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trying to improve upon them. In each case, TCP is used

benefits of coordinated congestion control for multipath a5 the transport protocoL Some natural questions arise:

data transfers, and contrast with uncoordinated control.
For static random path selections, we show the worst-
case throughput performance of uncoordinated control
behaves as if each user had but a single path (scaling
like log(log(N))/log(N) where N is the system size,
measured in number of resources). Whereas coordinated
control gives a throughput allocation bounded away from
zero, improving on both uncoordinated control and on the
greedy-least loaded path selection of e.g. Mitzenmacher.
We then allow users to change their set of routes and
introduce the notion of a Nash equilibrium. We show that
with RTT bias (as in TCP Reno), uncoordinated control
can lead to inefficient equilibria. With no RTT bias, both
uncoordinated or coordinated Nash equilibria correspond
to desirable welfare maximising states. Moreover, simple
path reselection polices that shift to paths with higher net
benefit can find these states.

o How does such a mechanism perform relative to
one that simply opens and uses all paths? Opening
multitudinous TCP connections has systems perfor-
mance implications, hence there are incentives to
keep this overhead small.

o What is effect of RTT bias, if any? TCP Reno has a
built-in bias against long RTTs, and we would like
to explore the implications.

« And how does it perform relative to a mechanism
that uses @oordinated controller? By a coordinated
controller, we mean one thattively balances load
across a set of paths, taking into account the states
of all paths. A coordinated congestion controller
requires a revised transport layer protocol or an

application layer solution. In contrast an uncoordi-
nated controller can be thought of as using parallel

. : : . : connections?
Multipath routing architectures have received attention o L .
recently [2], [6], [16], [17], [22]. There is consider- The motivating application scenario is of data transfers

able interest in combining multipath routing with ratver TCP, where th? transfers are long epough to allow
control, e.g. [7], [11], [13]. It can be viewed as arPerformance benefits for multipath routing. However
example of cross-layer optimisation [5], [18], wherd@Ur analysis applies more generally to situations where

additional benefits are obtained by jointly optimising af1€re are alternative resources which can help service a

the routing (network) and transport layers. Indeed, it §€Mand. and where the demand is serviced using some
implicitly used in several Peer-to-peer (PTP) applice{prm of rate control. We assume that the demand is fixed,

tions, in a receiver-driven mode. An early example j@nd €ach user is attempting to optimise its performance
Kazaa which allowed users to choose multiple path8Y Ch0osing appropriate paths (resources), where the rate

with path selection effectively manual. More recent p2pPntrol algorithm is fixed. More precisely, we assume
applications such as Skype use automatic path selectifffft the rate control is implicitly characterised by a
Skype [21] claims to keep multiple connections Opthlhty maX|m|sat|qn problem [20], Wher_e a particular
and dynamically chooses the “best” path in terms Jpte control algont.h_m (eg TCP Reno) is mapped to a
latency/quality. Bittorrent [4] maintains 4 active path@articular (user) utility function [8], and that users self-
with an additional path periodically chosen at randor§H!y S€ek to choose paths in such a way as to maximise

together with a mechanism that retains the best paﬁl]"@ir m_at utility_._A coorqlinated controller is modelled
(as measured by throughput). by a single utility function per user, whose argument

In all the above, users or the end-system'’s protocol are the aggregate rate summed over paths, whereas an

effectively provided with a large set of potential pathgncoordinated controller has a utility function per path

from which they choose a small set with the option o?nd the aggregation is over the utility functions.

I. INTRODUCTION

Iparallel connections achieve a more limited form of load balancing.

* This material is based on work supported by NSF Grant Nd-or example, two uncoordinated TCP connections, with different

CNS-0519922. Any opinions, findings, and conclusions or recommetiroughput rates, in parallel to download a file, such as by pulling from

dations expressed in this material are those of the authors and do different ends of the file, will cause more of the file to be downloaded
necessarily reflect the views of NSF. on the better path.



