at least in practice, lead to the smallest
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number of partitions. The compatibility score has two components
CS1 and CS2.

CS1 measures agreement of two partitions with respect to the
compatibility of their trace sets and their intersection with all other
trace sets. In particular, if two trace sets ẽ1 and ẽ2 are both com-
patible with ẽ3, and so is Intersect(ẽ1, ẽ2), then we bump up the
compatibility score of ẽ1 and ẽ2. Also, if two trace sets ẽ1 and ẽ2
are both not compatible with ẽ3, then we bump up the compatibil-
ity score of ẽ1 and ẽ2. Note that in either of above-mentioned two
cases, the potential of ẽ1 or ẽ2 to merge with ẽ3 is unchanged as
a result of the intersection of ẽ1 and ẽ2. The idea is to select those
partitions for merging that keep alive merging potential with other
partitions in a later step, resulting in a smaller number of overall
partitions.

CS2 is used to produce a finer score in case there are ties on
the CS1 score. It gives preference to those pairs of trace sets whose
relative size after intersection is largest. The idea is that a larger
trace set is more likely to merge with other trace sets in a later step,
resulting in a smaller number of overall partitions.

DEFINITION 4 (Compatibility score). Let ẽ1 and ẽ2 be two com-
patible trace sets drawn from a set T = {ẽ�(1), . . . , ẽ�(n)} of trace
sets. We define the compatibility score of ẽ1 and ẽ2 with respect to
T , denoted by CS(ẽ1, ẽ2, T ) as:

CS(ẽ1, ẽ2, T )
def
= (CS1(ẽ1, ẽ2, T ), CS2(ẽ1, ẽ2))

where CS1 and CS2 are defined as follows:

CS1(ẽ1, ẽ2, T )
def
=

∑
ẽk∈T,k ∕=1,k ∕=2

z(ẽ1, ẽ2, ẽk)

z(ẽ1, ẽ2, ẽk) ≡

⎧⎨⎩
1 if (Comp(ẽ1, ẽk) = Comp(ẽ2, ẽk)

= Comp(Intersect(ẽ1, ẽ2), ẽk))
0 otherwise

CS2(ẽ1, ẽ2)
def
=

Size(Intersect(ẽ1, ẽ2))
Max{Size(ẽ1), Size(ẽ2)}

Comparison on compatibility scores (x,y), which are pairs of
numbers, is defined using lexicographic ordering, i.e.,

(x1, y1) > (x2, y2)
def
= (x1 > x2) ∨ (x1 = x2 ∧ y1 > y2)

We repeat the merging process one by one until no more parti-
tions can be merged.

4.5.2 Learning Classifiers for Partitions
In this section, we discuss how to generate classifiers for the vari-
ous partitions generated using the algorithm GeneratePartition
described above. A classifier for a partition is a boolean condition
(over the set of predicates in our language) that returns true for all
inputs in the partition and returns false for all inputs not in that
partition. We attempt to learn not just any classifier, but a simple
(small-sized) one.

Given a set of predicates, one simple approach can be to enu-
merate boolean formulas of increasingly large sizes and check if it
can act as a classifier for some partition. However, this approach
would be computationally expensive. We present a classifier learn-
ing algorithm (based on greedy algorithmic design pattern) that is
not only efficient, but in practice, yields smallest classifiers.

The algorithm for learning classifiers is described in procedure
GenerateBoolClassifier in Figure 7. We learn a boolean clas-
sifier in DNF form. The loop in line 2 learns a new conjunct d in
each iteration with the property that none of the inputs in �̃2 satisfy
d, but several inputs in �̃′

1 do. �̃′
1 is that monotonically decreasing

subset of inputs from �̃1 that are not yet covered by the disjunctive

boolean formula b learned so far. The loop in line 2 is repeated until
�̃′
1 becomes empty (or it does not change).

