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Abstract—In this article we present two major challenges in
the field of self-reconfigurable modular robotics, namely the
reconfiguration problem and the interaction aspect. The former
has already been widely addressed in the robotics community.
Two different approaches have shown to be particularly well-
suited to tackle this issue. The first one is based on a gradient
procedure to guide the different modules to the final position.
The second approach is built on top of existing methods in
control theory. It uses planning techniques to ensure convergence
to the desired configuration. We illustrate these approaches by
reviewing two very promising works in the field. Contrary to
humanoid robotics, the aspect of interaction with end-users has
been seldom studied in the community of modular robotics,
mainly because the developed platforms were intended to be used
in research environments by experts. We give an overview of the
work we have already done in these two domains, applying it to
the robotic platform Roombots, created at BioRob, EPFL.

Index Terms—Control, Modular robotics, Interactions, Self-
reconfiguration

I. INTRODUCTION

THE field of modular robotics addresses the question
of the design and control of robots made of multiple
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units, called modules, able to connect together using a con-
nection mechanism to form more complex entities. Among
those robots, self-reconfigurable modular robots are able to
autonomously change their shape to fit the task they have
to perform. It is done by re-arranging, adding or removing
modules inside the main structure (videos illustrating these
processes can be found at [1]). The problem of finding the
sequence of actions required to go from one configuration
to another is known as the ”reconfiguration problem”. This
problem is computationally challenging since the number of
possible configuration increases exponentially with the number
of degrees of freedom and the number of connectors in the
structure. Hou et al [2] have proved the NP-completeness of
the self-reconfiguration process, justifying the use of heuristic
methods. Many different approaches have been proposed to
tackle this issue. Most of them use an abstract representation
of the module, called the sliding cube model [3]. In this
abstraction, the modules are represented by cubes able to
slide perfectly on the surface of the structure. Multi-agents
frameworks have addressed the question of self-adaptation
of a modular structure to real-world perturbations using a
consensus-based approach [4] as well as reaching and grasping
objects using modular robots with evolving morphology [5].
Gradient based methods use a bio-inspired technique similar to
hormone driving mechanism: the modules are guided towards
their goal position according to a gradient function based
on the distance to the desired final position. Unfortunately
gradient methods are prone to be trapped in local minima,
which might lead to deadlock situations in this problem. The
use of scaffolding structure [6] and strict building sequence
[7] have been introduced to avoid these situations. The self-
reconfiguration process can also be viewed as a planning
problem. Methods from this domain, such as Markov Decision
Process, can be used to create a complete and efficient frame-
work [8], taking into account the kinematics models of the real
hardware. Theoretical justifications and complexity analysis
are, in this case, available in a more systematic way as opposed
to the previous approach. In order to reduce the complexity
of the reconfiguration problem, the notion of meta-modules
has been developed: instead of considering isolated modules,
groups of modules (most of the time two units) are used
and controlled as the basic elements of the structure (see for
example [9]). Whereas all the previously cited techniques were
based on distributed frameworks, a very promising centralized
method using graph theory analysis has been developed and
recently improved ([10] and [11]).

The human-robot interaction in modular robotics has been
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seldom studied until now. While this question is a key com-
ponent in the domain of humanoid robotics, it has often been
eluded in modular robotics, considering that the developed
platforms were intended to be used in research environments
by experts. Nevertheless, some modular robotics projects
specifically target every day life and home application. Among
those, the Roombots project developed at the Biorobotics
laboratory (EPFL), aims at providing adaptive furniture able
to self-assemble, self-reconfigure and locomote in an unknown
or changing environment. In this context, interaction with the
end-user is crucial: efficient interfaces, able to support the user
in the tasks related to the control of the robots, are to be
created. Work has already been done in the domain of swarm
robotics (see [12] and reference within), but the results might
not be directly applicable to the interaction problem we are
trying to tackle.