We first consider the case where the integer number only does as well as a coordinated control if there
of paths (resources selected) chosen is fixed, and is no RTT bias in the controllers.

the paths are static, but chosen at random from a set{e last two points suggest good design choices for new
size N. We look at the worst-case allocation, which isnultipath rate controllers are coordinated controllers or

a measure of the fairness of the scheme. In the ungghcoordinated controllers with the RTT bias removed.
ordinated case, we show that the worst case allocationwe now describe the modelling framework.

scales adog(log(N))/log(N), with increasingb only
improving the constant in the scaling. In contrast, in the Il. MODELLING FRAMEWORK
coordinated case where we can rebalance the load acrassvodel

resources, provided > 1, the worst-case allocation is \\e assume a set of user classes. indexed BysS.

bounded away from zero. This demonstrates that Network paths are indexed by € R. Users of class

1) coordinated improves significantly on uncoordiy can use any path from subs&(s) of R. Without

nated in the static case; loss of generality we may assume these sets are disjoint.
2) coordinated improves on the greedy least-load@gbtwork capacities or feedback signals (such as loss,
resource selection, as in Mitzenmacher [19], whefgacket marking or delay) are captured by some convex
the least-loaded selection ofresources scales asnon-decreasing penalty functidh: R% — Ry U{+00}
1/log(log(NN)) for b > 1. - see [10] for examples. Typically is the sum of penalty
Effectively, the coordinated selection is able to shift thiinctions associated with each resource type. We can
load amongst the resources, and with a minimal choiggso interpret the penalty functions as “costs” and their
of b able to utilise the resourcess if a global load derivatives as “prices”, and we shall make use of the
balance was being performed. notation
We then allow users to change the set of routes they pr =0, T(A).
use, and introduce the natural game-theoretic notion of ) )
a Nash equilibrium in this context, where users seek & Uncoordinated Congestion Control
selfishly maximise their own net utilities. We then find We assume that classusers try to maximise their
qualitatively different behaviour according to whethethroughput. We further assume that each classer is
the rate controller has a RTT bias or not. If the controlleestricted to use the same numbemrf connections, that
has no RTT bias (unlike TCP Reno, for examplekan be along any routesfrom setR(s).
then in the uncoordinated case we find that the NashWe further assume that the rate a user obtains on
equilibria correspond to desirable welfare maximising connection along a given route is achieved by some
states, which implies we have a Pareto-efficient solutiodefault congestion control mechanism (e.g. TCP), that
In contrast, if there is an RTT bias (as in TCP Reno)mplicitly performs some utility maximisation, the utility
then the Nash equilibria can be inefficient, and we givef a single user sending rate. through router being
an example where the achieved rate is half of what could.()\,.). For tractability, we assume théat. is a strictly
be achieved. For the coordinated controller, of necessitpncave increasing function that is continuously differen-
there can be no RTT bias, and Nash equilibria coincidible on(0, co). Finally, we assume that users’ criterion
with welfare-maximising social optima. Moreover, weor optimality is their achieved rate.
show for both coordinated and uncoordinated control If there are N! class s-users, the total number of
with no RTT bias, that simple path selection policiesconnections they make &, := bN/. Denoting by N,
which combine random path resampling with moving téor » € R(s) the total number of connections made
paths with higher net benefit lead to welfare maximisingy class s users along route, gives the following
equilibria, and do as well as if the entire path choice wanstraint:
available to each user.

In summary, we shall provide some partial answers to Z Nr =N, seS. @)
our initial questions. re€R(s)

« In a large system, provided we re-select randomfjhe outcome of congestion control fgiven numbers
from the set of paths and shift between paths witly,. of connections along each route is defined to be
higher net benefit, we can use a small number #fe solution of the welfare maximisation problem
]E)ualllt;su ;?n;h;??ﬁefr;;?hznd do as well as if we were Maximisez Z NoUL(A/N,) —T(A). ()

« There is a loss of efficiency with RTT bias sESTER(s)

« Coordinated control has better fairness properti@ver A, > 0 where A = {A,} denotes the vector of
than uncoordinated in the static case. When coraggregate rates. Note that the utility function can depend
bined with path reselection, uncoordinated contralpon the route taken.



The function being optimised in (2) is a strictly con- [1l. STATIC, RANDOM ROUTE SELECTIONS
cave function, optimised over a convex feasible region; |4 this section we focus on the following scenario.

hence the problem is Strong Lagrangean and the unigfi§ere are N resources with unit capacity, and the

maximum is attained. Moreover, the function is alspenalty function associated with each resource is the step
strictly concave over X, N), provided N > 0, where fnction,

N,.U.(A,./N,) for N, > 0 is the perspective (page 89, 0 if A <1

[3]) of U,; hence we can consider the optimisation (2) Ir(Ay) = { otherrv;ise (10)
subject to (1) for(A, N) over A > 0, N > 0 to look at o

the optimal choice of paths and rates. To provide a concrete interpretation, the resources can be

