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Overview

•

 

The hype: “free energy to power wireless sensors will 
enable the revolution of the smart connected world”

•

 

Why not stick to batteries ?

•

 

The road towards energy autonomy: Solar, Vibration, 
Thermal, RF energy harvesting

•

 

Energy harvesting applications 

 

microwatt generation 
enabling megawatt savings ?

•

 

Cost -

 

this minor detail

•

 

A (bright green) future ?
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Energy harvesting: microwatt generation 
enabling megawatt savings ? The hype cycle

?
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Energy harvesting: microwatt generation 
enabling megawatt savings ? The hype cycle

The hype is not

 

over
2009

“Nokia demonstrates
energy-harvesting

 

handset
50mW harvested”
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Why not stick to batteries ?

NEEDED:

A small (<<1cm3) and low-cost 
energy source that lasts 

the lifetime of the system

1W

 

50mW

 

1W
5 hours

 

24 hours 5 years
1mW

 

10W
10 days

 

5 years
100W

Autonomous

Energy Autonomy needs 
are not fulfilled by 

today’s batteries alone

AVAILABLE: 
Batteries

Primary

 

1.0

 

Wh/cm3

Rechargeable

 

0.3 Wh/cm3

http://content.zdnet.com/2347-13615_22-387541-387551.html?seq=10
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BAN: Body Area Network

Smart BuildingsPredictive Maintenance

Why Not Stick To Batteries ?

 
Autonomous “Health”

 Monitoring Needs Long-term “Chronic”

 

Solutions

TPMS: Tire Pressure Monitoring System
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Why Not Stick To Batteries ?

 
Autonomous “Health”

 Monitoring Needs Long-term “Chronic”

 

Solutions

On The Body Tire Pressure

 

Monitoring Machine Health

Source Thermal/PV Vibration Thermal/Vibration/PV

Autonomy 0.5-5 years 10-20 yrs 10-50 yrs

Environment Human Body

• Moderate T
• Moderate to   

low light level

“Harsh”

 

environment

• High Temperature 
• High pressure 
• High accelerations
• Large shocks

“Harsh”

 

environment

• High Temperature 
• Very low to very high

light level
• Very large vibrations

Cost Low Lower than battery 
replacement cost

Lower than replacement 
or engine repair cost

Form 
Factor

Unobtrusive
Thin, flex, …

<<1 cm3

Small/Light 
<1cm3

Variable 
application-dependent
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Man
4 µW/cm2

Machine
100 W/cm2

WiFi
0.01 µW/cm2

GSM
0.1 µW/cm2

Machine
1-10 mW/cm2

Man
20 µW/cm2

Indoor
10 W/cm2

Outdoor
10 mW/cm2

How much power is available ?

ThermalPhotovoltaic RFVibration

*Vullers

 

et al, Micropower Energy Harvesting, Solid-State Electronics 
53 (7) Pgs 684-693, DOI: 10.1016/j.sse.2008.12.011 

http://dx.doi.org/10.1016/j.sse.2008.12.011
http://dx.doi.org/10.1016/j.sse.2008.12.011
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Energy harvesting is not at all new …
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...but it is getting smaller 

EnOcean

Motion

Micropelt

Thermal

Seiko

Vibration

KCF Technology

Perpetuum

Microstrain

HOWEVER …

 
today’s systems are 

only addressing niche applications:
- too little power generated
- or too big/heavy
- too expensive
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Even Energy harvesting for on-the-body devices is 
not new…

ABRAHAM-LOUIS PERRELET

 
(1729 -

 

1826)
Swiss watchmaker, inventor of a 
self-winding watch.

The other related 
inventions:

1799 –

 

battery
re-invented 
(Alessandro Volta)

1831 –

 

dynamo 
(Michael Faraday)

Bulova Thermatron 
1980

Synchronar 1972

Mechanical Energy

Thermal energy

Energy of light
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Size (or Cost)

P
o

w
e
r/

u
n

it

μW

mW

μm mm

Cost reduction through Miniaturization

Fine-machining

Micromachining

http://www.micropelt.com/applications/power_generation.php


The road towards 
energy autonomy

 
the good

 the bad
 the ugly
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Man
4 µW/cm2

Machine
100 W/cm2

WiFi
0.01 µW/cm2

GSM
0.1 µW/cm2

Machine
1-10 mW/cm2

Man
20 µW/cm2

Indoor
10 W/cm2

Outdoor
10 mW/cm2

Micropower: Harvesting Sources 

ThermalPhotovoltaic RFVibration
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Indoor photo micropower generation

