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Abstract— In this paper we investigate the potential
benefits of coordinated congestion control for multipath
data transfers, and contrast with uncoordinated control.
For static random path selections, we show the worst-
case throughput performance of uncoordinated control
behaves as if each user had but a single path (scaling
like log(log(N))/ log(N) where N is the system size,
measured in number of resources). Whereas coordinated
control gives a throughput allocation bounded away from
zero, improving on both uncoordinated control and on the
greedy-least loaded path selection of e.g. Mitzenmacher.
We then allow users to change their set of routes and
introduce the notion of a Nash equilibrium. We show that
with RTT bias (as in TCP Reno), uncoordinated control
can lead to inefficient equilibria. With no RTT bias, both
uncoordinated or coordinated Nash equilibria correspond
to desirable welfare maximising states. Moreover, simple
path reselection polices that shift to paths with higher net
benefit can find these states.

I. I NTRODUCTION

Multipath routing architectures have received attention
recently [2], [6], [16], [17], [22]. There is consider-
able interest in combining multipath routing with rate
control, e.g. [7], [11], [13]. It can be viewed as an
example of cross-layer optimisation [5], [18], where
additional benefits are obtained by jointly optimising at
the routing (network) and transport layers. Indeed, it is
implicitly used in several Peer-to-peer (PTP) applica-
tions, in a receiver-driven mode. An early example is
Kazaa which allowed users to choose multiple paths,
with path selection effectively manual. More recent P2P
applications such as Skype use automatic path selection;
Skype [21] claims to keep multiple connections open
and dynamically chooses the “best” path in terms of
latency/quality. Bittorrent [4] maintains 4 active paths
with an additional path periodically chosen at random
together with a mechanism that retains the best paths
(as measured by throughput).

In all the above, users or the end-system’s protocol are
effectively provided with a large set of potential paths
from which they choose a small set with the option of
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trying to improve upon them. In each case, TCP is used
as the transport protocol. Some natural questions arise:

• How does such a mechanism perform relative to
one that simply opens and uses all paths? Opening
multitudinous TCP connections has systems perfor-
mance implications, hence there are incentives to
keep this overhead small.

• What is effect of RTT bias, if any? TCP Reno has a
built-in bias against long RTTs, and we would like
to explore the implications.

• And how does it perform relative to a mechanism
that uses acoordinated controller? By a coordinated
controller, we mean one thatactively balances load
across a set of paths, taking into account the states
of all paths. A coordinated congestion controller
requires a revised transport layer protocol or an
application layer solution. In contrast an uncoordi-
nated controller can be thought of as using parallel
connections.1

The motivating application scenario is of data transfers
over TCP, where the transfers are long enough to allow
performance benefits for multipath routing. However
our analysis applies more generally to situations where
there are alternative resources which can help service a
demand, and where the demand is serviced using some
form of rate control. We assume that the demand is fixed,
and each user is attempting to optimise its performance
by choosing appropriate paths (resources), where the rate
control algorithm is fixed. More precisely, we assume
that the rate control is implicitly characterised by a
utility maximisation problem [20], where a particular
rate control algorithm (eg TCP Reno) is mapped to a
particular (user) utility function [8], and that users self-
ishly seek to choose paths in such a way as to maximise
their net utility. A coordinated controller is modelled
by a single utility function per user, whose argument
is the aggregate rate summed over paths, whereas an
uncoordinated controller has a utility function per path
and the aggregation is over the utility functions.

1Parallel connections achieve a more limited form of load balancing.
For example, two uncoordinated TCP connections, with different
throughput rates, in parallel to download a file, such as by pulling from
different ends of the file, will cause more of the file to be downloaded
on the better path.



We first consider the case where the integer number
of paths (resources selected) chosen is fixed atb, and
the paths are static, but chosen at random from a set of
size N . We look at the worst-case allocation, which is
a measure of the fairness of the scheme. In the unco-
ordinated case, we show that the worst case allocation
scales aslog(log(N))/ log(N), with increasingb only
improving the constant in the scaling. In contrast, in the
coordinated case where we can rebalance the load across
resources, providedb > 1, the worst-case allocation is
bounded away from zero. This demonstrates that

1) coordinated improves significantly on uncoordi-
nated in the static case;

2) coordinated improves on the greedy least-loaded
resource selection, as in Mitzenmacher [19], where
the least-loaded selection ofb resources scales as
1/ log(log(N)) for b > 1.

Effectively, the coordinated selection is able to shift the
load amongst the resources, and with a minimal choice
of b able to utilise the resourcesas if a global load
balance was being performed.