C. Coordinated Congestion Control interpreted as servers, or as relay or access nodes. There
areaN users. Each user seledigesources at random
Assume that class-users can use concurrently pathgom the N available, wheré is an integer larger than 1
from a collectionc, wherec C R(s), and denote b¢(s)  (the same resource may be sampled several times). We
the family of all such path collections that are allowedspy)| |ook at the worst case rate allocation of users under
For definiteness, think of(s) as the collection of all ywo distinct bandwidth sharing scenarios. In the first
subsets ofR(s) of size b. Denote byN. the number gcenario, there is no coordination between the distinct
of users with associated set of connections equal. 0}, connections of each user. Thus, if one connection
When the number of class users equalsVs, one thus yses a resource handlin§ connections overall, it is

has the constraint straightforward to show that the connection achieves a
Z N,=N,, scS8. (3) rate allocation of exactlyl/X. In the second scenario,
ceC(s) each user implements coordinated multipath congestion
control.

In contrast to the uncoordinated case, we associate &q \yorst.case allocation, is a fairess measure. How-

sm_gle utility funct!onUs(~)_ with a cIass;_user, assted ever, for our scenario it is straightforward to show [14]
strictly concave, increasing, and continuously dlﬁereqhat the more "unfair" the allocation, the greater the

tiable on(0, o). We can then assume that the allocatiogxpected time to download a unit of data, and that a

o a classs-user V.V!th connection setis >, . Ac,r/Ne, coordinated allocation minimises such a performance
where the quantitied.. , solve measure

A‘C T . .
Maximise > )" N.U, (Z’GN;) —T(A) (4) A Uncoordinated congestion control
SES ceC(s) ¢ We shall denote by, the total rate that userobtains
over (A., > 0, where the vectorA = (A,) in the from all its connections. The main result is the following

argument of the penalty functioh is defined as Theorem 3.1: For fixed parameters andb, then for
any e > 0, one has the following

A= S Ay (5)
C;C lim P < min _\; < (b* + e)w) =1.
The joint optimisation (4) oveA > 0, N > 0 subject to ¥ > \i=toaN log(N) (1)
(5) is also Strong Lagrangean. We shall see in Section |, \yorgs, the worst case allocation in this scenario
that the optimal ratesAT for this joint _op_tim?sation decreases likéng(log(IV))/ log(N). This is to be com-
actually solve the following welfare maximisation pared with the worst case allocation that one gets if
: b = 1, that is if a single path is used: from classi-
Maximize » ~ N, U, (%) —I'(A) (6) cal balls and bins mod%ls F[)19], this also decreases in
s ) log(log(N))/log(N) as N increases.

overA, >0, reR. () The proof relies on the following result:
This problem is strong Lagrangean, and its solution is Lémma 3.1: Let the constanty > 0 be as above.
characterized by the Kuhn-Tucker conditions Given some constant > 0, whenaN balls are thrown
at random inN bins, then for anye > 0, e < 1/2b,
U’ ZT'ER(S) As <a,T(A) ®) with high probability, the number of bins which receive
s N, - ’ at least . log(V)
og
M:=(+-—2) —————— 12
(%) mtentry 62

rer(s) s

U <—Z’E;§(” ) <OT(A)= A, =0. (9)
B balls is larger thanV!+e—1/b,

We note that there are distributed rate control algorithms  Proof: Let 5 = «/2, and let X be a Poisson

for all of the above optimisation problems, e.g. [11]. random variable with mea@N. Then if one throws



X balls at random intaV bins, by a standard propertyallocation will then be at most
of Pois_son rz_ir_1dom variables_, the numb_efs of bal_ls in b b log(log(N))
each bin are i.i.d. random variables, admitting a Poisson A= Mo 1/b—2¢ log(N)
distribution with parameteg. Furthermore, with high
probability, X < alN, so it is enough to show thatFor anye’ > 0, by takinge > 0 small enough, the first
the property of the Lemma holds in the case whefeaction in the above is indeed less thain+ ¢, which
the occupancy numbers of bins are i.i.d, Poisson wittbmpletes the proof. ]
parameters. . .

In this context, the number of bins that receive at leaBt Coordinated congestion control
M balls has a Binomial distribution, with parameters Here we assume as before that there @M users,

(N, q) where each selecting resources at random, from a collection
" of IV available resources. We shall denoteXpy the rate
q = P(Poisso3) > M) > e—ﬁﬁ_, that useri obtains from resourcg, and let4;; equal 1
M! if user¢ accesses resourge and equal 0 otherwise.