The loop in line 5 identifies a new predicate � in each iteration
with the property that several inputs in �̃′′

1 satisfy �, but several
inputs in �̃′

2 do not satisfy �, and then adds it to the conjunct d. �̃′′
1

and �̃′
2 are both those monotonically decreasing subsets of �̃′

1 and
�̃2 respectively that satisfy the conjunct d built so far. �̃2 is used
to decide whether or not the loop in line 5 needs to be iterated any
further, while �̃′′

1 is used to update �̃′
1, which is required for the

loop in line 2. Hence, the following theorem holds.

THEOREM 2. If GenerateBoolClassifier(�̃1, �̃2) does not fail
and returns a boolean condition b, then all inputs in �̃1 satisfy b
and none of the inputs in �̃2 satisfy b.

To ensure learning of small boolean formulas, we ensure that the
predicate � that is chosen at Line 8 is such that
∙ several inputs in �̃′

2 do not satisfy �. This keeps �̃′
2 smaller,

which helps to terminate the inner loop at Line 5 faster, which
leads to conjuncts d containing small number of predicates.
∙ several inputs in �̃′′

1 satisfy �. This keeps �̃′′
1 larger, which helps

to keep �̃′
1 smaller, which in turn helps to terminate the outer

loop in Line 2 faster, which leads to fewer number of conjuncts.
To enable a selection that satisfies above-mentioned criterion, we
choose a predicate with highest classification score (as defined
below) with respect to the sets �̃′′

1 and �̃′
2.

DEFINITION 5 (Classification Score of a Predicate). Given two sets
of inputs �̃1 and �̃2, and a unary predicate � over inputs, we define
the classification score of �, denoted by CSP(�, �̃1, �̃2), as:

CSP(�, �̃1, �̃2)
def
= Size({�1 ∣ �1 ∈ �̃1, [[�]]�1})×

Size({�2 ∣ �2 ∈ �̃2,¬[[�]]�2})

4.6 Correctness
If procedure GenerateBoolClassifier does not fail, the synthe-
sis algorithm succeeds. In that case, the following theorem holds.

THEOREM 3 (Soundness). The set P̃ of string expressions re-
turned by GenerateStringProgram({(�i, si)}i) are all consis-
tent with each input-output pair (�i, si), i.e.,

∀P ∈ P̃ ∀i : ([[P ]] �i) = si

The proof of theorem 3 follows from similar soundness properties
of the involved procedures, of which the most interesting one has
been stated in Theorem 2.

CONJECTURE 1 (Completeness). If there exists a string expres-
sion in our language that is consistent with the given set of input-
output pairs, the algorithm produces one.

The above conjecture is true at the level of traces, i.e., if there ex-
ists a consistent trace expression (satisfying the restriction A2 in
Theorem 1), then the algorithm generates it. However, the above
conjecture may not be true in general. In practice though, we have
observed our partitioning and classification procedures to always
work, and it appears that there are some interesting theoretical
properties of these procedures that might pave the way for proving
the above conjecture under some general conditionals. This inves-
tigation is left for future work.

4.7 Discussion
4.7.1 Adaptability to Language Extensions
The algorithm can be easily adapted to deal with the following lan-
guage extensions. The choice of tokens/predicates can be enriched
arbitrarily as long as they can be efficiently enumerated. The choice
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of regular expressions is inextensible for reasons mentioned earlier.
The substring construct can be extended further to allow for a con-
stant index offset into the current choice of substrings. The loop
construct can be enriched to allow for termination conditions based
on position logic or conjunctions of predicates.

It may be possible to nest conditionals inside loops. The key
algorithmic idea would be to recursively perform partitioning and
classification, as is done at the top-level, instead of a simple unifi-
cation. However, performance may be a concern.

4.7.2 General Principles
Here, we summarize some key general principles of our learn-
ing algorithm. The algorithm first learn traces and then infer
loops/conditionals. This is unlike recent work on more-general
program synthesis techniques (e.g., [19]) that attempt to learn ev-
erything at the same time, often leading to unscalablility.