We then allow users to change the set of routes they
use, and introduce the natural game-theoretic notion of
a Nash equilibrium in this context, where users seek to
selfishly maximise their own net utilities. We then find
qualitatively different behaviour according to whether
the rate controller has a RTT bias or not. If the controller
has no RTT bias (unlike TCP Reno, for example),
then in the uncoordinated case we find that the Nash
equilibria correspond to desirable welfare maximising
states, which implies we have a Pareto-efficient solution.
In contrast, if there is an RTT bias (as in TCP Reno),
then the Nash equilibria can be inefficient, and we give
an example where the achieved rate is half of what could
be achieved. For the coordinated controller, of necessity
there can be no RTT bias, and Nash equilibria coincide
with welfare-maximising social optima. Moreover, we
show for both coordinated and uncoordinated control
with no RTT bias, that simple path selection policies
which combine random path resampling with moving to
paths with higher net benefit lead to welfare maximising
equilibria, and do as well as if the entire path choice was
available to each user.

In summary, we shall provide some partial answers to
our initial questions.

• In a large system, provided we re-select randomly
from the set of paths and shift between paths with
higher net benefit, we can use a small number of
paths to choose from and do as well as if we were
fully using all the paths

• There is a loss of efficiency with RTT bias
• Coordinated control has better fairness properties

than uncoordinated in the static case. When com-
bined with path reselection, uncoordinated control

only does as well as a coordinated control if there
is no RTT bias in the controllers.

The last two points suggest good design choices for new
multipath rate controllers are coordinated controllers or
uncoordinated controllers with the RTT bias removed.

We now describe the modelling framework.

II. M ODELLING FRAMEWORK

A. Model

We assume a set of user classes, indexed bys ∈ S.
Network paths are indexed byr ∈ R. Users of class
s can use any path from subsetR(s) of R. Without
loss of generality we may assume these sets are disjoint.
Network capacities or feedback signals (such as loss,
packet marking or delay) are captured by some convex
non-decreasing penalty functionΓ : R

R
+ → R+∪{+∞}

- see [10] for examples. TypicallyΓ is the sum of penalty
functions associated with each resource type. We can
also interpret the penalty functions as “costs” and their
derivatives as “prices”, and we shall make use of the
notation

pr = ∂rΓ(Λ).

B. Uncoordinated Congestion Control

We assume that classs-users try to maximise their
throughput. We further assume that each classs-user is
restricted to use the same number,b, of connections, that
can be along any routesr from setR(s).

We further assume that the rate a user obtains on
a connection along a given route is achieved by some
default congestion control mechanism (e.g. TCP), that
implicitly performs some utility maximisation, the utility
of a single user sending rateλr through router being
Ur(λr). For tractability, we assume thatUr is a strictly
concave increasing function that is continuously differen-
tiable on(0,∞). Finally, we assume that users’ criterion
for optimality is their achieved rate.

If there areN ′
s class s-users, the total number of

connections they make isNs := bN ′
s. Denoting byNr

for r ∈ R(s) the total number of connections made
by class s users along router, gives the following
constraint: ∑

r∈R(s)

Nr = Ns, s ∈ S. (1)

The outcome of congestion control forgiven numbers
Nr of connections along each router, is defined to be
the solution of the welfare maximisation problem

Maximise
∑
s∈S

∑
r∈R(s)

NrUr(Λr/Nr) − Γ(Λ). (2)

over Λr ≥ 0 where Λ = {Λr} denotes the vector of
aggregate rates. Note that the utility function can depend
upon the route taken.



The function being optimised in (2) is a strictly con-
cave function, optimised over a convex feasible region;
hence the problem is Strong Lagrangean and the unique
maximum is attained. Moreover, the function is also
strictly concave over (Λ, N ), provided N > 0, where
NrUr(Λr/Nr) for Nr > 0 is the perspective (page 89,
[3]) of Ur; hence we can consider the optimisation (2)
subject to (1) for(Λ, N ) over Λ ≥ 0, N > 0 to look at
the optimal choice of paths and rates.

C. Coordinated Congestion Control

Assume that classs-users can use concurrently paths
from a collectionc, wherec ⊂ R(s), and denote byC(s)
the family of all such path collections that are allowed.
For definiteness, think ofC(s) as the collection of all
subsets ofR(s) of size b. Denote byNc the number
of users with associated set of connections equal toc.
When the number of classs users equalsNs, one thus
has the constraint∑

c∈C(s)

Nc = Ns, s ∈ S. (3)

In contrast to the uncoordinated case, we associate a
single utility functionUs(·) with a classs user, assumed
strictly concave, increasing, and continuously differen-
tiable on(0,∞). We can then assume that the allocation
to a classs-user with connection setc is

∑
r∈c Λc,r/Nc,

where the quantitiesΛc,r solve

Maximise
∑
s∈S

∑
c∈C(s)

NcUs

(∑
r∈c Λc,r

Nc

)
− Γ(Λ) (4)

over (Λc,r ≥ 0, where the vectorΛ = (Λr) in the
argument of the penalty functionΓ is defined as

Λr :=
∑
c:r∈c

Λc,r. (5)

