
LECTURE 2

Adeles

The adèles (or rather idèles) were invented by C. Chevalley in the 30’s to
formulate class field theory in the case infinite extensions of a number field.
More generally, the adèles offer an extremelly convenient way to package
information in the context of “lobal-to-global” principles in number theory.

1. Local to global principle for lattices

We illustrate, this principle with the space of lattice in Q
n (the space of

finitely generated Z-modules of rank n in Q
n), Ln(Q) say. Let L ⊂ Q

n be
such a lattice; for every prime p we define its localization at p,

Lp := L⊗Z Zp ⊂ Q
n
p ;

as we will see Lp is a lattice in Q
n
p (ie. a free Zp-module of rank n in Q

n
p ).

Let
P = {2, 3, 5, 7, . . . }

be the set of prime numbers, the next proposition shows that L is completely
determined by the set of all its localizations (Lp)p∈P :

Proposition 1.1. Let L ⊂ Q
n
be a lattice. For p a prime number, then

Lp = L ⊗Z Zp is a lattice in Q
n
p and for almost every p ∈ P (that is for all

but finitely many),

Lp = Z
n
p ;

moreover, the map

L �→ (Lp)p∈P

defines a bijection between

- the set of lattices in Q
n
, Ln(Q) and

- the set of sequences (indexed by the set of primes P)

(Lp)p∈P , Lp a lattice in Q
n
p , Lp = Z

n
p for a.e. p.

The converse of that map is the map

(Lp)p �→ L =
�

p

Q
n
∩ Lp.

Proof. This is a consequence of the fact that Z is principal and of the
chinese remainder theorem. �
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2. Local actions on the space of lattices

The linear group GLn(Q) acts transitively on Ln(Q) ( on the right) by
linear change of variable

L �→ L.g = {g
−1

x, x ∈ L}

and the stabilizer of Zn is GLn(Z) so that

Ln(Q) = Z
n
.GLn(Q) � GLn(Z)\GLn(Q).

Given p a prime, let Ln(Qp) be the set of lattices in Q
n
p , similarly GLn(Qp)

acts transitively on Ln(Qp) and the stabilizer of Z
n
p is GLn(Zp); it will

be useful to let GLn(Qp) act on Ln(Qp) on the left: for gp ∈ GLn(Qp),
gp.Lp := gpLp so that

Ln(Qp) = GLn(Qp).Z
n
p � GLn(Qp)/GLn(Zp).

2.1. The group of finite adeles of GLn. From the previous discus-
sion, the map L ↔ (Lp)p identify Ln(Q) with a subset of

�
p Ln(Qp) namely

the restricted product

��

p
Ln(Qp) = {(Lp)p, Lp ∈ Ln(Qp), Lp = Z

n
p for a.e. p}

It follows from this discussion that Ln(Q) is acted on transitively by a sub-
group of the product

�
pGLn(Qp) namely the restricted product

GLn(Af ) =
�

p

�
GLn(Qp) = {(gp)p, gp ∈ GLn(Zp) for a.e. p} ⊂

�

p

GLn(Qp) :

for gf = (gp)p ∈
�

p
�GLn(Qp),

gf .L =
�

p

Q
n
∩ gpLp;

thus, we see that this local description of the space rational lattices has
revealed the existence of a much richer collection of actions by p-adic groups.
The group GLn(Af ) is the group of finite adelic points of GLn.

Notice that this action is compatible with the natural action of GLn(Q),
on Ln(Q): the group GLn(Q) embeds diagonally in GLn(Af ) =

�
p
�GLn(Qp)

by considering for γ ∈ GLn(Q) the constant sequence

γ �→ (γ)p = (γ, γ, . . . , . . . )p∈P

and for any lattice L,
L.γ = (γ)p.L.

The stabilizer of Zn (which correspond to the sequence (Zn
p )p∈P) is the

product

GLn(�Z) :=
�

p

GLn(Zp),

so that
Ln(Q) � GLn(Z)\GLn(Q) � GLn(Af )/GLn(�Z).
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Since GLn(Z) = GLn(Q) ∩GLn(�Z) one finds that the map

gQ ∈ GLn(Q) → (gQ, Id) ∈ GLn(Q)×GLn(Af )

induces the identification

Ln(Q) � GLn(Z)\GLn(Q) � GLn(Q)\GLn(Q)×GLn(Af )/GLn(�Z)
with GLn(Q) acting diagonally by left multiplications on GLn(Q)×GLn(Af ).
This interpretation can them be extended to real lattices: the map

gR ∈ GLn(Q) → (gR, Id) ∈ GLn(R)×GLn(Af )

induces the identification

Ln(R) � GLn(Z)\GLn(R) � GLn(Q)\GLn(R)×GLn(Af )/GLn(�Z)
with GLn(Q) acting diagonally by left multiplications on GLn(R)×GLn(Af ).
The product