For learning conditionals, the algorithm uses a greedy strat-
egy based on scoring functions to first infer partitioning and then
boolean classification. The standard way to learn conditionals in
recent program synthesis work is to phrase this as a combinatorial
search problem (using SAT/SMT solvers), which leads to solutions
that may not scale in real-time settings like ours.

For learning traces, the algorithm uses DAG based data-structures
that can represent and manipulate (intersection, evaluation, size/rank
computation) huge sets of programs. This approach would work in
general for any term algebra. The DAG based data-structure can be
likened to BDDs, which can succinctly represent and manipulate
(conjunction, disjunction, negation) huge sets of program states,
and are popular in the verification community.

5. Usability Extensions
5.1 Active Interaction Model (for easier interaction)
A simple interaction model can be to ask the user to investigate
the results of a synthesized program on other inputs in the spread-
sheet and to report any discrepancy. However, this may be cum-
bersome in case of large spread-sheets. To enable easier interac-
tion, we exploit the fact that our synthesis algorithm returns a set
of programs P̃ . The synthesis system can run P̃ on every input �
in the spreadsheet to generate a set of corresponding outputs s̃, i.e.,
s̃ = {[[P ]]� ∣ P ∈ P̃}. The set s̃ can be computed directly without
explicitly enumerating all programs in P̃ . (This requires exploit-
ing the structural decomposition of the underlying data-structures
as is done in Intersect and Size methods - we leave out details
for lack of space.) The synthesis system can then highlight any in-
put (for user inspection) whose corresponding output set contains
at least two strings. We refer to this as the active interaction model.

It is interesting to compare the above idea with the idea of
distinguishing inputs that was introduced recently in the context
of synthesis of bit-vector algorithms [8]. An application of that idea
in our context would mean picking any two (semantically different)
programs from P̃ and then synthesizing an input on which the two
programs yield different outputs. Such an approach would not be
effective in our setting since, as is illustrated by the case-study in
Example 1, convergence does not require to narrow the choice of
consistent programs down to a semantically unique program in the
language. It is sufficient to narrow the choice down to that set of
consistent programs that are equivalent with respect to the finite
number of inputs in the spreadsheet.

5.2 Noise Handling
The algorithm declares failure when it fails to learn a boolean clas-
sification scheme. In that case, it can attempt to identify any noise
(inadvertent error in one input-output example) as follows. The al-
gorithm classifies an input-output example as a potentially-noisy if

the input belongs to a singleton partition, but the boolean classifica-
tion scheme fails to generate a boolean classifier for that singleton
partition. For each potentially-noisy example, the algorithm ignores
the corresponding partition, and re-learns the boolean classification
scheme for other partitions. If it succeeds, it classifies the example
as noisy and presents that to the user for validation, and can even
suggest a fix by running the learned program on the input corre-
sponding to the noisy example.

EXAMPLE 11. Consider the following set of examples provided to
our tool in one of the scenarios, in which the user failed to spell
Kimberly correctly in the output column.

Input v1 Input v2 Output
Otis Daniels Otis, D.
Kimberly Jones Kimberley, J.
Mary Leslie Mary, L.

The GeneratePartition algorithm groups the first and third ex-
ample in one partition, while the second example belongs to a
singleton partition. The GenerateBoolClassifier algorithm
fails to generate a boolean classification scheme that distin-
guishes the two partitions. Ignoring the singleton partition enables
GenerateBoolClassifier algorithm to succeed trivially (since
there is only one partition). The algorithm declares the second
example to be noisy and asks the user to investigate if she really
meant “Kimberly, J.” (which it generates by running the learned
program on the noisy input).

5.3 Ranking of Multiple Solutions (for faster convergence)
Selecting an expressive language for inductive program synthesis
systems raises an interesting dilemma. While it makes users who
want to program sophisticated tasks happy, it may adversely impact
users who want to program simple tasks but now may require
to provide more bits for disambiguation of their intent (which
manifests in the need to provide more examples and more rounds
of interaction). The Occam’s razor principle, which states that the
simplest explanation is usually the correct one, comes to our rescue
here. We define a comparison scheme between different string
expressions by defining a partial order between them. Some of
these choices are subjective, but have been observed to work well.
(There is also a fascinating prospect of personalizing this partial
order based on the user intent observed during last few scenarios).