The joint optimisation (4) overΛ ≥ 0, N > 0 subject to
(5) is also Strong Lagrangean. We shall see in Section V,
that the optimal ratesΛr for this joint optimisation
actually solve the following welfare maximisation

Maximize
∑

s

NsUs

(∑
r∈R(s) Λr

Ns

)
− Γ(Λ) (6)

over Λr ≥ 0, r ∈ R. (7)

This problem is strong Lagrangean, and its solution is
characterized by the Kuhn-Tucker conditions

U ′
s

(∑
r∈R(s) Λs

Ns

)
≤ ∂rΓ(Λ), (8)

U ′
s

(∑
r∈R(s) Λs

Ns

)
< ∂rΓ(Λ) ⇒ Λr = 0. (9)

We note that there are distributed rate control algorithms
for all of the above optimisation problems, e.g. [11].

III. STATIC, RANDOM ROUTE SELECTIONS

In this section we focus on the following scenario.
There areN resources with unit capacity, and the
penalty function associated with each resource is the step
function,

Γr(Λr) =

{
0 if Λr ≤ 1
∞ otherwise.

(10)

To provide a concrete interpretation, the resources can be
interpreted as servers, or as relay or access nodes. There
are aN users. Each user selectsb resources at random
from theN available, whereb is an integer larger than 1
(the same resource may be sampled several times). We
shall look at the worst case rate allocation of users under
two distinct bandwidth sharing scenarios. In the first
scenario, there is no coordination between the distinct
b connections of each user. Thus, if one connection
uses a resource handlingX connections overall, it is
straightforward to show that the connection achieves a
rate allocation of exactly1/X. In the second scenario,
each user implements coordinated multipath congestion
control.

The worst-case allocation, is a fairness measure. How-
ever, for our scenario it is straightforward to show [14]
that the more "unfair" the allocation, the greater the
expected time to download a unit of data, and that a
coordinated allocation minimises such a performance
measure.

A. Uncoordinated congestion control

We shall denote byλi the total rate that useri obtains
from all its connections. The main result is the following

Theorem 3.1: For fixed parametersa and b, then for
any ε > 0, one has the following

lim
N→∞

P
(

min
i=1,...,aN

λi ≤ (b2 + ε)
log(log(N))

log(N)

)
= 1.

(11)
In words, the worst case allocation in this scenario
decreases likelog(log(N))/ log(N). This is to be com-
pared with the worst case allocation that one gets if
b = 1, that is if a single path is used: from classi-
cal balls and bins models [19], this also decreases in
log(log(N))/ log(N) asN increases.

The proof relies on the following result:
Lemma 3.1: Let the constantb > 0 be as above.

Given some constantα > 0, whenαN balls are thrown
at random inN bins, then for anyε > 0, ε < 1/2b,
with high probability, the number of bins which receive
at least

M :=
(

1
b
− 2ε

)
log(N)

log(log(N))
(12)

balls is larger thanN1+ε−1/b.
Proof: Let β = α/2, and let X be a Poisson

random variable with meanβN . Then if one throws



X balls at random intoN bins, by a standard property
of Poisson random variables, the numbers of balls in
each bin are i.i.d. random variables, admitting a Poisson
distribution with parameterβ. Furthermore, with high
probability, X ≤ αN , so it is enough to show that
the property of the Lemma holds in the case where
the occupancy numbers of bins are i.i.d, Poisson with
parameterβ.

In this context, the number of bins that receive at least
M balls has a Binomial distribution, with parameters
(N, q) where

q = P(Poisson(β) ≥ M) ≥ e−β βM

M !
·

As follows from standard Chernoff bounds (see eg
[1], appendix), Binomial random variables admit tighter
Chernoff bounds than Poisson variables with the same
mean. Hence, if one can show that the meanNq of this
Binomial random variable satisfies

lim
N→∞

Nq

N1+ε−1/b
= +∞,

the result of the Lemma will follow. However, the
logarithm of the left-hand side of the above satisfies,
appealing to Stirling’s formula, and neglecting lower
order terms:

log
(

Nq
N1+ε−1/b

)
≥ −β + M log(β) − log(M !)

+(1/b − ε) log(N)
∼ −β + M log(β) − 1

2 log(2πM)
−M log(M/e) + (1/b − ε) log(N)

∼ −(1/b − 2ε) log(N)
+(1/b − ε) log(N)

= ε log(N),

where we have used the expression (12) ofM . This
establishes the result.

Proof: (of Theorem 3.1) Assume that the resource
selection of hosts is broken into two phases. First, one
half (that is,γN users) make their individual selections.
By the above lemma, once this is done, with high
probability there are at leastN1+ε−1/b resources selected
by at leastM users, at the end of this phase. In the
second phase, the remainingγN users get to select their
resources. Each random selection of these users therefore
has a probability of at leastN1+ε−1/b/N = N ε−1/b of
being to a resource with at leastM users. Thus the
probability that such a user makes selections only to
resources with at leastM users is at leastN bε−1.