Compared to outdoor, 
indoor PV is much more of a 
challenge

•

 

Much lower light intensity
•

 

Cell efficiency decreases
•

 

Spectrum is different
•

 

Area is smaller


 

Total power is much lower

0.00

5.00

10.00

15.00
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Ef
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nc

y 
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)
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20.00

Indoor

O
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Indoor Photovoltaic module example

•

 

Applications for Indoor Use:


 

Office light (~400 lux)


 

On average 12hrs of light/day

Goal: Small size

Application: T Sensor

 

Goal: Real Time data

Application: EMG
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Man
4 µW/cm2

Machine
100 W/cm2

WiFi
0.01 µW/cm2

GSM
0.1 µW/cm2

Machine
1-10 mW/cm2

Man
20 µW/cm2

Indoor
10 W/cm2

Outdoor
10 mW/cm2

Micropower: Harvesting Sources 

ThermalPhotovoltaic RFVibration
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Forever Flashlight

Vibration Harvester State-of-the-art 
Electromagnetic

 
transducers

•

 

Basic principle: Faraday’s law of induction
•

 

Many macroscopic embodiments
•

 

First miniature embodiment in 1997

MACRO MINI

C. Shearwood, R.B. Yates, 1997
University of Sheffield

0.3W, 4.4kHz, unknown g
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Vibration Harvester State-of-the-art 
Electromagnetic

 
transducers

T. Sterken et al., 2005
IMEC, K.U. Leuven
300 W, 50 g @ 5 Hz, 5 cm3

Wen

 

J. Li et al., 2000
Chinese univ. of Hong Kong
680 W, 9.5g @ 110 Hz, 1 cm3

D. Spreemann

 

et al., 2006
HSG-IMIT
260 W, 4 m/s2

 

@ 25 Hz, 1.5cm3

•

 

Several embodiments, same principle
•

 

Typically for industrial applications: high g, high f

20mm

Glynne-Jones et al, 2004
University of Southampton

600 W

 

at 4.3m/s2

 

@ 100 Hz

PMG Perpetuum
40 mW, 1 g @ 100 Hz, 
110 cm3

S. Beeby

 

et al., 2007
University of Southampton
58 W, 0.6m/s2, 44-60Hz, 0.8 cm3

S. Beeby

 

et al., 2007
University of Southampton
150 nW, 0.4 g @ 8 kHz, 0.1 cm3
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Vibration Harvester State-of-the-art 
Electrostatic

 
transducers

Martinus van Marum's

 

Electrostatic

 

generator at Teylers

 

Museum

http://upload.wikimedia.org/wikipedia/commons/e/ed/Electrostatic_generator_Teylers_Museum.jpg
http://en.wikipedia.org/wiki/Teylers_Museum


© Holst Centre

Green Engineering Workshop

 21

Vibration Harvester State-of-the-art 
Electrostatic

 
transducers

•

 

Basic principle: charge and discharge of capacitor
•

 

Charge or voltage constrained
•

 

Miniaturization helps: larger capacitance variation
•

 

First micromachined

 

embodiment in 2003

MICRO

T. Sterken

 

et al., 2003
IMEC, K.U. Leuven

12 nW, 1 g @ 1 kHz, 2 mm3

Load

Adhesive 
bonding

Glass

Silicon

Silicon Electret

Vibration

Adhesive 
bonding

Mass

Suspended

Cvar

Movable
Electrode

Fixed
Electrode

polV
dx
dC


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Vibration Harvester State-of-the-art 
Electrostatic

 
transducers

T. Sterken et al., 2003
IMEC, K.U. Leuven
12 nW, 1 g @ 1 kHz, 2 mm3

U. Bartsch

 

et al., 2007
IMTEK

E. Yeatman

 

et al., 2006
Imperial College London
2.4 mW, 40g @ 20 Hz, 2 cm3

G. Despesse

 

et al, 2007
LETI –

 

MINATEC
12 W, 0.3g @ 50 Hz, 1cm2

•

 

Two kinds: resonant (most) and non-resonant
•

 

Mostly a 2D embodiment

M. Kiziroglou

 

et al, 2008
Imperial College London

Courtesy Eric Yeatman
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Vibration Harvester State-of-the-art 
Piezoelectric

 
transducers

•

 

Basic principle: mechanical stress generates charges
•

 

Relative vs

 

absolute motion 
•

 