A Concatenate constructor is simpler than another one if it
contains smaller number of arguments or its arguments are pair-
wise simpler. Similarly for TokenSeq constructor. StartTok and
EndTok are simpler than all other tokens (suggesting that extrac-
tion logics based on the start/end of strings are more common). A
token corresponding to a character class is simpler than the one cor-
responding to a smaller character class. (We favor generality here.)
CPos expressions are simpler than Pos expressions (giving prefer-
ence to extraction logics based on constant offsets). A SubStr con-
structor is simpler than both ConstStr constructor (it is less likely
for constant parts of an output string to also occur in the input) and
Concatenate constructor (if there is a long substring match be-
tween input and output, it is more likely that the corresponding part
of the output was produced by a single substring extraction logic).

Procedures generateRegex, GenerateLoop, GenerateStr,
GeneratePosition, and GenerateSubstring, which generate
a set of solutions, can take this ordering into account to produce an
ordered set of solutions.

6. Prototype Tool
We have built the program synthesis system described in this pa-
per as an add-in, called QuickCode, for Microsoft Excel 2010. Mi-
crosoft Excel is the most popularly used spreadsheet system in the
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world and is widely regarded to be the swiss army knife of all busi-
nesses.

The program synthesis system has two components: (a) the
algorithm described in Section 4, which has been implemented
in C# (it is less than 5000 lines of code), and (b) the usability
extensions described in Section 5, which are supported using a
simple, but cool, graphical user interface described below.

6.1 User Interface
The user first selects a rectangular region of spreadsheet containing
both input and output columns. We treat the mostly populated
columns as input columns, and less populated columns as output
columns. However, we also provide the flexibility for the user
to select multiple column ranges and identify explicitly which
columns are inputs and which columns are outputs (since it may be
the case that most cells in an input column have null entries, while
our default treatment would be to regard it as an output column).
We treat the rows that contain entries for an output column as input-
output examples for the program to be learned for that column.

The user then presses the QuickCode button. The system then
populates the spreadsheet as follows. It invokes the synthesis algo-
rithm (procedure GenerateStringProgram) for each of the out-
put column. For each output cell �r,c (in row r and output column
c), the system runs the generated set of programs for output column
c on the input state specified in row r to generate an ordered set s̃ of
possible outputs. The system populates the cell �r,c as follows:
∙ If s̃ contains one string (the most common case), the system

populates the cell with that string.
∙ If s̃ contains multiple strings, the system populates the cell with

the first string (top ranked solution), but highlights it to point out
to the user that there are multiple computational interpretations
of the few examples provided by the user, and that the user may
want to investigate the output of the highlighted cell.
∙ If s̃ is empty, the system populates the cell with ?? to draw the

attention that the user should provide the output for that cell.
The user may then (repeatedly) fix contents of any cell by

right-clicking on it, wherein a dialog box opens up that allows the
user to choose from other strings in the corresponding sequence
s̃, or to provide a new output altogether. After any such fix, the
above learning process is automatically repeated with the extended
set of input-output examples, and the contents of spreadsheet are
automatically updated to reflect the new learned results.

6.2 Evaluation Metrics
Our synthesis system can be evaluated against several metrics
stated below.

Algorithmic Performance: This is a measure of the effectiveness
of the data-structures used by the algorithm. The algorithm was
timed to take less than 0.1 seconds on average for a varied bench-
mark suite of more than 100 problem instances drawn from online
help forums or obtained from Excel product team as representative
examples. (The examples described in this paper form a representa-
tive part of this benchmark suite.) Each problem instance contained
up to 10 input-output pairs (more than what the user would want to
provide in any scenario) and each string in any pair contained up
to 100 characters (more than what is typical of spreadsheet cells).
Experiments were performed on a machine with Intel Core-2-Duo
2.8 GHz CPU, and 4 GB RAM.