This report is divided into two main parts. In the first part,
we review three papers which represent major contributions in
the field of modular robotics. We start by presenting the main
challenges in the field of self-reconfigurable modular robotics
(section II-A) based on the paper by Yim et al [13]. We then
present two successful approaches to tackle the reconfiguration
problem. The first one by Stoy [6] is based on a gradient
method (section II-B) whereas the second one by Fitch et al [8]
uses planning techniques and reinforcement learning methods
(section II-C). In the second part of this report, we introduce
our own approach to the reconfiguration problem and to the
other aspect of interaction with the modular robotic system
(section III).

II. LITTERATURE REVIEW

A. Challenges in modular robotics

Modular robots are able to change their morphology to
adapt to a given task. Even if this ability might significantly
decrease the performance of the system in comparison with a
monolithic (specialized) robot, it is particularly suited in the
case of multiple tasks assignment and not perfectly defined
situations, bringing both adaptability and versatility to the
system. Moreover, the fact of having a robot made of identical
entities allows fast repair procedure by interchanging modules,
either within the same robot or between robots. The overall
system robustness is thus increased.

One example of application for self-reconfigurable robots is
space exploration. There are several reasons for this. Firstly
long term missions require self-sustainable systems, capable of
self-repair and self maintenance. Secondly, spatial exploration
is always heavily constrained in terms of volume and weight
for devices that can be brought into space. Finally, given
the unknown environment and tasks requirements, the robotic
system should be able to self-adapt and perform multiple tasks
autonomously.

We present in the first section the different types of existing
architectures in modular robotics. After briefly describing
some examples of robots, we state the grand challenges that
still need to be overcome in this field.

1) Classification: There are several ways of classifying
modular reconfigurable robots, depending on their architec-
tures, the nature of the units and the type of control of the
reconfiguration and motion processes.

First of all, modular self-reconfigurable robotic systems can
be composed of exactly the same modules (homogeneous case)
or can include different types of units (heterogeneous). One
might argue that the fact of having specialized units inside
the system will decrease its robustness and adaptability. Nev-
ertheless, the gain in terms of performance will compensate
for this aspect, keeping in mind that the set of basic units
should also be able to perform the tasks (at the cost of a loss
of performance).

Classification between modular robots can also be done
based on the architecture of the resulting structures. If the
units inside the final robot are arranged into a regular 3D
grid, we talked about a lattice architecture. In this case, the
reconfiguration process is easier since the set of possible
moves is reduced to adjacent grid positions. The units can
also be connected together in a tree configuration. This chain
architecture is computationally more challenging, but allows
for a richer set of reachable points in space. Finally, mobile
architectures can be considered as an hybrid architecture able
to use both lattice and chain structure, but also the environment
to move and coordinate actions between multiple sub-robots.

From the control point of view in the reconfiguration
process, we can clearly distinguish between deterministic and
stochastic approaches. In the first case, the entire process can
be pre-computed and the position of the different units is
known at any time. The convergence time (i.e. the time to
obtain the desired structure) can also be determined exactly.
Most of the time, this type of control is used for macro-scale
systems (typically with units of more than 10 cm). On the
opposite, for micro-scale systems, stochastic methods are often
well-suited. In this case, the connection and disconnection
procedures are based on statistical processes. The convergence
time can be guaranteed only statistically, and bounds are often
used. Often, the environment is active, in the sense that it
provides the energy (or part of it) needed for the motion of
the modules.

2) Examples: More than 60 different modular robotics
platforms have been created during the past 25 years [14].
Two main characteristics are often used to classify these
platforms: their degrees of freedom (number, direction,...) and
their connection mechanisms (type of connection, number of
passive/active connectors,...). Well known platforms are the
M-TRAN [15], the Superbot [16] and the Molecubes [17].

3) Challenges: Various achievements have been made
in the domain of self-reconfigurable modular robots, both
in terms of hardware and software. Robotic systems have
been built and demonstrated to be able to self-assemble, self-
locomote, self-reconfigure and self-replicate [18]. Planning
algorithms able to control millions of abstract modules have
been introduced [19]. Several challenges remain to be solved
to allow such systems to keep their promise.