GLn(A) := GLn(R)×GLn(Af )

is the group of adelic points of GLn. In particular we see that for GLn(Q)
embedded diagonally in GLn(A) one has

(2.1) GLn(Q)GLn(R)GLn(�Z) = GLn(A).

(2.2) SL2(Z)\SL2(R) � Z(R)GLn(Q)\GL2(A)/GL2(�Z).

2.2. Modular forms as functions on adelic spaces. We denote by
F(GL2(Q)\GL2(A)) the space of all functions on that quotient: this is an
(abstract) representation of the group GL2(A) acting by right multiplications

g.f : g� → f(g�g)

and thus is endowed with an action of the subgroups Z(R), Kf = GL2(�Z)
and K∞ = SO2(R). To resume what we have said so far we have iden-
tified classical modular forms of weight k with a certain set of functions
on GL2(Q)\GL2(A) which are Z(R)-invariant, Kf = GL2(�Z)-invariant and
which transform as the character χk under the action of K∞ = SO2(R).

3. The ring of adeles

The ring of finite adeles is the restricted product

Af :=
��

p

Qp = {(λp)p, λp ∈ Qp, λp = Zp for a.e. p}

and the ring of adeles is the product

A = R× Af =
��

v

Qv.

The field Q embeds diagonally into Af and A via the constant sequences

λ ∈ Q → (λ)p ∈ Af , (λ, (λ)p) ∈ R× Af
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making them Q-algebras. We denote by

�Z =
�

p

Zp ⊂ Af ,

this is a subring of Af .

3.1. Ideles. The group of invertible elements A
× (resp. A

×
f ) is the

restricted product

A
× = R

×
× A

×
f = R

×
×

��

v

Q
×
v = {(xv)v, xv ∈ Q

×
v , xp = Z

×
p for a.e. p},

and is called the group of ideles (resp. finite ideles).

3.2. The adelic topology. The rings Af and A are restricted prod-
ucts of the locally compact rings R and Qp with respect to the sequence of
open compact subgroups (Zp)p and as such are endowed with the restricted
product or adelic topology: a basis of open subsets is given by subsets of
the shape

Ω∞ ×

�

p∈S
Ωp ×

�

p �∈S
Zp

where S ⊂ P is a finite subset of the primes and Ωv ⊂ Qv are open subsets.
With this topology A and Af are locally compact separated topological rings
and the embeddings Qp �→ Af , R �→ A, Af �→ A are closed. Regarding the
diagonal embedding of Q one has1

Lemma. Q is dense in Af (Strong approximation), Q is discrete in A but

the quotient Q\A is compact; more precisely the map x∞ ∈ R → (x∞, (0)p)
induces an homeomorphism

Z\R � Q\A/�Z.

In particular, for any open compact subgroup Kf ⊂ Af (for instance �Z) one
has

Q+Kf = Af , Q+Kf + R = A.

Remark. The group of ideles is also endowed with a natural adelic topology
making it a locally compact topological group; this topology however is not
the restricted topology of the embedding A

× ⊂ A.

1
as a consequence of the chinese remainder theorem
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4. Adelic points on algebraic groups

If VQ is any variety defined over Q, one may speak of V (A) the set of
points of V with value in the Q-algebra A. More concretely if V ⊂ A

n
Q

is an affine variety defined by the vanishing of polynomial equations with
coefficients in Q, V (A) is the subset of elements of An

Q
(A) = A

n at which
the polynomial defining V vanish. One has

V (A) =
��

v

V (Qv) = {(xv)v, xv ∈ V (Qv), xp ∈ Z
n
p for a.e. p}.

V (A) is a closed subset of An and thus is equipped with the restricted adelic
topology . We will use this for G a linear algebraic group: recall that GLn

is the affine subvariety of Mn ×A
1 � A

n2+1 defined as

{(g, t) ∈ Mn ×A
1
, det(g)t− 1 = 0}.

We obtain in that way GLn(A) which come equipped with the adelic topol-
ogy, making of it a separated locally compact group.