Number of Interactive Rounds: This is a measure of the general-
ization power of the conditional learning part of the algorithm and
the ranking scheme. We observed that the tool typically requires
just one round of interaction, when the user is smart enough to give
an example for each input format (which typically range from 1 to

3) to start with. It is heartening to note that this was indeed the case
for most scenarios in our benchmarks, even though our algorithm
can function robustly without this assumption. The maximum num-
ber of interactive rounds required in any scenario was 4 (with 2 to 3
being a more typical number). The maximum number of examples
required in any scenario over all possible interactions was 10.

Success Ratio: We have not come across any problem instance
that can be expressed in our language, but our algorithm fails to
converge to the correct solution. This is a measure of the validity of
the completeness hypothesis discussed in Section 4.6.

However, we have found several problem instances that cannot
be expressed in our language. Most of these instances are related to
semantic entity reasoning (such as transforming dates into day of
the week). For syntactic string manipulation tasks, we have been
more than pleasantly surprised at the expressiveness of our lan-
guage. Few testing moments came in the middle of some internal
demos to large audiences, where we were asked to try out modified
scenarios on the spot (on real spreadsheet data). The tool success-
fully learned the desired transformations in all those cases.

Following are a few examples of scenarios where QuickCode
was used by fellow colleagues to perform tasks beyond the imagi-
nation of the author.

EXAMPLE 12 (Synthesis of part of a future extension of itself).
The synthesis system is currently being extended with semantic
knowledge of common entities that would allow the system to per-
form transformations that are beyond the realm of syntactic com-
putations. One of the dictionaries that was recently added to the
system was mapping from a country’s international dialing code to
the name of that country. Rishabh Singh performed this task, which
he originally thought would take around an hour (in absence of
any scripting), in less than a minute using the QuickCode add-in
(after copying and pasting the data from Wikipedia into an Excel
spreadsheet).

Input v1 Input v2 Output
Albania 355 case 355: return “Albania”;
Algeria 213 case 213: return “Algeria”;

String Program:
Concatenate(ConstStr(“case ”), v2, ConstStr(“ : return “ ”),

v1, ConstStr(“ ”; ”))
The above examples were sufficient for QuickCode to populate
the spreadsheet with the desired output for more than 200 rows,
each containing data for a different country. The resultant code-
fragment in the output column was copied and pasted in Visual
Studio Development Environment as part of a switch statement,
and it compiled!

EXAMPLE 13 (Filtering Task). Ben Zorn wanted to estimate the
total number of page-hits to links in the pictures directory from
weekly statistics consisting of pairs of links and page-hits. He tried
to use the QuickCode add-in by giving examples where the output
column was a copy of the input page-hit column only if the input
link column contained “pictures” in the path.

Input v1 Input v2 Output
/um/people/sumitg/pictures/lake-tahoe/index.html 192 192
/um/people/sumitg/index.html 104 0
/um/people/sumitg/pubs/speed.html 16 0
/um/people/sumitg/pubs/popl10 synthesis.pdf 13 0
/um/people/sumitg/pictures/verona/index.html 7 7
/um/people/sumitg/pictures/kerela/target21.html 3 3

Quite surprisingly for the author, the QuickCode add-in worked
successfully (without use of its hidden capability of being able to
add new tokens - addition of “pictures” token would have done the
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trick). Closer investigation of the generated program revealed an-
other trick for solving the same problem: all (and only) “pictures”
links had 6 occurrences of the backslash token - a pattern that could
not have been easy for the user to discover.
String Program:
Switch((b1, v2), (b2, ConstStr(0))), where
b1 ≡ Match(v1, SlashTok, 6), and b2 ≡ ¬Match(v1, SlashTok, 6).