Therefore, the total number of phase two users se-
lecting only such congested resources is larger than a
Binomial random variable with parameters(γN,Nbε−1).
As its meanγN bε goes to+∞ as N → ∞, there is
at least such a user with high probability. Its total rate

allocation will then be at most

λ =
b

M
=

b

1/b − 2ε

log(log(N))
log(N)

.

For anyε′ > 0, by takingε > 0 small enough, the first
fraction in the above is indeed less thanb2 + ε′, which
completes the proof.

B. Coordinated congestion control

Here we assume as before that there areaN users,
each selectingb resources at random, from a collection
of N available resources. We shall denote byλij the rate
that useri obtains from resourcej, and letAij equal 1
if user i accesses resourcej, and equal 0 otherwise.

In contrast with the previous situation, we now assume
that the ratesλij are chosen to maximize:

aN∑
i=1

U


 N∑

j=1

Aijλij




under the constraints:

λij ≥ 0,
aN∑
k=1

Akjλkj ≤ 1, i ≤ aN, j ≤ N.

In the above,U is a strictly concave, increasing utility
function, and an insensitivity result shows that the al-
location is independent of the particular utility function
chosen, whose proof we omit for brevity.

This in turn implies the following characterisation of
the optimal rates(λ∗

i ) as the so-called max-min fair
allocations, whose proof we also omit:

Lemma 3.2: Let (λ∗
i ) be the optimal user rates solving

the above optimisation problem for some (and hence
for all) strictly concave, increasing utility functionU .
Denote byx1 < x2 < · · · < xm the distinct values of
the λ∗

i , ranked in increasing order. LetIk denote the set
of indicesi such thatλ∗

i = xk.
Then for any other feasible allocation(λi), necessarily

min
i∈I1

(λi) ≤ x1.

If there is equality in the above, ,λi ≡ x1 on I1.
We can now establish the following:

Theorem 3.2: Assume there areN resources, andaN
users each connecting tob resources selected at random.
Denote byλ∗

i the optimal allocations that result. Then
there existsx > 0, that depends only ona and b, such
that:

lim
N→∞

P
(
min

i
λ∗

i ≥ x
)

= 1. (13)

A sufficient condition for this evaluation to be valid is
that x < min(1/a, b − 1), and furthermore:

∀u ∈ (0, a], ah(u/a) + h(ux) + bu log(ux) < 0, (14)



where h(x) := −x log(x) − (1 − x) log(1 − x) is the
classical entropy function.
That is to say, the worst case allocation is bounded away
from 0 asN tends to infinity. This should be compared to
the result quoted by Mitzenmacher et al. [19], which says
that if users arrive in some random order, and choose
among theirb candidate resources a single one, then
the worst case rate scales like1/ log(log(N)). Thus we
achieve better use of resources by actively balancing load
among several available resources.

Proof: By Hall’s theorem, there exists a feasible
allocation (λi) to users such thatmini λi ≥ x if and
only if, for any setI of user indices, one has:

x|I| ≤ |{j : Aij = 1 for somei ∈ I}|. (15)

By Lemma 3.2, if there exists such an allocation, then
necessarily the utility maximising allocation(λ∗

i ) must
also be such thatλ∗

i ≥ x for all i. It thus remains to
prove that for some suitablex > 0, with high probability
Condition (15) is met for all non-empty subsetsI ⊂
{1, . . . , aN}.

For anyk ∈ {1, . . . , aN}, let rk := �kx
 − 1 be the
smallest integer strictly less thankx. Denote byRi the
(random) set of resources that useri tries to connect to.
Then the probability that the desired property fails to
hold reads:

P(∃I ⊂ {1, . . . , aN},∃J ⊂ {1, . . . , N}, so that:
|J | ≤ r|I| and ∪i∈I Ri ⊂ J).

Note that, for a particular user setI of size k, and a
particular resource setJ of size r, the probability that
all the bk random resource selections made by all users
i, i ∈ I, fall into set J , equals(r/N)bk. Thus, by the
union bound, the above probability is not larger than

aN∑
k=1

(
aN

k

)(
N

rk

)(rk

N

)bk

. (16)

Those terms withrk = 0 are null, and can thus be
ignored. Under the condition thatxa < 1, the second
binomial coefficient is non-zero for allk in the summa-
tion range.

Thus, by Stirling’s formula, thek-th term in this sum
is not larger than a constant timesexp(A(k)), where:

A(k) := aNh(k/(aN)) + Nh(rk/N) + bk log(rk/N).

The exponentA(k) also reads:

A(k) = log(N) [k + rk − bk]
−k log(k) − rk log(rk) + bk log(rk)
+(aN − k) log(1 + k/(aN − k))
+(N − rk) log(1 + rk/(N − rk)).

