
Software Analysis and Verification 2009

Project Report

Decision Procedures for Satisfiability in the Equality Theory of Lists

Bogdan Stroe and Jonas Lindmark

under the supervsion of Prof. Viktor Kuncak

Abstract

The theory of lists plays an important role in the context of software analysis and verification. In this

thechnical report we investigate two different models for this theory. The first is the recursive data

type paradigm which enables us to develop a decision procedure for statisfiablity in this theory based

on reducing the problem to a normal form. The second approach is to represent the problem by

adapting a model used for deciding satisfiabilty of the theory of uninterpreted function symbols. We

investigate each of the algorithms and show that the problem can be solved in polynomial time.

Finally, we propose several extensions that would facilitate the actual application in software

verification.

Contents

1. Introduction

2. Recursive Data Types

3. Problem Statement

4. Decision Procedure 1: List Normal Form Reduction

5. Decision Procedure 2: Congruence Closure on Graph Relation

6. Correctness and Completeness

7. Complexity Analysis

8. Comparison and Conclusion

9. Future Work

a. SMT solvers

b. Grammar Extension

Introduction

Reasoning about recursive data types such as lists

and stacks is something very useful in

programming today. The aim of this technical

report is to provide a solution to deciding

satisfiability in the equality theory of lists. A typical

use case scenario would be to check that,

depending on possible list variables assignments,

some branch in a program could be reached. In this

paper we present two procedures for determining

satisfiability of conjunctions of formulas in the

limited theory of lists, which can be extended to

allow for more general recursive data types. We

analyze and compare these procedures in relation

to each other.

Recursive Data Types

The definition of a recursive data type is simply a

type that contains elements of its own type. These

kinds of types are often used in programming

today. Perhaps the most well-known example

would be the List structure where a List is defined

as a concatenation of smaller Lists. The procedures

presented in this paper handle a specific set of

RDT’s, namely when we have only one constructor.

This reduces the complexity of the problem by a

great degree, we discuss the implications of adding

more constructors later in this paper.

Generally a recursive data type is defined by a set

of constructors which generate terms of the type,

a set of selectors to access the parameters of the

constructed terms, a set of testers for each

constructor to check whether a term was created

with a specific constructor.

Throughout the paper we will use a simple List

type for illustrations. This List has only one

constructor, Cons. This constructor takes one

element and a list and results in a new list with the

element prepended to the input list. In addition we

have two selectors to operate on the List, Car to

access the head of a List, Cdr to access the tail of a

List. In our List type the elements of the List can

only be singleton variables. The grammar of the

List type is:

List:=Cons(Car:Var, Cdr: List)| Var

The list [1,2,3] would be represented as

Cons(1,Cons(2,Cons(3,Emptylist))). For complexity

reasons the Emptylist constructor will be omitted.

Instead we will abstract the end of list with a

variable. It is useful to visualize this list as a tree

with Cons nodes with car and cdr as children.

Problem Statement

Due to the structure of lists the problem could be

represented as a special case of the SAT problem

which, we will show, could be solved in polynomial

time. The problem would be modeled by a set of

constraints on the list of variables. The operators

allowed are the ones described in the previous

section. We would call one of these constraints as

a list formula. We present the grammar of the

formula:

Formula:= Term = Term | Term ≠ Term

Term:= Car(Term)|Cdr(Term) | Cons(Term,Term) |

Var

We consider one of these formulas to be true if

there exists and assignment for all variables

present in the formula under which the formula is

satisfied.

Consequently, finding a solution for the set of

formulas ���|� � 1, …
� defined by the afore-

mentioned grammar would imply deciding

whether there exists an interpretation of all the

variables in our set of formulas under which the

conjunction of all formulas evaluates to true.

� ��

���
� ����

Since each of the variables could represent any list

in our theory, trying different assignments is not a

feasible solution. We will attempt to solve this by

modeling the formulas in a suitable way and then

try to build a decision procedure on that model.

Decision Procedure 1: List Normal

Form Reduction

Our procedure builds on the fact that determining

satisfiability is easy when the set of formulas only

contain formulas of the type ��� � ���. When

this is the case, we can simply go through every

dis-equality and check for contradictions. We call

this the normal form and present a set of rules

with the purpose of reducing any set of formulas to

this form. We assume that the input set of

formulas is well typed.

1. Remove selectors

2. Reduce ��
� � ��
� and ��
� � ���

3. Remove ��� � ���

4. Remove ��
� � ��
�

5. Check for contradictions

More specifically each step can be explained like

this:

1. Firstly we remove the selectors from the

formula. This can be easily done by

introducing for each pair ������ or

������ a formula � � ��
����, ��� if

one does not exist and then evaluate the

operator. In this case ������ would be

substituted by �� and ������ by ��.

2. Now we want to remove Cons��, $� �
��
��%, �� and ��
���, $� � ��� .

To do this we apply two rules until they

cannot be applied any more.

The first rule:

For every ��
� � ��� or ��� � ��
� we

substitute the occurrences of that variable

in the set with the cons.

The second rule:

For every ��
���, $� � ��
��%, �� we

break the formula into two new formulas

�� � %, $ � �� and remove the original

one.

This will reduce the original set into an

equivalent set that only contains formulas

of the types ��� � ���, ��� �
���, ��
� � ��
�.

3. Now we want to remove the ��� � ���

formulas. This is very straight forward. If

the right hand side equals the left hand

side we do nothing. Otherwise we go

through the set and replace all

occurrences of the left hand side with the

right hand side and then remove the

original formula.

4. At this moment no more equalities will be

generated or exist in the set. So when we

encounter a ��
���, $� � ��
��%, ��

formula we just need to check that

� � % & $ � � holds by examining the

names of the variables. If it does not hold

we can end the algorithm here and return

un-satisfiable. If it holds we simply

remove the formula from the set and

continue.