Concerning the hardware, some key points still need to
be addressed. The current modular robotics units are often



EDIC RESEARCH PROPOSAL 3

tasks specific in their design. Due to space constraints, some
choices have to be made on the kind of characteristics the
module should exhibit. Another key evolution in the hardware
domain is the self-replication ability. The module would be
able to build copy of itself from basic pieces or even from
raw material to ensure real self-repair ability.

In terms of software, several ways could be explored to
improve the current state of the art in the field. First of
all, even if we can control millions of abstract modules,
integrating kinematics data from the real hardware (through
sensor information fusing) and taking into account failure
(mechanical, electronic, communication,...) are still missing
aspects. Moreover, being able to recover from modules
failure and to handle the defective units inside the overall
framework are considerations that have to be included in
the current implementations to create real self-sustainable
systems. Finally, if we envision a real multi-purposes set of
modular robots, efficient algorithms should be developed to
determine the optimal shape for a given task.

As we have seen, self-reconfiguration planning is one of
the main challenges in modular robotics. Several approaches
have been proposed to tackle this issue. In the next section
we present one very promising method based on gradient
techniques and cellular automata representation, developed by
K. Stoy [6].

B. First approach: gradient based method
The idea of this approach is to use an automatically gen-

erated cellular automata to control the growth of a modular
structure made of ideal cube units. The growth is guided from
seed modules using three different types of gradients. This
method does not rely on planning procedure explicitly, by
introducing non-deterministic building sequences. The main
issue encountered when using such techniques is the difficulty
of ensuring the convergence of the algorithm. Indeed, gradient
based methods are prone to local minima issue. To solve
this problem, Bojinov et al [20] have introduced the idea of
functional properties of the final structure: there is no need to
build exactly the final configuration and it is sufficient to create
a similar structure in terms of functionality. Another way is
to impose a strict order in the construction of the structure
[7]. [6] uses a scaffolding technique to avoid local minima.
The CAD model is approximated by a structure made of
cubes, itself approximated by basic substructures constituting
the ”skeleton” on the configuration.

1) Cellular automata: In [6], cellular automata (CA) are
used to represent the desired structure to be build by the
modules. The most difficult part in designing CA is the
creation of the right set of local rules that will lead to the
final configuration. K. Stoy [6] proposes an automatic method
to create these rules from the CAD representation. The four
main required steps of this part can be summarized as follows:

1) Approximation of the CAD model: the 3D model is
filled with cubes.

2) Scaffolding: building blocks are used to further approx-
imate the previous structure, avoiding deadlocks and

local minima in the process. This step will ensure built-
in convergence of the algorithm.

3) Numbering: each cube is given a unique ID in the final
structure.

4) Rules generation: a rule is generated for each neigh-
bouring pair of modules (i, j). The rule will look like:
the CA in the direction ~ij should change its state to s(i)
if it is in the state s(j)

The final cellular automaton is composed of all of these
rules. The initial state, called the wandering state, is chosen
different from any already existing state.

2) Reconfiguration: The reconfiguration procedure is com-
posed of the following three elements:

a) State propagation: At the beginning of the reconfig-
uration procedure, each module is initialized using the same
copy of the CA. One module will be randomly chosen to be
the seed and will be given a state among the available states.
The structure will then evolve according to the CA rules. If
needed a module is able to attract wandering modules. When
a module filled a position, it becomes a seed. If this position is
part of the final structure, the module is considered as finalized.
The process ends when all the rules have been fulfilled.

b) Gradient generation: A concentration gradient is
used to attract the wandering modules into unfilled position.
The seeds act as sources which emit in all the neighbouring
directions, a simulated chemical. The range of this emission
can be controlled. The value of the gradient will be propagated
using message passing between neighbouring modules. The
non-source modules will compute the concentration of the
gradient at their position using the following formula:

cmodule = max
i∈R

(ci)

where R is the set of received values from the neighbouring
modules.

In order to avoid unnecessary moves to locate the sources,
a vector gradient (VG) is used. The value of the gradient will
be made locally available by computing VG as illustrated on
figure 1.