EXAMPLE 14 (Arithmetic Task). The synthesis engine currently
does not support any arithmetic reasoning. Hence, we thought that
a few examples found on Excel help forums, asking for computing
the sum of all numbers in a string, had to wait. However, Bill Harris
showed us a cute trick that almost did it.

Input v1 Output
Alpha 10 Beta 20 Charlie 30 Delta 10+20+30
POPL 9 CAV 7 PLDI 6 ESOP 4 9+7+6+4

String Program:
Concatenate(Loop(�w : Concatenate(SubStr(v1, p1, p2),

ConstStr(“ + ”))),
SubStr2(v1,NumTok,−1))

where p1 ≡ Pos(�,NumTok, w) and
p2 ≡ Pos(NumTok, TokenSeq(NonDigitTok,NumTok), w).

It is interesting to note above how the loop constructor gets used
to print all, but last, numbers, each followed by a plus sign (The
position expression p2 ensures that there better be another number
following the number to be extracted). The last integer is then
concatenated separately. (The desired sum can now be obtained
by formatting the output column as a number inside Excel.)

7. Related Work
Work on learning concepts such as deterministic finite state au-
tomata [1], or regular transducers [20] from examples is not appli-
cable in our setting because it requires making many more queries
to the user, and most string processing tasks described in this paper
are more expressive than what can be expressed by these concepts.

The most closely related work is that of automating text-editing
using demonstrations or examples. These text-editor techniques
may be lifted to the spreadsheet setting, but they would not work
well because (a) the real spreadsheet scenarios are more challeng-
ing than what these techniques can handle, (b) the PBD interface,
inherent to most of these techniques, requires users to provide much
more information that is way beyond the usability bar in spread-
sheets. We explain these issues below.

Text-editing using Demonstrations SMARTedit [11] is a Pro-
gramming by Demonstration (PBD) system for learning text-
editing commands, where the primitive program statements in-
clude moving the cursor to a new position and inserting/deleting
text. However, there are two significant differences: (a) The lan-
guage of programs considered is not as expressive as required in
the spreadsheet setting. In particular, it does not provide support
for conditionals, which are very important for data cleansing tasks
in spreadsheets. Hence, it cannot be applied for the processing re-
quired in Examples 7, 8, 9, 10, 13. Also, its cursor movement logic
is restricted to positions either before or after the ktℎ occurrence
of a single token, while scanning from left side. In contrast, our
position extraction logic is much more powerful - it allows to iden-
tify positions based on ktℎ occurrence of sequences of tokens both
before and after the desired position, while scanning from left or
right side. As a result, the SMARTedit system cannot be applied
for processing required in Examples 1, 3, 5, and 14. (b) More sig-
nificantly, as for any PBD system, the user is required to provide a
complete demonstration or trace, where the demonstration consists
of a sequence of the editor state after each primitive action, really

spelling out how to do the transformation, but on a given exam-
ple. The user is also required to segment each iteration of an inner
loop. Further, PBD based systems also have the drawback of being
sensitive to the order in which the user chooses to perform actions.
Our system is based on Programming by Example (as opposed to
Demonstration) - it requires the user to only provide the final state
(as opposed to also providing the intermediate states). This ren-
ders our system much more usable [10], however, at the expense of
making the learning problem much more difficult, for which we do
present an effective algorithm.

TELS [22] is another PBD system that records high-level ac-
tions similar to the actions used in SMARTedit, and implements a
set of heuristics/expert rules for generalizing the arguments of each
of the actions. However, TELS’s dependence on heuristic rules to
describe the possible generalizations makes it difficult to under-
stand the hypothesis space clearly, as well as to imagine applying
it to the different domain of spreadsheet applications.

Simultaneous editing [15] is another PBD-like system that al-
lows the user to define a set of regions to edit, and then allows the
user to make edits in one, while the system makes equivalent edit-
ing in all other records. The inference used in simultaneous editing
is much less powerful since it does not support conditional or loopy
edits (every editing action is applied uniformly to every record).