[1], appendix), Binomial random variables admit tighte&1at the rates\;; are chosen to maximize:
Chernoff bounds than Poisson variables with the same uN N
mean. Hence, if one can show that the méaqof this

. . ' . . U Aiis
Binomial random variable satisfies ; ; W

. Ngq .
ngnoo NiFe—1/b = +o0, under the constraints:
aN
the result of the Lemma will follow. However, the Aij >0, ZAkj)\kj <1, i<aN,j<N.
logarithm of the left-hand side of the above satisfies, k=1

appealing to Stirling’s formula, and neglecting lowe
order terms:

log (%)

In the aboveU is a strictly concave, increasing utility
function, and an insensitivity result shows that the al-
— B+ Mlog(8) — log(M?) location is independent of th_e particulgr utility function
chosen, whose proof we omit for brevity.
N J_r(glib]&zkzg()]\i)l log(27 M) This in turn implies the following characterisation of
o (Mi " (f/bg— $ (N)the optimal rates(\!) as the so-called max-min fair
g)g ) f N €)108UY) allocations, whose proof we also omit:
~ J:g;b B G)E;O;%](V)) Lemma 3.2 Let (\) be the optimal user rates solving
— loa(N the above optimisation problem for some (and hence
elog(N), for all) strictly concave, increasing utility functio®y.
where we have used the expression (12)Mdf This Denote byz, < xs < -.- <, the distinct values of
establishes the result. n thg AL ranked in increasing order. L&} denote the set
Proof: (of Theorem 3.1) Assume that the resourc@f indicesi such that\} = . _ _
selection of hosts is broken into two phases. First, one Then for any other feasible allocati¢n; ), necessarily
half (that is,vV users) make their individual selections. min(\;) < 21
By the above lemma, once this is done, with high ien T
probability there are at leadf'+<—1/° resources selected If there is equality in the above,\;
by at leastM users, at the end of this phase. In th o
second phase, the remaining/ users get to select their
resources. Each random selection of these users there
has a probability of at leagV!'t<~ 1/ /N = N<=1/b of
being to a resource with at leadtl users. Thus the
probability that such a user makes selections only
resources with at least/ users is at leasiv’!. . N
Therefore, the total number of phase two users se- ]\}EnooP (Iniln Az x) =L (13)
lecting only such congested resources is larger thanagficient condition for this evaluation to be valid is

Binomial random variable with parametérgV, No<—1). thatz < min(1/a,b — 1), and furthermore:
As its meanyN’e goes to+oo as N — oo, there is

at least such a user with high probability. Its total rateVu € (0, a], ah(u/a) + h(uzx) + bulog(uz) < 0, (14)

Y

=z, on .
fVe can now establish the following:

Theorem 3.2: Assume there ar&’ resources, andN
{9§8rs each connecting baesources selected at random.
Denote by\; the optimal allocations that result. Then
Erﬁere existst > 0, that depends only on and b, such

at:



where h(z) := —zlog(z) — (1 — z)log(l — z) is the =z — b)klog(N). Fix now somee > 0. In the range
classical entropy function. k € {N° eN}, the exponentd(k) is not larger than
That is to say, the worst case allocation is bounded awaj(1 + = — b) log(N/k) + C], for some constant’. This
from 0 asN tends to infinity. This should be compared tas not larger thark[(1 + = — b) log(1/¢) + C]. Thus, for
the result quoted by Mitzenmacher et al. [19], which sayafficiently smalle, the factor ofk in this expression is
that if users arrive in some random order, and choosktictly negative (recall the assumption thatz—b < 0).
among theirb candidate resources a single one, thefinally, in the rangek € {e¢N,aN}, we have
the worst case rate scales lik¢log(log(N)). Thus we Al <

. A . N h h bl :
achieve better use of resources by actively balancing load (k) < uzl[lel?a] lah(u/a) + h(zu) + blog(zu)]
among several available resources. Provided the supremum in this expression is strictly

Proof: By Hall's theorem, there exists a feasiblg,qqative, the sum (16) is, up to a constant factor, not
allocation (\;) to users such thatin; \; > z if and larger than:

only if, for any set/ of user indices, one has:

N? eN aN
oI <[{j: Ay =1forsomei e I}|. (15  H NO-2)0te=bk 3~ e R0 4 > e N,
k=eN

By Lemma 3.2, if there exists such an allocation, then =1 h=N©

necessarily the utility maximising allocatiop\;) must WhereC’, C"" are positive constants. It clearly follows
also be such tha* > z for all 4. It thus remains to that the sum (16) goes to zero Astends to infinity.

prove that for some suitable > 0, with high probability It now remains to establish that one can indeed select
Condition (15) is met for all non-empty subsetsc © > 0 small enough such that Condition (14) holds.