First miniature embodiment in 2001

MINI/MICRO

Glynne-Jones et al., 2001
University of Southampton

3 W, 1 g @ 80Hz

Umeda

 

et al., 1996
Niigata Polytechnic College

MACRO

Joseph Paradiso, MIT
1-2mW average, 20-80mW peak

1998
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Vibration Harvester State-of-the-art 
Piezoelectric

 
transducers

M. Marzencki

 

et al, Tima

 

Labs, 2007
2 W, 2g @ 840 Hz, 25mm3

Glynne-Jones et al., 2001
University of Southampton
3 W, 1 g @ 80Hz

•

 

Micromachined

 

devices are resonant transducers
•

 

PZT or AlN

 

used (high d31

 

or low )

M. Renaud et al., 2007
IMEC, K.U. Leuven
40 W, 20g @ 1.8 kHz, 25 mm3

Sang-Gook Kim, Rajendra

 

Sood, MIT, 2004
1 μW

 

@ 2.36 V (0.74 mW-h/cm2)

Shad Roundy et al, Berkeley, 2003
70 μW, 2.25 m/s2

 

@ 100Hz, 1cm3 Elfrink

 

et al., 2008, IMEC
60 W, 2g @ 572Hz, 0.2 cm2
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5 mm

Piezo
capacitor

MEMS based piezoelectric 
energy harvesters

R. Elfrink

 

@ HOLST/IMEC, IEDM2009
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After the good …

 
now the bad and the ugly …

RESONANCE
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After the good …

 
now the bad and the ugly …

•

 

Voltage output can be in the millivolts
•

 

Voltage output can be in the 100’s of volts

GENERATED VOLTAGES !!

RELIABILITY !!

•

 

Large deformation at resonance
•

 

Friction and stiction

Need for Co-DESIGN !! 

•

 

Multiphysics

 

problem
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After the good …

 
now the bad and the ugly …

MECHANICS

- Increase mass
- Increase

 

(maximum)

 

travel
- Reduce air damping
- Reduce size

- Increase transformation 
ratio

- Minimize parasitics
- Minimize capacitance

 

(LPF)

- Minimize power consumption
- Minimize power losses
- Increase

 

voltage range

ELECTRONICS

resonance

match power
transfer

TRANSDUCERMECHANICS

- Increase mass
- Increase

 

(maximum)

 

travel
- Reduce air damping
- Reduce size

- Increase transformation 
ratio

- Minimize parasitics
- Minimize capacitance

 

(LPF)

- Minimize power consumption
- Minimize power losses
- Increase

 

voltage range

ELECTRONICS

resonance

match power
transfer

TRANSDUCER
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Man
4 µW/cm2

Machine
100 W/cm2

WiFi
0.01 µW/cm2

GSM
0.1 µW/cm2

Machine
1-10 mW/cm2

Man
20 µW/cm2

Indoor
10 W/cm2

Outdoor
10 mW/cm2

Micropower: Harvesting Sources 

ThermalPhotovoltaic RFVibration
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Thermal Energy Harvester State-of-the-art 
Thermoelectric

 
generators

•

 

Basic principle: Seebeck

 

effect
•

 

Many macroscopic embodiments
•

 

First miniature embodiments in watch industry

MACRO MINI

Voyager

 

RTG 
238Pu 

87.7 years

 

half-life
390 Watt generated 
(7200 Watt thermal)

(not

 

a ‘true’

 
scavenger)

Bulova, 1982



© Holst Centre

Green Engineering Workshop

 31

Thermal Energy Harvester State-of-the-art 
Body-temperature harvesters date back 30 years !

•

 

Bulova

 

Thermatron


 

Reported and introduced 1980


 

2000 $ (1982)


 

700 thermocouples, 
0.25mV/thermocouple, 175mV 
open circuit voltage, 10Watt 
generated power

" Los Angeles Times Special in Chicago Sun-Times, 
August 17, 1980, p. 37.

Bulova

 

Watch

 

Co. researchers

 

in Switzerland

 

have 
scored

 

a technological

 

breakthrough

 

that

 

may

 

have a 
permanent impact on

 

not

 

only

 

the watch

 

industry, 
but

 

also

 

on

 

other

 

small

 

battery-powered

 

appliances, 
such

 

as hearing aids                               .  