Fig. 1: The computation of the vector gradient. The considered
module is the white one. The hatched module is the neighbour
with the maximum concentration. v is the vector gradient of
this module and x and y forms a regular base. r is the resulting
vector for the considered module: ~r = ~v + ~y

c) Connectivity check: One strong constraint in the
self-reconfiguration process is to maintain the connectivity of
the structure. Disconnection during the process might lead
to falling module and thus damaged hardware. Moreover,
disconnected groups of modules might get formed. These
groups will not be able to reconnect, leading to deadlock situ-
ations. Since the different modules can move asynchronously
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and simultaneously, some rules are required to ensure the
connectivity of the structure. The only modules which are
static are the finalized one, which form a connected structure.
They can thus become the sources of a new gradient, called
the connection gradient (CG). This gradient is propagated the
same way as the concentration one. The following set of rules
is introduced to define when a module can move without any
risk of connectivity break:
• The concentration of the CG in the module and its

neighbours is strictly greater than zero. Indeed if the
concentration of the CG in the module is equal to zero it
is considered as a wandering module, i.e. a module that
is currently moving.

• The fact of moving this module doesn’t change the CG
in the neighbouring modules. This means that the module
has no influence on the connectivity of the substructure.

• Module is not a source.
[6] proves by induction that these rules are sufficient. Using

this checking procedure, several modules are allowed to move
at the same time. The only strong limitation introduced by this
connectivity constraint is that sources cannot be removed from
the structure during the process. As a consequence locomotion
through reconfiguration is impossible.

3) Experiments: In order to perform the experiment in a
simulated environment, the modules were considered as per-
fect cubes able to move in a regular 3D grid (lattice system).
Each module has 6 hermaphrodite connectors and can sense
its neighbours. It can also freely slide over the surface of the
structure and around neighbouring units. The simulated system
is thus more powerful than current hardware. Furthermore
the connection/disconnection sequences are not considered.
During each time step, the module does the following:
• Process received messages.
• Send messages to neighbours.
• Move if possible.
The experiments consisted of making an initial squared

structure to reconfigure into a disk and then into a sphere. The
experiments illustrate the almost linear dependency between
the reconfiguration time and the number of modules in the
structure. The evolution of the total number of moves was
also shown to be faster than linear. In all the cases the system
converged to the desired shape. Finally, the majority of local
messages was used to propagate gradient in the structure.

4) Conclusion: K. Stoy [6] presented a new approach in
the domain of self-reconfigurable modular robots based on a
cellular automaton to represent and generate the final structure
and several gradients to guide the modules into the final
position.

One of the strong contributions of the article is the develop-
ment of a complete framework for performing reconfiguration:
the desired structure is created using a CAD software and can
be directly converted into a configuration to be reconfigured
into. The use of a scaffolding structure ensures the conver-
gence of the process.

One weak point of this work is the lack of hardware
consideration. The algorithm uses a perfect model of a module
without taking into account the connection/disconnection

procedure. The case of two modules trying to fill the same
position has also been eluded. Moreover the message passing
between the units is considered perfect, without any loss.
Finally, theoretical analysis is missing for the convergence
induced by the scaffolding method.

In the next section, we describe a new framework developed
by Fitch et al [8] to tackle the reconfiguration problem.

C. Second approach: planning strategy

Reconfiguration planning can be defined has the problem
of finding the sequence of module moves to go from a
configuration A to a configuration B.

In [8] the authors developed a flexible reconfiguration
framework allowing the use of different kinematic models. In
this article, the main idea is to represent the reconfiguration
problem as a path planning problem directly inside the kine-
matic action space of the considered modules. This work is a
follow up of a previous paper [19] where they developed their
Markov Decision Process (MDP) formalism, not in the native
kinematic space but for an abstract model of sliding cubes.
Many authors use the concept of meta-module (a group of two
or more modules assembled together) to reduce the number of
kinematics constraints in the problem. The authors [8] have
chosen not to use MM to exploit the possibility of dynamic
grouping during the reconfiguration process. A method taken
from the field of reinforcement learning (MDP) is used to
represent their path planning problem and solve it using
dynamic programming [21]. A navigation function is defined
and updated as modules move. The module kinematics will
be implemented through the transition function of the MDP.
The algorithm allows locomotion through reconfiguration: the
goal shape is made of convex or non convex elements and the
modules move to fill this shape, which can then be shifted.
This framework also take into account obstacles in the way.