Fix some δ ∈ (0, 1/2). Then for k ∈ {1, . . . , Nδ},
the exponentA(k) is not larger than(1 − 2δ)(k +
rk − bk) log(N), which is less than(1 − 2δ)(1 +

x − b)k log(N). Fix now someε > 0. In the range
k ∈ {N δ, εN}, the exponentA(k) is not larger than
k[(1+x− b) log(N/k)+C], for some constantC. This
is not larger thank[(1 + x− b) log(1/ε) + C]. Thus, for
sufficiently smallε, the factor ofk in this expression is
strictly negative (recall the assumption that1+x−b < 0).
Finally, in the rangek ∈ {εN, aN}, we have

A(k) ≤ N sup
u∈[ε,a]

[ah(u/a) + h(xu) + b log(xu)] .

Provided the supremum in this expression is strictly
negative, the sum (16) is, up to a constant factor, not
larger than:

Nδ∑
k=1

N (1−2δ)(1+x−b)k +
εN∑

k=Nδ

e−kC′
+

aN∑
k=εN

e−C′′N ,

whereC ′, C ′′ are positive constants. It clearly follows
that the sum (16) goes to zero asN tends to infinity.

It now remains to establish that one can indeed select
x > 0 small enough such that Condition (14) holds.
Argue by contradiction, assuming that for allx > 0,
there existsu > 0 such that:

ah(u/a) + h(ux) + bu log(ux) > 0. (17)

Thus necessarily,

u <
ah(u/a) + h(ux) + bu log(u)

−b log(x)
·

The numerator in the right-hand side is bounded from
above, uniformly inu ∈ [0, a]. This shows that, for small
x, u must be of order at most1/| log(x)| and hence go
to zero withx. The left-hand side of (17) reads, for small
x, and smallu:

−u log(u/a) − (a − u) log(1 − u/a) − ux log(ux)
−(1 − ux) log(1 − ux) + bu log(ux)
= −u log(u)[1 + x − b] + O(u) + bu log(x).

The last term in the above is negative forx < 1; for
x < b− 1, and small enoughu, the sum of the first two
terms in the last display is also negative. This shows that
(17) cannot hold: for small enoughx, there existsu > 0
such that it fails. This concludes the proof.

IV. NASH EQUILIBRIA FOR

THROUGHPUT-MAXIMISING USERS

In this section we assume that users can choose the set
of routes that they use. We characterise equilibrium allo-
cations, assuming users greedily search for throughput-
optimal routes. We show that the same equilibria arise
with coordinated congestion control, and uncoordinated
unbiased congestion control. Moreover, these equilibria
achieve welfare maximisation. In contrast, we exhibit
specific network topologies where RTT-biased uncoor-
dinated congestion control yields different, inefficient
equilibria. We shall use the models and notation of
Section II.



A. Uncoordinated, unbiased congestion control

Under the assumptions of Section II-B we introduce
the following notion of Nash equilibrium:
Definition 4.1: The collection of per route connection
numbersNr is a Nash equilibrium for selfish throughput
maximisation if it satisfies (1), and furthermore, the
allocations (2) are such that for alls ∈ S, all r ∈ R(s),
if Nr > 0, then

Λr

Nr
= max

r′∈R(s)

Λr′

Nr′
. (18)

♦
The intuitive justification for this definition is as

follows: any classs-user would maintain a connection
along router only if it cannot find an alternative router′

along which the default congestion control mechanism
would allocate a larger rate.

We then have the following result:
Proposition 4.1: Assume that for eachs ∈ S, there

is a strictly concave, increasing class utility functionUs

such thatUr ≡ Us for all r ∈ R(s). Then for a Nash
equilibrium (Nr), the corresponding rate allocations
(Λr) solve the general optimisation problem (6-7).

Proof: Let pr := ∂rΓ(Λ). Then for eachr ∈ R(s)
such thatNr > 0, it holds, by monotonicity ofU ′

r ≡ U ′
s,

that
pr = min

r′∈R(s)
pr′ .

These are precisely the Kuhn-Tucker conditions that
characterize maxima of the optimisation problem (6-7).

To summarise: if i) the utility functions of the default
congestion control mechanism are path-independent, and
ii) users agree to concurrently use a fixed numberb of
paths, and iii) they manage to find throughput-optimal
paths, that is they achieve a Nash equilibrium, then at
the macroscopic level, the per-class allocations solve the
coordinated optimisation problem (6-7).