Remark. In particular, for n = 1, GL1(A) = A
× is the group of ideles and

the topology defined here is finer that the topology obtained by restriction
of the inclusion A

× ⊂ A.

Similarly, for any Zariski closed subgroup of matrices G ⊂ GLn one de-
fines G(A) as the set of elements of GLn(A) satisfying the equations defin-
ing G; this is a closed subgroup of GLn(A) and we equip it with the adelic
topology; it maybe be shown that this topology does not depend on the re-
alization of G as a closed subgroup of some linear group. The groups G(Qp)
and G(Af ) embed as closed subgroups of G(A) via:

gp ∈ G(Qp) �→ [gp] := (IdR, . . . , gp, . . . , Idq, . . . ) ∈ G(Af ),

gf ∈ G(Af ) �→ (IdR, gf ) ∈ G(A).

The group G(Q) embeds diagonally into G(Af ) and G(A), via2

gQ �→ (gQ)p, gQ �→ (gQ, (gQ)p)

and the image of later embedding is discrete in G(A).
The group G(Zp) = G(Qp) ∩ GLn(Zp) is an open compact subgroup

of G(Qp) and G(�Z) = G(Af ) ∩ GLn(�Z) is an open compact subgroup of
G(Af ); moreover one can also show that if one has a Q-isomorphism of
linear algebraic groups ι : G � G� then for almost every p this induces an
isomorphism between the open compact subgroups ι : G(Zp) � G�(Zp) and
therefore we obtain an homeomorphism between the adelic points of the two
groups. In other terms, the adelic topology on G(A) is independent of the
matrix realization of G.

2
notice the the embedding of G(Q) into G(A) is NOT the composite of the embedding

G(Q) �→ G(Af ) and of G(Af ) �→ G(A).
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Finally, if G is a reductive group then for ae. p, G(Zp) is a maximal

open compact subgroup3.

4.1. The components of an adelic group. As we have already seen
in the case of the linear group and space of lattices, many interesting ho-
mogenoues spaces associated with linear algebraic group may be realized in
terms of quotient of adelic groups and more precisely in terms of double
cosets of the form

G(Q)\G(A)/G(�Z).

We review this connection in the present section.
Since G(Q) is discrete in G(A), the quotient G(Q) ⊂ G(A) endowed with

the quotient topology is locally homeomorphic to G(A). This quotient is also
naturally identified with GLn(Q)\GLn(Q)G(A), that is the G(A)-orbit the
the identity class in GLn(Q)\GLn(A):

Unlike the case of the adèles, is not empty, G(Q) is usually not dense in
G(Af ). Still it is quite big. We have the following ([?borelfin, Theorem
5.1])

Theorem (Borel). The double quotient

G(Q)\G(A)/G(R)G(�Z)

is finite. The same conclusion holds more generally if G(�Z) is replaced by

any open compact subgroup Kf ⊂ G(Af ).

We will admit this deep result. Notice that the second statement follows
from the first. Indeed the two open compact subgroups G(�Z) and Kf are

commensurable: Kf ∩G(�Z) is of finite index in both G(�Z) and Kf .
Observe also that the inclusion G(Af ) ⊂ G(A) induces an identification

G(Q)\G(Af )/Kf � G(Q)\G(A)/G(R)Kf .

Definition 4.1. Given Kf ⊂ G(Af ) an open compact subgroup, the double

quotient

G(Q)\G(A)/G(R)G(�Z) � G(Q)\G(Af )/G(�Z)

is called the set of components of Kf . Its cardinality is called the class
number of Kf and will be noted h(Kf ). If the embedding G �→ GLn is

given, the set of components (reps. class number) of G(�Z) will be called

simply the set of components (resp. class number) of G.

Example. By (2.1) the class number of GLn(�Z) is 1.

3
This is even an hyperspecial maximal open compact subgroup
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4.2. Adelic vs. classical spaces. we now show how to interpret cer-
tain classical “congruence” quotients of G(R) in terms of adelic quotients:
consider a set of representatives of the components,

G(A) =
�

i

G(Q)giG(R)Kf , gi ∈ G(A)

writing gi = (gR,i, gf,i) we may up to multiplying by g
−1
R,i assume that gi =

gf,i ∈ G(Af ). Let

Γi = GLn(Q) ∩ gf,iKfg
−1
f,i

this subgroup is commensurable with G(Z) and hence discrete in G(R).