The MDP planning is composed of two main elements: a
connectivity checking procedure and the actual planning using
a global navigation function. We first describe the connectivity
checking method and the formulation of the planning problem
as a MDP. Finally we present how the MDP has to be modified
to integrate the module kinematics.

1) Connectivity graph: Before a module is allowed to
move, we have to ensure that it remains connected with the
main structure. In graph theory, the notion of articulation
nodes fits perfectly with this situation. An articulation node
in a graph is defined as a node which removal would lead
to a disconnected graph. It would then seem natural to check
for the ”articulation modules” before moving and to consider
them as locked. The main problem with this technique is
that checking for simultaneous removal of module inside the
structure is much more challenging. The author propose a local
method based on the definition of connecting cycles. For each
potential moving module, a connectivity graph composed of
the adjacent modules is built. Then a local search is done to
find existing path between all the nodes of the connectivity
graph without including the considered module. If a path
exists between them these nodes form a connectivity cycle
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and the module can be moved. The depth of the search
is fixed at the beginning but can be increased if required.
The overall process relies on a message passing procedure
between adjacent modules. The modules along the path of
a moving module are locked. This locking corresponds to a
synchronisation of the modules to prevent collisions. If two
modules want to fill the same position, the moving one is
chosen at random. Since this process is local, many modules
can move asynchronously at the same time.

2) Planning using Markov Decision Process: The planner
is based on a value function updated continuously to take
into account topological changes within the structure. This
function is used to globally guide the modules towards the
final configuration. A general MDP is a sequential decision
making method composed of four main elements:
• A state set S: all the possible states of an agent.
• An action set A: all the possible actions that can be taken

by an agent.
• A transition function T : a function mapping the state-

action space into the state space.
• A reward function R: a function mapping the action space

into R or N.
Most of the time, the goal of an agent is to find the

set of actions (known as the policy) that lead to maximum
reward. The transition function can either be deterministic or
stochastic, known or unknown. If T is known, then the MDP
can be solved in polynomial time [22] in the number of states
using dynamics programming.

In the case of the abstract module representation (sliding
cubes model), S corresponds to the set of faces, A was
composed of two actions (see Fig. 2), and the reward was
−1 for each move (the best policy will tend to favour fewer
moves). The value function is stored in a distributed fashion.
Each module only stores the value of its connectors and update
it using the message passing process when a neighbouring
module state changes.

Fig. 2: The action space A for the abstract modules (adapted
from [19]).

3) Module kinematics: The main novelty introduced by
Fitch et al [8] is the use of module kinematics in a built-
in fashion inside the previous MDP formulation. As a conse-
quence the complexity and convergence analysis will directly
applied to the modified formulation. The MDP will be adapted
as follows. The abstract state set and action set are replaced
respectively by the real possible joint angles and the connector
state. The new state space is determined by the transition
function: if the state is reachable, then it will be added to
S.

The new action space is based on the kinematic model of the
robots. The actions are generated iteratively by incrementing

the different joint angles of the module. More precisely the
following algorithm is used, for a single module move:

1) Given the actual state of the module, its lattice position,
the value of its joints, use forward kinematics to compute
connectors position.

2) Iteratively generate the set of actions:
• Permute the degree of freedom (i.e. increment or

decrement their value of a multiple of π
2 )

• If no connection is possible, the configuration is
discarded

• Otherwise a collision checking is performed
Some moves require the use of two modules (for example,

when a convex edge needs to be overcome using Roombots
modules). The additional required module is called an helper
module. In this case the previous algorithm is modified by
considering the joint angles of both modules. Since this
algorithm is exponential in the number of considered joint
angles it is more suited for lattice systems.