Text-editing using Examples Nix described a text-editing system
that synthesizes gap programs based on examples [17]. A gap
program is a collection of (pattern, replacement) pairs, where each
pattern is composed of constants and variables that bind to the
text in between the constants, and a replacement can be a constant
string or a variable from the input pattern. Gap programs are not
expressive enough to represent the solution of most of the string
processing benchmark examples described in this paper.

Data Processing for Programmers The PADS project has en-
abled simplification of ad hoc data processing tasks for program-
mers by contributing along several dimensions: development of do-
main specific languages for describing text structure or data for-
mat [2, 3], learning algorithms for automatically inferring such for-
mats [4], and a markup language to allow users to add simple anno-
tations to enable more effective learning of text structure [23]. The
learned format can then be used by programmers for documenta-
tion or implementation of custom data analysis tools. In contrast,
the focus of this paper is to enable end-users (non-programmers)
to perform small, often one-off, repetitive tasks on their spread-
sheet data. Asking end-users to provide annotations for learning
(relatively simple) text structure, and then develop custom tools to
format/process the inferred structure is way above the expertise and
usability bar for these users. Hence, we are interested in automating
the entire end-to-end process, which includes not only learning the
text structure from the inputs, but also learning the desired trans-
formation from the outputs.

Algorithmic Techniques [6] provides a good survey of various
program synthesis techniques: exhaustive search, logical reason-
ing, probabilistic inference, and version-space algebras. Exhaus-
tive search based techniques would not scale for our problem set-
ting since the underlying state space (even for programs of small
bounded size) is huge. Logical reasoning techniques (such as those
used in learning straight-line bit-vector programs from input-output
examples [8], or loopy programs from logical specifications [19])
are not suited for various reasons: they are not as scalable (several
minutes are acceptable for discovering a new bit-vector algorithm,
but not for an interactive spreadsheet session); they cannot deal
with noise in the user input; they cannot easily compute all solu-
tions (required for providing various computational interpretations
to the user for an ambiguous input).
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The GenerateStr part of the synthesis algorithm presented in
this paper is closest to the version-space algebra approach that in-
volves maintaining a set of all hypotheses (drawn from a hypothesis
space) that are consistent with a sequence of observed examples.
Mitchell originally used this idea for refinement-based learning of
boolean functions [16], while Lau et.al. extended the concept to
learning more complex functions in a PBD setting [13]. Our syn-
thesis algorithm shows how the concepts of version-space algebra
can be lifted to the PBE (Programming by Example) setting, for a
fairly expressive string expression language involving conditionals
and loops. The idea of using DAGs as the version space for concate-
nate constructor is inspired by the use of a similar data-structure in
a very different context of solving an important open problem re-
lated to global value numbering [7]. The novel concepts introduced
in this paper are quite general - we feel that they might be used to
create PBE versions of other version-space algebra based PBD sys-
tems (e.g., those that learn shell scripts [12] or imperative Python
programs [14]).

8. Conclusion
General purpose computational devices, such as cell-phones, com-
puters, are becoming accessible to people at large at an impres-
sive rate. In the future, robots will become house-hold entities. But,
unfortunately, programming general purpose platforms has never
been easy, because we are still mostly stuck with the model of pro-
viding step-by-step, detailed, and syntactically correct instructions
on how to accomplish a certain task, instead of simply describing
what the task is. Program synthesis has the revolutionary potential
to change this landscape, when targeted for the right set of people,
for the right set of problems, and using the right interaction model.

In this paper, we have identified a killer application, that of
automating string processing in spreadsheets, which hundreds of
millions of end-users struggle with on a regular basis (as is evident
from online help forums and talking to product groups). We have
developed an efficient algorithm to help automate a variety of string
processing tasks from input-output examples (which we found to be
the most natural intent expression mechanism on help forums). We
have paid special attention to usability issues and crossed the line
from developing an academic-only technology to one that is ready
to be deployed.
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