Proposition 4.1. With the above notation, the family of maps

ιi : gR ∈ G(R) �→ (gR, gf,i), i = 1 . . . h(Kf )

induces an homeomorphism

�

i

Γi\G(R) � G(Q)\G(A)/Kf

Proof. For g ∈ G(A), set [g] = G(Q)gKf ; consider the map given by

(i,ΓigR) �→ [(gR, gf,i)];

this map is well defined: if we replace gR by γgR with γ ∈ Γi, then

[γgR, gf,i] = [(gR, γ
−1

gf,i] = [(gR, gf,ikfg
−1
f,i gf,i)] = [(gR, gf,i)].

That map is clearly continuous and closed; let us show it is bijective: if
[(gR, gf,i)] = [(g�

R
, gf,i�)] then

(g�R, gf,i�) = (γgR, γgf,ikf )

impling that i = i
� and gf,i = gf,i� and that γ ∈ Γi; this proves injectiveity.

It is also surjective: given g ∈ G(A), g = gRgf and there is by definition i

and γ ∈ G(Q) and kf ∈ Kf such that gf = γgf,ikf and then

[g] = [gR, γgf,ikf ] = [γ−1
gR, gf,i].

�

4.3. The G-genus of a lattices. As we have already seen there is a
natural action of GLn(Af ) on the space of rational lattices

Ln(Q) � GLn(Af )/GLn(�Z).

Restricting this action to G(Af ) we obtain the notion of G-genus:

Definition. The G-genus of a rational lattice L ∈ Ln(Q), genG(L) is the

adelic orbit,

genG(L) := G(Af ).L ⊂ Ln(Q) � GLn(Af )/GLn(�Z).
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The set of genus classes of L, [gen(L)], is the set of G(Q)-orbits in genG(L).
In particular [gen(Zn)] is identified with the set of component of G:

[genG(Z
n)] � G(Q)\G(Af )/G(�Z).

4.4. Strong approximation. The property (2.1) does not hold for
general open compact subgroups of Kf ⊂ GLn(Af ) or for general linear
algebraic groups.

The strong approximation theorem which we do not state here in the
greatest generality yields a sufficient condition on G so that the class number
is 1 for any open compact subgroup. We have seen that strong approxima-
tion holds for A � N(A) < GL2(A).

Theorem 4.1 (Strong approximation). For G a semisimple, simply con-

nected, algebraic group such that for each simple factor of G, it group of real

points is not compact, then G(Q)G(R) is dense in G(A). In particular for

any open compact subgroup Kf < G(Af ) one has

G(A) = G(Q)G(R)Kf , Γ\G(R) � G(Q)\G(A)/Kf

where Γ = G(Q) ∩Kf

the general proof is due basically to Kneser. A case where this is not too
hard to prove is for SLn; in particular, for any open compact K1

f ⊂ SLn(�Z),
one has

SLn(Q)SLn(R)K
1
f = SLn(A).

This results from the fact that SLn is generated by the one parameters
subgroups (of transvections)

{Id + tEi,j} � A
1
|Q, i �= j

and by using strong approximation for A.
In particular if Kf ⊂ GL2(�Z) is such that det(Kf ) = �Z×, then since

A
× = Q

×
R
×�Z×

GL2(Q)GL2(R)Kf = GL2(A), Γ\GL2(R) � GL2(Q)\GL2(A)/Kf

in particular if Γ = GL2(Q) ∩Kf ⊂ GL2(Z), one has

Γ\GL2(R) � GL2(Q)\GL2(A)/Kf .

5. Measure on adelic groups

The group of adelic points of a linear group G(A) is a locally compact
topological group and as such is equipped with a (left) Haar measure. That
group is the union of the following open subsets

G(A) =
�

∞⊂S finite

G(A(S)), G(A(S)) =
�

v∈S
G(Qv)

�

p �∈S
G(Zp).
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Let µ∞ be a (left) Haar measure on G(R) and for every p let µp be the left
Haar measure on G(Qp) normalized so that

µp(G(Zp)) = 1.

Then the measure
µ =

�

v

µv

define a Haar measure on each G(A(S)) =
�

v∈S G(Qv)
�

p �∈S G(Zp) com-
patible with the inclusion G(A(S)) ⊂ G(A(S�)), S ⊂ S

� and so defines a
(left)-Haar measure on G(A). For instance, a Haar measure on A is given
by

dx = dxR

�

p

dxp

where dxR is the Legesgue measure and dxp is the measure on Qp assigning
mass 1 to the into ball Zp.