B. Uncoordinated, biased congestion control

It is well known that the bandwidth shares achieved
by TCP Reno are affected by the path round trip time.
To illustrate the possible consequences, we follow [8]
and assume that TCP implicitly maximises the sum of
utilities of all current connections, and the utility of
sending at rateλ along a pathr with round-trip time
τr is

Ur(λ) = − 1
τ2
r

1
λ
·

Consider now the network example of Figure 1. It has
long fat links, with associated round trip timeT and
capacityC, and short thin links, with round trip time
τ and capacityc, with T > τ and c < C. Assume
classa users need to transfer data from nodea to node

a′, and can use either a “long fat” route viac′, b′, or a
“short thin” route viab, c. Similarly, classb (respectively,
c) users need to transfer data from nodeb to nodeb′

(respectively, from nodec to nodec′) and can take either
a route with two short and one long link, or with two
long and one short link.

a b

a’

c

b’

c’

Fig. 1. Network with alternation of fat and long with short and thin
links.

Let us now show that bad Nash equilibria can arise for
this particular network, given the TCP utility functions
described above, and for particular choices of link RTTs.
Consider in particular the symmetric case where the
numbers of classa, b and c users are all equal to some
common numberN ′, all of which use the same number
of connectionsb, and letN := bN ′. We now demonstrate
that the state where all connections are via the (short-
long-short) routes is a Nash equilibrium.

In such a state, the number of connections via every
short (respectively, long) link is equal to2N (respec-
tively, N ). The total round trip time of the (s-l-s) routes
is T +2τ . In order to utilise perfectly the thin links, the
corresponding Lagrange multipliersp must satisfy:

2p = U ′
s−l−s(c/2N) =

[
(T + 2τ)

c

2N

]−2

,

thereby ensuring that each connection achieves a total
rate of c/(2N). Consider now the rate that would be
achieved on a (long-short-long) route, whose round-trip
time is2T +τ , and whose aggregate Lagrange multiplier
is p rather than2p. The corresponding rate would thus
be:

λ =
1

(2T + τ)
√

p
=

√
2
T + 2τ

2T + τ

c

2N
·

Thus, provided the link round trip timesτ, T satisfy
√

2
T + 2τ

2T + τ
< 1,

then the state where all connections are of (s-l-s) type is
indeed a Nash equilibrium. Note that the total throughput
achieved is half what could be achieved using the (l-s-l)
paths instead.

C. Coordinated congestion control

For coordinated control, we use the model of sec-
tion II-C and introduce the following notion of a Nash
equilibrium:



Definition 4.2: The non-negative variablesNc, c ∈ C(s),
s ∈ S, are a Nash equilibrium for the coordinated
congestion control allocation if they satisfy the con-
straints (3), and moreover, for alls ∈ S, all c ∈ C(s),
if Nc > 0, then the corresponding coordinated rate
allocations satisfy∑

r∈c Λc,r

Nc
= max

c′∈C(s)

∑
r∈c′ Λc′,r

Nc′
· (19)

♦
We then have the following:
Proposition 4.2: At a Nash equilibrium as in Defi-

nition 4.2, the path allocationsΛr solve the welfare
maximisation problem (6-7).

Proof: Let pr := ∂rΓ(Λ). Then the allocations of
users of types with connection setc read:∑

r∈c Λc,r

Nc
= U ′

s
−1(min

r∈c
pr).

Thus the only routesr that type s users utilise at a
Nash equilibrium are such thatpr = minr′∈R(s)(pr′),
and all type s-users obtain a global rate equal to
U ′

s
−1(minr∈R(s) pr). These are precisely the Kuhn-

Tucker optimality conditions for the coordinated welfare
optimisation problem (6-7).

V. DYNAMIC ROUTE SELECTION

In this section we look at deterministic differential
equation models of joint rate adaptation and route selec-
tion. We consider first the case of coordinated congestion
control and then the case of uncoordinated unbiased
congestion control. In both cases, the route selection
procedure works as follows: first, a user with a current
route setc is proposed a new route setc′ at some fixed
rateAcc′ . Then, the new route set is accepted under the
condition that thenet benefit that the user retrieves from
the new route set is higher than that of the current route
set.

We show for both cases that this procedure eventually
leads to a welfare maximising equilibrium.

A. Model

We use the model of Section II-C, where now the
number of classs users,Ns, are subdivided according
to the set of routes they are currently using,Nc denoting
the number of classs-users concurrently using all routes
in c, c ⊂ R(s). Classs users currently using the set
c of routes will at the instants of a Poisson process
with intensity Acc′ consider replacing their route setc
by route setc′. We shall restrict the feasible subsetsc
of routes that classs users may use by setting to zero
some of theAcc′ rates, and assume that the feasible route
sets have common cardinalityb, e.g. b = 2. Finally,
assume that for each classs, any r ∈ R(s), any given

set c ∈ C(s), there is somec′ such thatr ∈ c′ andAcc′

is positive.
We denote byλc the data rate obtained by users

streaming along routesr ∈ c. This is the sum of the
ratesλc,r over r ∈ c, where λc,r is the sending rate
along router:

λc =
∑
r∈c

λc,r.

and related to the aggregate rateΛr by

Λr =
∑
c:r∈c

Ncλc,r, r ∈ R.