{1,...,aN}. Argue by contradiction, assuming that for all > 0,
For anyk € {1,...,aN}, letry := [kz] — 1 be the there existsu >0 such that:
smallest integer strictly less tham:. Denote byR; the ah(u/a) + h(ux) + bulog(uz) > 0. a7)

(random) set of resources that usgdries to connect to.

Then the probability that the desired property fails t(‘)rhus necessarily,

hold reads: w < ah(u/a) + h(uz) + bulog(u)
P(3rc{1,...,aN},3J C {1,...,N},so that: —blog(x)
|J| <7y and User Ry © J). The numerator in the right-hand side is bounded from

N hat. f icul étof size k. and above, uniformly inu € [0, a]. This shows that, for small
ote that, for a particular user sétof size k, and & .\, mst be of order at modt/|log(x)| and hence go

particular resource set of sizer, the probability that to zero withx. The left-hand side of (17) reads, for small
all the bk random resource selections made by all users

, and smalku:
i, i € I, fall into set.J, equals(r/N)’. Thus, by the ’ R

union bound, the above probability is not larger than —ulog(u/a) — (a —u)log(1 —u/a) — uwlog(uz)

—(1 — uzx) log(1l — ux) + bulog(ux)
% (aN) (N) (r_k)bk‘ (16) = —ulog(u)[1 + = — b] + O(u) + bulog(z).
k N/ The last term in the above is negative fer< 1; for
x < b—1, and small enough, the sum of the first two
terms in the last display is also negative. This shows that
(17) cannot hold: for small enough there exists: > 0

,
k=1 k

Those terms withr, = 0 are null, and can thus be
ignored. Under the condition thata < 1, the second
binomial coefficient is non-zero for all in the summa-

. such that it fails. This concludes the proof. ]
tion range.

Thus, by Stirling’s formula, thé-th term in this sum IV. NASH EQUILIBRIA FOR
is not larger than a constant timesp(A(k)), where: THROUGHPUFMAXIMISING USERS

In this section we assume that users can choose the set
Alk) = aNh(k/(aN)) + Nh(re/N) + bklog(ri /N). of routes that they use. We characterise equilibrium allo-
The exponentd(k) also reads: cations, assuming users greedily search for throughput-
. optimal routes. We show that the same equilibria arise
Alk) = lfi(lN)(Ef)tm l_b(k] )+ bl log () with coordinated congestion control, and uncoordinated
+(a?\fgf k) lgg(?irlf/(a]\f f%;k unbiased congestion control. Moreover, these equilibria
(N = ) log(1 + 74/ (N —14)). achieve welfare maximisation. In contrast, we exhibit
specific network topologies where RTT-biased uncoor-
Fix somed € (0,1/2). Then fork € {1,...,N°}, dinated congestion control yields different, inefficient
the exponentA(k) is not larger than(l — 26)(k + equilibria. We shall use the models and notation of
rr — bk)log(N), which is less than(l — 2§)(1 + Section Il.



A. Uncoordinated, unbiased congestion control a’, and can use either a “long fat” route wa ?’, or a
Under the assumptions of Section 1I-B we introduceShort thin” route viab, c. Similarly, class (respectively,
the following notion of Nash equilibrium: c) users need to transfer data from nddéo nodeﬁ’
Definition 4.1: The collection of per route connection(féspectively, from node to nodec’) and can take either
numbers\, is a Nash equilibrium for selfish throughput® route with two short and one long link, or with two
maximisation if it satisfies (1), and furthermore, thdong and one short link.
allocations (2) are such that for alle S, all » € R(s),
if N, >0, then

Ay
= max

A,
N,  reR(s) Ny~

(18)

0
The intuitive justification for this definition is as
follows: any classs-user would maintain a connectior
along router only if it cannot find an alternative routé
along which the default congestion control mechanis Fig. 1. Network with alternation of fat and long with short and thin
“ links.
would allocate a larger rate.

We then have the following result: Let us now show that bad Nash equilibria can arise for
Proposition 4.1: Assume that for each € S, there thjs particular network, given the TCP utility functions
is a strictly concave, increasing class utility functibh  described above, and for particular choices of link RTTs.
such thatl, = U; for all r € R(s). Then for a Nash consider in particular the symmetric case where the

equilibrium (N,), the corresponding rate allocation nymbers of clasa, b and ¢ users are all equal to some

(Ar) solve the general optimisation problem (6-7). ~ common numbed’, all of which use the same number