Remark. Suppose that G(A) is unimodular; one can verify that the home-
omorphism defined in Proposition 4.1 map the measure on

�

i

Γi\G(R)

defined by the choice of a single Haar measure on G(R) to the image of some
left Haar measure on G(Q)\G(A)/Kf

5.1. The Module. To determine a right Haar measure from the left
one, we need to compute the module

∆G = ∆G(A).

For this we need first to introduce the adelic module: the adelic module is
the character

x ∈ A �→ |x|A =
�

v

|xv|v ∈ R≥0.

It is zero on A− A
× for any x ∈ Q

|x|A = |x|R

�

p

p
−vp(x) = |x||x|

−1 = 1.

Clearly |xy|A = |x|A|y|A so the adelic modulus defines an R-valued character
on A

×
/Q

×. The modulus may be defined more intrinsiquely from any Haar
measure on A, for instance For any α ∈ A

×, th map

x �→ αx

is a linear homeomorphism of A and one can see that

dαx = |α|Adx.

In particular
d×x := |x|

−1
A

dx.

defines a Haar measure on A
×.
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Let G be a linear algebraic group. We denote by Ru(G) its unipotent rad-
ical (the maximal normal unipotent subgroup of G), so that G = Ru(G).G�

with G� reductive, and by u the Lie algebra of Ru(G), then the modulus of
G(A) is given by the usual formula

∆G(g) = | det(Ad(g)|u(A))|−1
A

where Ad(g) denote the action of g by conjugation on u(A) = u ⊗Q A:
u �→ gug

−1. In particular, if G is reductive, ∆G = 1 and G(A) is unimodular.

5.2. The Borel–Harish-Chandra finiteness theorem. The group
of rational points G(Q) is discrete in G(A) and by the formula above con-
tained in the kernel of ∆G; hence any left invariant Haar measure on G(A)
induces a measure on G(Q)\G(A). That measure in not finite in general:
for instance consider G = GL1 = Gm, one has

Q
×
\A

×
/�Z×

� R
×
/Z

×
� R>0

has not finite Haar measure. This type of obstruction is basically the only
one to prevent the Haar measure to be finite.

Let X
∗
Q
(G) be the lattice of rational characters of G (the group of ho-

momorphisms χ : G �→ Gm which are defined over Q). Each such homomor-
phism induces a map on the adelic points

χ : g ∈ G(A) �→ χ(g) ∈ A
× = Gm(A)

and composing with the modulus, one obtain an R-valued character

|χ|A : g �→ |χ(g)|A.

We then define the following closed subgroup of G(A)

G(A)1 =
�

χ∈X∗
Q(G)

ker(|χ|A)

(this is a finite intersection X
∗
Q
(G) is a free Z-module of rank the Q-rank of

G and it is sufficient to consider the intersection over a Z-basis of X∗
Q
(G)).

Obviously a compact subgroup of G(A) is contained in G(A)1. Also, since
the characters χ restricted to G(Q) take value in Q

×, one has

G(Q) ⊂ G(A)1

and G(Q) is discrete in G(A)1. We have then the following deep finite-
ness theorem of Borel-Harish-Chandra which complement Borel finiteness
theorem:

Theorem 5.1 (Borel-Harish-Chandra). The quotient (Haar) measure on

G(Q)\G(A)1 is finite. In particular, if G has no Q-character the Haar

measure on G(Q)\G(A) is finite. Moreover, if every unipotent element of

G(Q) is contained in the unipotent radical Ru(G), then G(Q)\G(A)1 is even

compact.
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This implies that G(A)1 is unimodular (since it has a discrete sub-
group of finite covolume), hence G(A) is also unimodular. For instance
GLn(Q)\GLn(A)1 has finite volume and

GLn(Q)\GLn(A)
1
/GLn(�Z) � GLn(Z)\GLn(R)

1
� SLn(Z)\SLn(R) � L(R)1

the space of lattices of covolume 1.
Also, notice the special cases:

– if G is reductive (Ru(G) is trivial) then G(Q)\G(A)1 is compact if
and only if G(Q) has no unipotent elements,

We will use the Borel-Harish-Chandra theorem in the following form:
let Z be the split component of the center of G: this is the maximal split
Q-torus of the center of G.

Proposition. The measure of Z(A)G(Q)\G(A) is finite.