B. Coordinated congestion control

We assume the following form of rate adaptation (see
[9]):

d

dt
Λc,r = Ncκc,r

[
U ′

s(c)(Λc/Nc) − ∂rΓ(Λ)
]

+ µc,r,

(20)
where the termµc,r is non-negative and such that
µc,rλc,r ≡ 0, and is meant to ensure non-negativity of
λc,r, andκc,r is a positive gain parameter.

We denote the net benefit per unit time for types users
streaming along routesr in some setc asBc, given by

Bc = Us (λc) −
∑
r∈c

λc,rU
′
s(λc).

We now make the following assumption. A types user
will swap from route setc to route setc′, at an instant
where this change is proposed, only if the net benefit
Bc′ exceedsBc. Note that it may be delicate to do this,
and schemes may be needed to actually evaluate such
net benefits along the alternative path setc′.

We would thus have a change fromN = {Nc} to
N + ec′ − ec at a rate

NcAcc′φ(Bc′ − Bc),

whereφ is a Lipschitz continuous function, taking values
in [0, 1], equal to 0 onR−, and positive on(0,∞). For
definiteness, we shall take

φ(x) = max(0,min(x, 1)).

Assuming large populations of users, we no longer
consider the stochastic system but the deterministic evo-
lution defined by the drift vector field, ie

d

dt
Nc =

∑
c′

Nc′Ac′cφ(Bc−Bc′)−
∑
c′

NcAcc′φ(Bc′−Bc).

(21)
We now show the following

Proposition 5.1: Assume that the utility functionsUs

and the penalty functionΓ are continuously differ-
entiable on their domain, that the former are strictly
concave increasing, and the latter convex increasing.
Assume further thatU ′

s(x) → 0 as x → ∞. Then any



absolutely continuous solution(Nc, λc,r) to the system
of ODE’s (20-21) converges to the set of maximisers of
the welfare function

W(Λ, N) :=
∑
s∈S

∑
c⊂R(s)

NcUs(Λc/Nc) − Γ(Λ) (22)

where Λc = Ncλc, under the constraints (3). The
corresponding equilibrium rates(Λr) are solutions of the
coordinated welfare maximisation problem (6–7).
Before establishing the proof of this proposition, we
provide an interpretation of the net benefit maximisation
rule:

Remark 5.1: For any strictly concave, continuously
differentiable functionU , the corresponding net benefit
function B(x) := U(x) − xU ′(x) is strictly increasing,
as can be seem from writingB′(x) = −xU ′′(x). Thus,
the net benefit maximisation strategy corresponds to a
rate maximisation strategy.

Proof: Let us first establish that the functionW as
defined in (22) increases with time. For almost everyt,
we have:

d

dt
W =

∑
c⊂R

∑
r∈c

(
d

dt
Λc,r

)
∂W
∂Λcr

+
∑
c⊂R

d

dt
Nc

∂W
∂Nc

(23)

=
∑
c⊂R

∑
r∈c:λc,r>0

κc,rNc

[
U ′

s(c)(λc) − ∂rΓ(Λ)
]2

(24)

+
∑

c,c′⊂R
Acc′Ncφ(Bc′ − Bc) [Bc′ − Bc] .

Indeed, identity (23) holds by absolute continuity of the
functionst → λc,r(t) and the fact that the welfare func-
tion is continuously differentiable. The expression (24)
holds because at pointst whereλc,r(t) = 0 and the func-
tion t → λc,r(t) is differentiable, by its non-negativity
this derivative must equal zero. Also, to establish (24)
we have used the fact thatBc = ∂W/∂Nc.

Since each term in (24) is non-negative, welfare in-
creases with time as claimed.

We now characterize the limiting points of these
dynamics.

Lasalle’s invariance theorem (see e.,g. Khalil [15],
p.128, Theorem 4.4) ensures that solutions of these
ODE’s converge to the set of points for which the
expression (24) equals zero, provided that the trajectories
are bounded. However, boundedness holds trivially for
the N -components because the totalNs remains con-
stant, while it holds for theλ-component because of our
assumption thatlimx→∞ U ′

s(x) = 0.
Thus, solutions of these ODE’s converge to the set of

points such that for allc such thatNc > 0, all r ∈ c,
eitherλc,r = 0, or

U ′
s(c)(λc) = ∂rΓ(Λ).

This implies that for allc ⊂ R(s) such thatNc > 0, all
r ∈ c such thatλc,r > 0, one has:

∂rΓ(Λ) ≡ U ′
s(c)(λc).

Consider now the set of valuespr = ∂rΓ(Λ), r ∈ R(s),
and let r0 be such thatpr0 achieves the minimum of
such values. Letc ⊂ R(s) be such that, at a candidate
equilibrium point,Nc > 0. consider the following two
cases.