Describing

 

an

 

electric

 

quartz

 

watch

 

that

 

needs

 

no

 

battery, the article

 

explains: 
It

 

operates

 

off

 

a sophisticated new

 

solid

 

state device

 

called

 

a Thermatron, which

 

uses

 

body heat to 
generate

 

electricity

 

to power the watch. Unlike

 

batteries, which

 

last about

 

a year, the Thermatron

 

lasts

 

almost

 

indefinitely, Bulova

 

says. 
The Thermatron

 

is a tiny

 

thermo-electric

 

generator 
that

 

produces

 

energy

 

when

 

it

 

detects

 

even a 1 
degree

 

difference-between

 

body heat and an

 

insulated

 

portion

 

of the quartz

 

mechanism.
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Thermal Energy Harvester State-of-the-art 
Body-temperature harvesters date back 30 years !

•

 

Bulova

 

Thermatron


 

Reported and introduced 1980


 

2000 $ (1982)


 

700 thermocouples, 
0.25mV/thermocouple, 175mV 
open circuit voltage, 10Watt 
generated power
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Thermal Energy Harvester State-of-the-art 
Body-temperature harvesters date back 30 years !

source : SEIKO

•

 

TEG watches revisited: Seiko SII Thermic

 

from 1998


 

Uses 10 thermoelectric generator modules and a DC/DC convertor IC


 

300,000 yen
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Thermal Energy Harvester State-of-the-art 
Miniature or Micromachined

 
Thermal Generators

G. J. Snyder, J.R. Lim, C-K 
Huang, J-P. Fleurial, JPL
Nature Materials 2003

1W at 2mV under 
external flux

Nextreme

 

Thermal Solutions BiTe/SbTe

 

SL

140W at T = 0.8K, 5mV open circuit 
voltage

Source: Fraunhofer

 

2007

200mV open circuit voltage

Strasser, Infineon, 
Sensors & Actuators 2002

(0.1) 1uW/cm2 for (4) 14 °C 
forced temperature difference
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polySiGe

 

thermopiles
Source: Leonov

 

& Wang, IMEC

Source: LETI 

4 W/cm2

 

at T=1oC

1 V at T=60oC

Thermal Energy Harvester State-of-the-art 
Miniature or Micromachined

 
Thermal Generators

5200 BiTe

 

thermocouples 
on kapton

 

tape 

123W at T = 5K 
(42.5uA at 2.9V)

Source: ThermoLife

Source: Micropelt

 

TEG (shown 
without cooler)

Courtesy Harald

 

Böttner, FhG

 

IPM
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After the good …

 
now the bad and the ugly …

•

 

Voltage output can be in the millivolts

GENERATED VOLTAGES !!

RELIABILITY !!

•

 

MEMS production YIELD challenge: Many elements in series

COST !! 

•

 

Traditional TEG manufacturing is too expensive
•

 

Exotic new materials are promising but cost TBD
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After the good …

 
now the bad and the ugly …

Courtesy: Harald

 

Böttner

Fraunhofer

 

IPM

•

 

Further improved PERFORMANCE could be achieved using new materials
•

 

Provided the COST and RELIABILITY are manageable
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walking

immobilized

in the office

After the good …

 
now the bad and the ugly …

•

 

CAUTION: thermal generation from humans in a real-life environment 
depends on many factors: metabolism, heat balance, activity, ambient 
temperature, humidity, …

Source: V. Leonov, IMEC
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Man
4 µW/cm2

Machine
100 W/cm2

WiFi
0.01 µW/cm2

GSM
0.1 µW/cm2

Machine
1-10 mW/cm2

Man
20 µW/cm2

Indoor
10 W/cm2

Outdoor
10 mW/cm2

Micropower: Harvesting Sources 

ThermalPhotovoltaic RFVibration
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Passive vs. Active RF Harvesting

Passive Harvesting

1990 MHz

880 MHz

3-10 GHz

ambient

Intel demo:
Area ~ 30x20 cm2 

Power ~ 60 µW -> 0.1µW/cm2

At 4 km of source

13.56MHz

Source: Hagerty et al.

Cell phone
RFID UWB

The US E-M spectrum

Active Harvesting (Energy Transfer)
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RF Energy Transfer

15mW@30cm
PT

 

~ 3W www.powercast.com
  22

2

4 R
GGPP RTT

R 




Power transfer: Friis Eq:

: Wavelength used

Gr, GT : Antenna Gain

PT PR ; Power transmitted, received

First systems on the market
Room for improvement

• Standardization

• Optimize Design

• AC-DC converter gain
• Integration
• Legal/Health Regulations

PT

 

= 100mW
PR

 

=1.5mW@20cm
Visser et al. (Imec)
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RF Energy Transfer

 
RF

 

powering for ambient intelligence applications

Takayasu

 