Proof: Letp, := 0,I'(A). Then for eachr € R(s)  of connections, and let\V := bN’. We now demonstrate
such thatV, > 0, it holds, by monotonicity o/l = U/, that the state where all connections are via the (short-

that long-short) routes is a Nash equilibrium.
pr = T,Ien%(ls)pw- In such a state, the number of connections via every
short (respectively, long) link is equal &N (respec-
These are precisely the Kuhn-Tucker conditions thgely, V). The total round trip time of the (s-I-s) routes
characterize maxima of the optimisation problem (6-7)s 7+ 2. In order to utilise perfectly the thin links, the

B corresponding Lagrange multipliepsmust satisfy:
To summarise: if i) the utility functions of the default

—2
congestion control mechanism are path-independent, and 2p =U._,_.(c¢/2N) = [(T + 27)% ,
i) users agree to concurrently use a fixed numberf ) , ,
paths, and iii) they manage to find throughput-optiméhereby ensuring that each connection achieves a total

paths, that is they achieve a Nash equilibrium, then &€ 0f ¢/(2IV). Consider now the rate that would be
the macroscopic level, the per-class allocations solve tghieved on a (long-short-long) route, whose round-trip

coordinated optimisation problem (6-7). time is27+7, and whose aggregate Lagrange multiplier
is p rather than2p. The corresponding rate would thus
B. Uncoordinated, biased congestion control be: . T4
T C
. . . 3\ — _ o
It is well known that the bandwidth shares achieved T 1 1)vp T 1 7 ON

by TCP Reno are affected by the path round trip time.
To illustrate the possible consequences, we follow [§]hus, provided the link round trip times 7" satisfy
and assume that TCP implicitly maximises the sum of T+ 27

utilities of all current connections, and the utility of ﬁ2T+r <1

sending at rate\ along a pathr with round-trip time
Tr IS

then the state where all connections are of (s-I-s) type is
11 indeed a Nash equilibrium. Note that the total throughput
Ur(N)=-—5v achieved is half what could be achieved using the (I-s-I)

_ ) paths instead.
Consider now the network example of Figure 1. It has

long fat links, with associated round trip tinfé and C. Coordinated congestion control

capacity C, and short thin links, with round trip time For coordinated control, we use the model of sec-
7 and capacitye, with 7' > 7 and ¢ < C. Assume tion II-C and introduce the following notion of a Nash
classa users need to transfer data from nadé node equilibrium:



Definition 4.2: The non-negative variables,, c € C(s), setc € C(s), there is some’ such thatr € ¢/ and A,

s € &, are a Nash equilibrium for the coordinateds positive.

congestion control allocation if they satisfy the con- We denote by). the data rate obtained by users
straints (3), and moreover, for alle S, all ¢ € C(s), streaming along routes € c¢. This is the sum of the
if N. > 0, then the corresponding coordinated rateates \., over r € ¢, where ., is the sending rate

allocations satisfy along router:
ZTEC AC,T — max ZrEc’ AC’,r . (19) >\C = Tze; )\C’T.
N, c’'eC(s) Ny
and related to the aggregate rate by
We then have the following: A = Z Neder, reR.
Proposition 4.2: At a Nash equilibrium as in Defi- cr€e

nition 4.2, the path allocationd, solve the welfare B. Coordinated congestion control
maximisation problem (6-7). _ We assume the following form of rate adaptation (see
Proof: Let p, := 9,I'(A). Then the allocations of [9]):

users of types with connection set read: p
Zr@c Acyr — U Y mi EACW = Nekic,r U;(c) (Ae/Ne) = 8TF(A)} + Hers
TN, U (e (20)

h h | h i where the termp., is non-negative and such that
Thus the only routes: that type s users utilise at a fierher = 0, and is meant to ensure non-negativity of
Nash equilibrium are such that. = min,.cr () (), A
and all type s-users obtain a global rate equal to

e,r» @Nd k., iS @ positive gain parameter.
. We denote the net benefit per unit time for typasers
Ug’l(minren(s) pr). These are precisely the Kuhn- P

<) . : streaming along routesin some set as B.., given b
Tucker optimality conditions for the coordinated welfare g g g Y

optimisation problem (6-7). ] B.=Us (\e) — Z AerUlL(Ne).
rece
We now make the following assumption. A typeuser
In this section we look at deterministic differentiakwill swap from route set to route set”, at an instant
equation models of joint rate adaptation and route seleghere this change is proposed, only if the net benefit
tion. We consider first the case of coordinated congestigs, exceedsB,.. Note that it may be delicate to do this,
control and then the case of uncoordinated unbiasgfld schemes may be needed to actually evaluate such

congestion control. In both cases, the route selectig@t benefits along the alternative path &et
procedure works as follows: first, a user with a current \We would thus have a change frofi = {N.} to

route setc is proposed a new route s€tat some fixed N 1 ¢, — ¢, at a rate

rate A.... Then, the new route set is accepted under the

condition that thenet benefit that the user retrieves from NeAco ¢(Ber — Be),

the new route set is higher than that of the current ro%erw

set. _ in [0, 1], equal to 0 orR_, and positive on(0, co). For
We show for both cases that this procedure eve”tua@éfiniteness, we shall take

leads to a welfare maximising equilibrium.