Case 1:r0 ∈ c. Then necessarily, eitherλc = 0, and
pr0 ≥ U ′

s(0), or λc > 0, andU ′
s(λc) = pr0 .

Case 2:r0 /∈ c. However, by assumption there exists
c′ ⊂ R(s) such thatAcc′ > 0 and r0 ∈ c′. Necessarily,
for Nc > 0 to hold, one must have

Bc ≥ Bc′ = Us(λc′) − λc′U
′
s(λc′).

Now in view of Remark 5.1, necessarilyλc ≥ λc′ . In
turn, this yields that

min
r∈c

pr = U ′−1
s (λc) ≤ U ′−1

s (λ′
c) = pr0 .

By our choice ofr0, this implies thatλc = λc′ , and
pr = pr0 for all r ∈ c such thatλc,r > 0.

Consider now the optimisation problem (6),(7) with
optimality conditions (9).

From the previous discussion, any point such that
(d/dt)W = 0 is such that the corresponding rates

Λr =
∑

c⊂R(s)

Ncλc,r

solve the above optimization problem.
In this sense, random route resampling, coupled with
route selection based on net benefit (or by Remark 5.1,
based on achieved rate) provides global allocations to
user classes that coincide with those that would arise if
users were allowed to use coordinated congestion control
over the full set of available routesR(s) simultaneously.

C. Uncoordinated congestion control

We assume the following form of rate adaptation (see
[9]):

d

dt
Λc,r = Ncκc,r

[
U ′

s(c)(Λc,r/Nc) − ∂rΓ(Λ)
]

+ µc,r,

(25)
where the termµc,r is non-negative and such that
µc,rΛc,r ≡ 0, andκc,r is a positive gain parameter. We
adapt the definition of the net benefitBc per unit time
for type s users streaming along routesr in some setc
to the present context of uncoordinated rate control. This
reads

Bc =
∑
r∈c

Us (λc,r) −
∑
r∈c

λc,rU
′
s(λc,r).

Otherwise, we assume as in the coordinated case that
the evolution of the numbersNc is characterised by the



differential equations (21). The proof of the following
mirrors that of Proposition 5.1 and is omitted.

Proposition 5.2: Assume that the utility functionsUs

and the penalty functionΓ are continuously differ-
entiable on their domain, that the former are strictly
concave increasing, and the latter convex increasing.
Assume further thatU ′

s(x) → 0 as x → ∞. Then any
absolutely continuous solution(Nc, λc,r) to the system
of ODE’s (25-21) converges to the set of maximisers of
the welfare function

W(Λ, N) :=
∑
s∈S

∑
c⊂R(s)

∑
r∈c

NcUs(Λc,r/Nc) − Γ(Λ)

(26)
where Λc,r = λc,rNc, under the constraints (3). The
corresponding equilibrium ratesΛr =

∑
c:r∈c Λc,r are

solutions of the coordinated welfare maximisation prob-
lem (6–7), with the utility functionx → Us(x) replaced
by x → bUs(x/b).

VI. CONCLUDING REMARKS

We have looked at some of the properties of coordi-
nated or uncoordinated controllers when combined with
multipath routing. We have concentrated on the case with
fixed-arrivals. The main findings are that without path
reselection, uncoordinated control can perform poorly,
and is “unfair”. This resonates with the findings of [10],
[13], [12], when demand is stochastic. This previous
theoretical work has shown that with stochastic arrivals,
uncoordinated controls can perform poorly, either giv-
ing a much smaller schedulable (stability)region than
coordinated, or even when the stability regions are the
same, giving poorer performance. In passing, for a
simple scenario we have also given a characterisation
of performance for coordinated control that does better
than the greedy-least loaded routing as in Mitzenmacher
for large systems. Recent work [14] shows the benefits
are even more pronounced for small systems.

Early P2P systems such as Kazaar use a form of
uncoordinated control without path reselection. Recent
P2P filecasting applications, such a BitTorrent, imple-
ment uncoordinated congestion control using parallel
TCP connections, but reselecting paths. With random
path selection, whereby paths are randomly reselected,
and new paths accepted if there is a net benefit, then
we find first, that choosing just a small number of
routes can do as well as if we tried the whole set. In
addition, uncoordinated and coordinated both lead to a
system optimal (welfare maximising solution), achieved
in a distributed manner,provided the uncoordinated
controllers have no RTT bias (unlike current coordinated
controllers). Accepting that route re-sampling produces
fair allocationsas if all available routes were jointly
used, we may consider additional dynamics of user
arrivals and departures. The fluid limits for the latter

system would then be the same as for the system with
fair sharing, using the full set of available routes, as
route resampling would take place on a fast time scale
compared to the time scale of arrivals / departures in a
many users limit.

This suggests good design choices for new multipath
rate controllers are coordinated controllers or uncoordi-
nated controllers with the RTT bias removed.
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