Sakurai, University of Tokyo
IEDM2006, ISSCC2007, ISSCC2008
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Energy Storage Systems
Characterization and Selection

Battery Supercap Biofuel cell

Power management
IC Design and Testing

AC/DC DC/DC

Harvesting Sources
Design, Fabrication and Testing

ThermalPhotovoltaic RFVibration ThermalThermalPhotovoltaicPhotovoltaic RFRFVibrationVibration

No practical power without power management

Micropower Module
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Power Management Circuits for Vibration/Motion 
Energy Harvesters 

•

Rectifier Linear regulatorstart-up circuitry

source : J.A. Paradiso, 2001

•

 

The earliest (basic but complete) system
+

 

Low power consumption, simple control: 15 µA 
+

 

Input power: ~1.3 mW
+

 

Self-starting
-

 

Voltage drop across diodes
-

 

Losses in linear regulator
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Integration of micropower

 

storage (mW-µW range) is a challenge

Emerging (thin film) storage systems  are being introduced

Thin-film-flexible Lithium-coin PrintableLithium-flexible Supercapacitor



The road towards

 Energy Autonomy

 Towards

 Practical

 Use 
Cases
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Anticipated killer applications
 of Vibrational

 
Energy Harvesting

TPMS
Tire Pressure Monitoring System

Predictive Maintenance
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Selected Current Use Cases (not MEMS enabled)

 Electromagnetic transducers

Source: Enocean
http://www.enocean.com/en/

••

 

ENOCEANENOCEAN, targeting light 
switching

••

 

PERPETUUMPERPETUUM, targeting oilfield 
applications (intrinsically-Safe)


 

Operates from the prevalent 
100Hz and 120Hz vibration bands 
on electrical machines



 

Typically >0.3mW power output 
on 95% of machines



 

Sealed stainless steel, 10 year 
operational lifetime

Source: perpetuum, http://www.perpetuum.co.uk/
Courtesy Steve Beeby, Uni. Southampton

http://www.enocean.com/en/
http://www.perpetuum.co.uk/
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Selected Current Use Cases (not MEMS enabled)

 
Piezoelectric Transducers

••

 

MicrostrainMicrostrain

 

Wireless Sensor 
Nodes

••

 

AmbiosystemsAmbiosystems

 

Wireless Mote
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Towards Practical Use Cases 
Ongoing research examples

•

 

Powerbolt

 

-

 

Self-powered Status Monitoring (FhG

 

& Micropelt)
•

 

Self-powered flight control of flying insects (MIT)

Courtesy: Harald

 

Böttner
Fraunhofer

 

IPM

Courtesy: Anantha

 

Chandrakasan, MIT
Program PI: Joel Voldman, MIT



© Holst Centre

Green Engineering Workshop

 51

Towards Practical Use Cases -

 
Ongoing research 

examples: Body-heat Self-powered Devices

wireless autonomous pulse oximeter

-20

-10

0

10

20

24 25 26 27 28Time (s)

Vo
lta

ge
 (μ

V
)

Eyes open Eyes closed

wireless autonomous EEG monitoring
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Towards Practical Use: 
Thermal generator

 

in-a-shirt
2 PV devices and 14 TEG

1-2mW indoor (when walking)

3mW outdoor (when walking)

Wireless

ECG

System

Efficient 
power 

management

+

ULP 
biopotential 

readout ASIC

PV cells

TEG
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Cost –
 

this minor
 

detail
•

 

Remember: COST nearly bankrupted 
early adopters of thermal energy 
harvesting in the watch industry …

•

 

Micromachined

 

energy harvesters are 
mainly benchmarked with respect to 
their power output, not their cost/Wh

•

 

A correct cost comparison should not compare the cost of a 
harvester to that of a battery but to the total number of batteries or 
the total recharge cost

•

 

Whether this is “GREEN”

 

energy depends on energy payback time 
(what is the energy used in the production of the harvesters) 

•

 

Whether this is “GREEN”

 

energy depends on the bill of materials 
used in the production and a comparison of 1 harvester replacing

 
many batteries

How Green is Energy harvesting (really) ?
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Conclusions and Outlook

•

 

Gradual evolution from HYPE to REALITY

•

 

Green Engineering using energy harvesting is however visibly 
emerging: real-life industrial (inc. automotive) and health 
applications are appearing on the market

•

 

Methods to generate energy are diverse –

 

no standard product 
yet

•

 

From REALITY to MAINSTREAM/KILLER APPLICATION 
will depend on achievable total cost compared to competing 
(battery, fuel cell) technologies
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