4) Conclusion: Fitch et al [8] present a reconfiguration
framework based on a path planning method directly into the
kinematic space of the considered modular robotic units.

The contribution of this paper is twofold. Firstly, the authors
have refined the usual sliding cube abstraction to directly
include the kinematic constraints of the robots. Their frame-
work, beyond the fact of being more realistic in terms of
hardware representation, allows the use of virtually any mod-
ular platforms which kinematics model is known. Secondly
they manage to provide a strong theoretical justification and
analysis of the problem, showing the expected complexity of
the reconfiguration process using their algorithm. By using a
Semi Markov Decision Process, they ensure that the Markov
property holds, i.e. that the future states of the system will
only depend on its present state.

One of the main weaknesses of this article is the lack of
real hardware experiments. The authors use ”hardware in the
loop” composed of communication and computation boards
to simulate the distribution of tasks, the message passing and
the actual computational power of a real modules (see [23]).
Nevertheless, the complexity of the reconfiguration process
often comes from the mechanical parts (backlash, elasticity
effects, ...) and the connection/disconnection procedure (mis-
alignment, incomplete connection, ...). The algorithm does
not take into account possible failures of modules that might
then be obstacles during the process. Loss of messages and
corrupted data are also ignored. Finally, the complexity of the
algorithm for generating the action space (which is in fact a
brute force approach) might become restrictive when dealing
with chain or hybrid type modular robots.

III. RESEARCH PROPOSAL

At BioRob (EPFL) a homogeneous, self-reconfiguring mod-
ular robotic platform named Roombots (RB) is being devel-
oped (see Fig. 3 for an illustration). Roombots are designed
as basic units for adaptive furniture able to move, self-
reconfigure and self-repair. In this context, a reconfiguration
framework would be required to allow assembly of RB units
into furniture-like structures. Moreover, since the project is
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targeting everyday life environment, interaction with end users
need to be apprehended.

In this section we first present the robotic platform Room-
bots. We then describe the two main aspects of our work,
namely the control algorithms and the interaction strategies we
have already implemented. We explain the possible improve-
ments we are planning to integrate and the ways we would
like to explore.

Fig. 3: A roombots module

A. Platform

The RB modules are composed of two cube-like parts
with 110 mm edge length ( Fig. 3). Each module has three
continuous rotational degrees of freedom (depicted in Fig. 5a)
and up to ten active connection mechanism (Fig. 5b). This
four-way symmetric connection mechanism is based on a fully
retractable latching mechanism. Using these hermaphrodite
connectors, the modules can connect to each other to form
more complex structures. Two RB modules assembled together
using the connectors on the outer hemispheres (H0 and H3
in Fig. 3) form a metamodule. Four connection types can be
defined (see Fig. 4), inducing different kinematic properties
and motion capability. A RB module weights about 1.4
kg, with batteries included. The estimated autonomy of one
module in continuous actuation is 30 min. Any joints in the
RB module can deliver sufficient torque to lift an horizontally
stretched metamodule.

Fig. 4: The four different types of metamodule connection
(adapted from [24])

B. Control

This section describes first the current implementation of
our reconfiguration framework for the RB platform. We took
inspiration from the work done by K. Stoy [6] and developed a
gradient based approach to solve the reconfiguration problem.

(a) (b)

Fig. 5: In (a) the three degree of freedom of a RB module
are depicted. (b) shows the current design of the Active
Connection Mechanism (ACM).

We provide here a summary of the main steps of the meth-
ods followed by suggested improvements and their expected
influence. A more detailed description of our framework can
be found in [9] and [25].