V. DYNAMIC ROUTE SELECTION

is a Lipschitz continuous function, taking values

¢(z) = max(0, min(z, 1)).

A. Model ) _
Assuming large populations of users, we no longer

We use the model of Section II—C.,.Where now. th(E‘onsider the stochastic system but the deterministic evo-
number of class users,N,, are subdivided accordlngIution defined by the drift vector field, ie

to the set of routes they are currently using, denoting P
the number of class-users concurrently using all routes @ », _ AL B , L
in ¢, c C R(s). Classs users currently using the setdi° = %:NC Accd(Be=Be) %:NCACC ¢(Be=Be).

¢ of routes will at the instants of a Poisson process (21)
with intensity A... consider replacing their route set We now show the following

by route setc’. We shall restrict the feasible subsets Proposition 5.1: Assume that the utility function&

of routes that class users may use by setting to zerand the penalty function® are continuously differ-
some of thed ... rates, and assume that the feasible routmtiable on their domain, that the former are strictly
sets have common cardinality e.g. b = 2. Finally, concave increasing, and the latter convex increasing.
assume that for each classanyr € R(s), any given Assume further thal/.(z) — 0 asz — oo. Then any



absolutely continuous solutiofiV, A, ) to the system This implies that for allc C R(s) such thatN, > 0, all
of ODE’s (20-21) converges to the set of maximisers of € ¢ such that\., > 0, one has:
the welfare function

o,I'(A) = US’(C)(AC).

W(A,N) = N.Us(A:/N.) —T'(A 22 )
( ) Z Z (Ae/Ne) =T(A) - (22) Consider now the set of valugs = 9,I'(A), r € R(s),

s€S eCR(s) _ and letro be such thap,, achieves the minimum of
where A, = NcA;, under the constraints (3). Thegych values. Let ¢ R(s) be such that, at a candidate
corresponding equilibrium raté4.,.) are solutions of the equilibrium point, N, > 0. consider the following two
coordinated welfare maximisation problem (6-7). cases.

Before establishing the proof of this proposition, we ~55e 1o € c. Then necessarily, eithex, = 0, and
provide an interpretation of the net benefit maX|m|sat|01{)1r0 > U'(0), or A, >0, andU’(\.) = py,.

rule: _ , Case 2y ¢ c. However, by assumption there exists
Remark 5.1: For any strictly concave, continuously, c R(s) such thatd,.. > 0 andr, € ¢'. Necessarily.
. . . . . CC . L]
differentiable functionU/, the corresponding net benefit,. nr <0 to hold. one must have

function B(x) := U(x) — zU’(z) is strictly increasing,
as can be seem from writing’(z) = —xU" (z). Thus, B. > By = Us(Aer) = Ao Ug(Aer).
the net benefit maximisation strategy corresponds to
rate maximisation strategy.

Proof: Let us first establish that the functiofy as
defined in (22) increases with time. For almost every minp, = U7 (A\e) S UYL = Dy
we have: ree

Nbw in view of Remark 5.1, necessarily. > A.. In
turn, this yields that

By our choice ofrg, this implies thatA\. = A\., and
d d ow d_ _ow 0 ¢ ¢
—W = E § —ANey | 75—+ g —Ne—— pr = pr, for all r € ¢ such that\. , > 0.
dt dt OAcr dt” “ON, 0 A .
cCR r€C cCR Consider now the optimisation problem (6),(7) with
(23)  optimality conditions (9).
) . : . .
_ Z Z ken N [ ;(c)(Ac) —8,,F(A)} From the previous discussion, any point such that

(d/dt)WW = 0 is such that the corresponding rates
cCRrec:Ae, >0

(24) A’r' - Z NCAC,T'
+ Z Acc’Nc(z)(Bc’ - Bc) [Bc’ - Bc] . cCR(s)
¢, c/CR solve the above optimization problem. ]