1) Current implementation: The problem that we are trying
to tackle is the reconfiguration of several metamodules (MM)
into a final shape. This reconfiguration through locomotion
takes place in a structured environment, i.e. with embedded
connectors in floor and ceiling walls to which modules can
attach. MM are the basic units considered in our case. They are
guided towards their final position using a force field approach.
MM are able to broadcast messages between each other to
acquire the necessary knowledge about their surroundings
(neighbours, obstacles, ...). To perform the basic moves leading
to the final position, a look-up table composed of shape-
transitions (servo angles) is used by the MM along with
a precomputed collision cloud to avoid self-collision and
collision with other MM. The moves are done in a fully
asynchronous fashion, allowing several MM to reconfigure at
the same time.

a) Metamodule shape and initialization: At the begin-
ning of the algorithms the metamodules are randomly placed
on a 2D structured environment made of passive connectors.
The MM are attached by their foot connector. They are re-
stricted to be in five different shapes during the reconfiguration
process: I, L, S, U and 3D−S. The servos angles representing
the transition between these shapes are stored in a database
and used when needed by the MM.

b) Reconfiguration through locomotion: During the re-
configuration process, the MM go from one shape to another
using the transition database. They use only two active connec-
tion mechanisms (one at the top of the MM and one in the foot)
which are alternatively connected to the ground. After each
move the MM checks the current state of its neighbourhood
and requests the precomputed collision cloud corresponding
to the desired shape to shape transition. It also broadcasts its
position to the neighbouring MM.

c) Seeding mechanism: In order to guide the MM during
the reconfiguration process, goal position have to be defined.
These final position will be the seeds of the shape and play
the role of attractors. To ensure the feasibility of the building
procedure, a bottom-up approach is imposed: different level
are defined in the final shape and the corresponding seeds are
only available when the seeds positions in the previous level
have been filled. The seeding and levelling are provided by
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the user.
d) Gradient: In the framework, the MM knows its ab-

solute position in the 3D grid as well as the position of the
active seeds and the one of its neighbours. The MM can thus
compute the vector force corresponding to the different seeds.
The neighbouring modules are including in the computation
as repulsive sources. Different approaches have been tested
regarding the influence of these modules. In the first one, they
do not have any influence and the modules tend to go straight
to the seeds. The collisions are prevented by locking modules
which are too close from each other before deciding which
one should move first. The second approach consider a gradual
decrease of the influence of the neighbour with the distance.
Only the metamodules in the range of the considered MM will
have an influence. Finally we have tested also an approach in
which the MM are given the same influence in the all range of
the considered MM. This was intended to minimize collision
between MM by enforcing a kind of minimal distance policy.

e) Results: We performed several experiments in
simulation using up to six metamodules. The goal shape was
either a box-like structure (composed of four MM) or a chair
(with six metamodules). We repeated the experiments with
the four different types of MM to analyse their kinematic
abilities. We counted the number of deadlocks situation (i.e.
when the MM were not able to build the final shape), the
amount of collisions and the overall number of moves. The
most relevant observation we made was that metamodules
of type SRS were more successful in average at building
the considered structure than the three other types. This
result needs to be further investigated taking into account the
kinematic properties of the four type of MM.

2) Improvements: There are several ways we are currently
exploring to improve our current reconfiguration framework.

a) Granularity adjustment: Previous studies [9] shows
the type of meta-module used in the reconfiguration process
plays a central role in the ”buildable” aspect of the structure.
The meta-modules should be able to switch between types,
according the reachable space1 that this new configuration
allows. The reachable space is defined by the kinematic
model of the meta-module. The switching sequence can be
summarized in four main steps:
• The meta-module goes to a U-shape
• The inner ACM is disconnected
• The two outer spheres of both modules rotate and move

to achieve the new type of connection
• The inner ACM is connected again

This ability of the MM to switch from one type to another
might allow an optimization of the reachable space before
each move and thus a reduction in the number of deadlock
situations.

Similarly we are investigating the possibility of allowing
the MM to disconnect and act as two separated module to

1The reachable space can be defined as the number of connectors or cubes
that can be reached by the head/tail ACM of the module. This indicator can be
further extended to take into account the number of possible future collisions
at the next step, for example.

overcome obstacles or avoid deadlocks. In [8] the authors
mention the possibility of a dynamic connection into a sub-
structure during the reconfiguration process to optimize it. We
are studying a way to characterize this problem of granularity
adjustment such that each MM can decide on the fly what its
best configuration should be given the current neighbouring
situation.

b) Building process:

1) Seeding procedure
During preliminary experiments, we have observed that
both the levelling and the seeds choices have a sig-
nificant impact on the building process. An exhaustive
study of these two factors should be performed to clearly
understand their influence. It would result in a better
understanding of the pre-processing steps of seeding and
levelling and possibly lead to a global improvement of
the reconfiguration process.

2) Cooperation/Consensus based approach
In the current version of the framework the meta-
modules have limited communication range. Message
broadcasting is used to manage seeds priority, possible
collision issues, ... In [4] the different modules are able
to adapt to a change in their environment by reaching
a consensus. We would like to incorporate a similar
mechanism in the case of variable granularity. The
modules might need to cooperate to overcome convex
edges or to ask for the help of a MM to optimize the
building process (for example a metamodule could carry
a module over an obstacle).

c) Hardware consideration: The main weakness of the
current implementations for reconfiguration is too little con-
sideration of hardware constraints of the underlying platforms.
Through our first experiments using the RB platform, we
have faced many problems intrinsically linked to hardware
imperfection: misalignment of the connection mechanism due
to gravity, elastic effects, backlash effects in the gear boxes,
imprecision in the control loop, ...

In order to facilitate the transfer of our framework to the
real hardware we are currently integrating several solutions
to better fit the reality. Firstly we are implementing a new
approach for using inverse kinematics to both optimize the
collision cloud of the modules/metamodules but also to com-
pensate for the imperfection in the hardware. These corrections
will be provided by different sensors (accelerometer, force
sensor and infra-red sensor) which data will be fused. We
plan on considering a more straight-toward movement of the
connector during the attachment procedure to avoid collision
between modules.

As it was done in [8] we aim at developing a framework
versatile enough to be used with different modular robotic
platforms.

d) Use of meta-structure: We are using mainly meta-
modules as building block and basic units in the current
version of the framework. In [26], the use of an optimal
metamodule abstraction has been investigated and seems to
simplify the planning process for the reconfiguration problem.
We plan on allowing the modules to assemble in various struc-
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tures to form the final meta-structure 2. This should lead to a
gain in time to completion for the process and to flexibility in
terms of controllable structure. We could also relax some of the
constraints regarding the structured environment: by allowing
some complex assembled structures we can think of using
locomotion controller on quadruped shape (for example) and
then go back to more simple structures for the reconfiguration
process.

C. Interaction

Throughout this report we have presented reconfiguration
methods for modular robots mainly design for research pur-
poses. Few works have been done on the use of modular robots
in every day life environment.

One of the goals of the Roombots project is to allow
non-expert user to exploit the possibilities of the modules,
without being held back by the complexity of the tasks or of
the robots itself.

1) Interface and recommender system:
a) Current interface: We have started developing an

interface to ease the building of a structure made of RB
modules. The first version of the interface allows the user to
build a shape made of cubes and convert it in real time into
a configuration made of Roombots modules. The conversion
process is based on a perfect matching algorithm from graph
theory. More details of this all project can be found in [27].

b) Improvements: Apart from the possible technical
improvements presented in [27], some more high level
considerations can be derived from this preliminary work.
We are looking for a complete framework allowing the
user to efficiently build structures, place them into her
environment and have a preview of the reconfiguration
process, with a quantification in terms of number of moves
or time. Recommendations could be made to the user as a
guidance during the building process. Modifications could be
proposed to reduce the complexity of the desired structure.
A complexity and a similarity measure (between structures)
should thus be developed.

2) Interaction: We need to study the possible media that
could be used to interact with the non-human like modular
robotics platform we are using. We will based our work on the
research on interaction and coordination between human and
non-anthropomorphic robots in mixed robotics swarms (see
[12] and references within). The use of tangible interfaces
will also be explored.
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[9] A. Spröwitz, P. Laprade, S. Bonardi, M. Mayer, R. Möckel, P.-A. Mudry,
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