Indeed, identity (23) holds by absolute continuity of thén this sense, random route resampling, coupled with
functionst — \..(t) and the fact that the welfare func-route selection based on net benefit (or by Remark 5.1,
tion is continuously differentiable. The expression (24)ased on achieved rate) provides global allocations to
holds because at pointsvhere).. ,.(t) = 0 and the func- user classes that coincide with those that would arise if
tion t — \..(t) is differentiable, by its non-negativity users were allowed to use coordinated congestion control
this derivative must equal zero. Also, to establish (24)ver the full set of available routgg(s) simultaneously.

we have used the fact thal, = OW/ON.. . C. Uncoordinated congestion control
Since each term in (24) is non-negative, welfare in-

creases with time as claimed. We assume the following form of rate adaptation (see
We now characterize the limiting points of theséd)):
dynamics. d ,
Lasalle’s invariance theorem (see e.,g. Khalil [15],@/&” = Nekic,r s(c)(ACﬂ"/NC) —&I(A)} T He.rs
p.128, Theorem 4.4) ensures that solutions of these (25)

ODE’s converge to the set of points for which thevhere the termp., is non-negative and such that
expression (24) equals zero, provided that the trajectorVéSTAcn- =0, ?‘”_0! Ke,r 1S @ POSItive gain parameter. We
are bounded. However, boundedness holds trivially féapt the definition of the net benefif. per unit time
stant, while it holds for the.-component because of ourt© the present context of uncoordinated rate control. This
assumption thalim, ., U.(z) = 0. reads

Thus, solutions of these ODE’s converge to the set of B, — Z Uy Over) — Z Aer Ul (Ner).
points such that for alk such thatN,. > 0, all » € ¢,
eitherA., =0, or

rec rec

Otherwise, we assume as in the coordinated case that
;(C)(/\c) = 0,I'(A). the evolution of the numberd’, is characterised by the



differential equations (21). The proof of the followingsystem would then be the same as for the system with

mirrors that of Proposition 5.1 and is omitted. fair sharing, using the full set of available routes, as
Proposition 5.2: Assume that the utility function§; route resampling would take place on a fast time scale

and the penalty functiol” are continuously differ- compared to the time scale of arrivals / departures in a

entiable on their domain, that the former are strictlynany users limit.

concave increasing, and the latter convex increasing.This suggests good design choices for new multipath

Assume further that//(z) — 0 asxz — oo. Then any rate controllers are coordinated controllers or uncoordi-

absolutely continuous solutiofiVe, A. ) to the system nated controllers with the RTT bias removed.

of ODE’s (25-21) converges to the set of maximisers of
the welfare function o

WA N) :=>" 3" > " NUs(Acp/Ne) = T(A) 2
SES cCR(s) TEc
(26)
where A., = X.,N., under the constraints (3). The [3]

corresponding equilibrium rates, = Y- A., are
solutions of the coordinated welfare maximisation prob-
lem (6-7), with the utility functiont — U,(x) replaced [5]
by © — bU,(z/b).

VI. CONCLUDING REMARKS [6]

We have looked at some of the properties of coordi-
nated or uncoordinated controllers when combined with'!
multipath routing. We have concentrated on the case with
fixed-arrivals. The main findings are that without path
reselection, uncoordinated control can perform poorIyI,B]
and is “unfair”. This resonates with the findings of [10],
[13], [12], when demand is stochastic. This previoud®]
theoretical work has shown that with stochastic arrivals,
uncoordinated controls can perform poorly, either giyio]
ing a much smaller schedulable (stability)region than
coordinated, or even when the stability regions are tﬁlel]
same, giving poorer performance. In passing, for a
simple scenario we have also given a characterisatigs]
of performance for coordinated control that does better
than the greedy-least loaded routing as in Mitzenmacher
for large systems. Recent work [14] shows the benefifsi]
are even more pronounced for small systems.

Early P2P systems such as Kazaar use a form [of]
uncoordinated control without path reselection. Recent
P2P filecasting applications, such a BitTorrent, implet15]
ment uncoordinated congestion control using parallgle]
TCP connections, but reselecting paths. With random
path selection, whereby paths are randomly reselectélg,]
and new paths accepted if there is a net benefit, then
we find first, that choosing just a small number of
routes can do as well as if we tried the whole set. IF®
addition, uncoordinated and coordinated both lead to a
system optimal (welfare maximising solution), achieved®l
in a distributed mannerprovided the uncoordinated
controllers have no RTT bias (unlike current coordinated
controllers). Accepting that route re-sampling producé°]
fair allocationsas if all available routes were jointly [,y
used, we may consider additional dynamics of usem]
arrivals and departures. The fluid limits for the latter
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