5. Now we have a formula in normal form

and we can iterate over the inequalities

and try to find contradictions. If no

contradiction is found the set is satisfiable.

If we find any contradiction the set is un-

satisfiable.

We provide an example to depict the way the

procedure works.

Consider the set:

���
��', (� �), ������ � ', ������ � (,) � ��

To begin with, we want to remove the selectors so

we introduce � � ��
����, ��� and evaluate the

selectors which gives us

���
��', (� �), �� � ', �� � (,) � �, � �
��
����, ����.

Now we reduce equalities between Cons and Var

and between Cons and Cons by applying rule 2.

Which gives us:

��� � ', �� � (, ��
��', (� � ��
����, ����.

We apply rule 3 and get rid of the two Var-Var

equalities. The set becomes just

���
����, ��� � ��
����, ���}

Since the first arguments of the two Cons are the

same(the head elements), we apply rule 4 and

reach the normal form { �� � ��} . This obviously

leads to a contradiction in the last step and,

therefore, the set of formulas is un-satisfiable.

Decision Procedure 2: Congruence

Closure on Graph Relation

Open and Nelson have presented a different

approach to solving this problem. More precisely,

they showed how it can be reduced to the

“congruence closure” problem of a relation in a

directed graph.

Let G = (V, E) be a directed graph with labeled

vertices, possibly with multiple edges. For a vertex

v, let λ(v) denote its label and δ(v) its outdegree,

that is, the number of edges leaving v. The edges

leaving a vertex are ordered. For 1≤t≤δ(v), let v[i]

denote the ith successor of v, that is, the vertex to

which the ith edge of v points. A vertex u is a

predecessor of v if v = u[i] for some i. Since multiple

edges are allowed, possibly v[t] = v[j] for i ≠ j.

Let n be the number of vertices of G and m the

number of edges of G. We assume there are no

isolated vertices and therefore that n = O(m).

Let R be a relation on V. Two vertices u and v are

congruent under R if λ(u) = λ(v), δ (u)= δ (v), and,

for all i such that 1≤1 ≤δ (u), (u[t], v[i]) E R. R is

closed under congruence if, for all vertices u and v

such that u and v are congruent under R, (u, v) E R.

There is a unique minimal extension R' of R such

that R' is an equivalence relation and R' is closed

under congruence; R' is the congruence closure of

R.

After this construction we define the following

algorithm:

Given a conjunction of formulas:

*� � ��+ … + *, � �,+

'� � (�+ … + '- � (-

Which could contain constructors and selectors

Cons, Car and Cdr but also un-interpreted function

symbols.

1. We build a graph G which corresponds to

the set of all terms appearing in the

conjunction For each term t appearing in

the conjunction, let τ(t) be the vertex m G

representing t For 1≤t≤r, call

MERGE(τ(vt),τ(wt)).

2. For each node u in G labeled CONS, add

vertices v, labeled CAR, and w, labeled

CDR, both with outdegree i, such that v[l]

= w[l] =u. Call MERGE(v,u[1]) and

MERGE(w,u[2]) (That is, given a term

CONS(x, y), add verttces representing

CAR(CONS(x, y)) and CDR(CONS(x, y)) and

merge them with the vertices

representing x and y).

3. For each vertex u in G labeled Car(or Cdr),

add vertex v, labeled Cons such that v[1]

=u(v[2]=u). Call MERGE(v,u[1]) (or

MERGE(w,u[2])).

4. For i from 1 to s, τ(xi) is equivalent to τ(xj),

return UNSATISFIABLE. Otherwise return

satisifiable.

We present the pseudo code for the Merge

method (which does performs the main tasks of

congruence closure).

MERGE(u, v)

1. If FIND(u) = FIND(v), then return

2. Let P be the set of all predecessors of

vertices equivalent to u and Po the set of

all predecessors of vertices equivalent to v.

3. Call UNION(u, v)

4. For each pair (x, y) such that x Є P, and y Є

Po, If FIND(x) ≠ FIND(y) but CONGRUENT(x,

y) =TRUE, then MERGE(x, y).

CONGRUENT(u, v)

1. If δ (u) ≠ δ (v), then return FALSE

2. For 1 ≤ t ≤ δ(u), if FIND(u[t]) ≠ FIND(v[t]),

then return FALSE

3. Return TRUE

UNION(u,v)

1. Unify the classes of vertices u and v

In the follwing we will present the correspondence

of the above algorithm to our list problem .

First, we construct the grah G. Each term in our set

of formulas represents a node in G. A term a is a

predecessor of another term b if a is a function of

b. We must however not forget that we are not

just dealing with uninterpreted functions but with

list constructors and selctors. Therefore we must

introduce additional nodes. For every Cons(a,b)

term we shoud introduce Car(Cons(a,b)) which has

the same equivalence clas as a and Cdr(Cons(a,b))

which has the same equivalence class of b. Also,

for each Car(a) and Cdr(a) terms we introduce a

new term Cons(Car(a),Cdr(a)) which has the same

equivalence class as a. These new terms/nodes are

just to model the idea that the concation of the

head of a list and tail of the list is the list itself.

The Relation R is determined by the equalities in

the given set of formulas. For each formula a=b we

have that ��, $�./. The next step is to call the

MERGE procedure for each pair (a,b) .

The final step of the decision procedure is to

iterate throught each dis-equality in the set of

formulas and check if the two terms have the same

equivalence class. In case they do, then we can

safely say that the set of formulas is unsatisfiable.

Otherwise, we can conclude that the problem is

satisfiable.

For example let F be the set of formulas.

0 � � ��
��', (� �), ������ � ', ������ �
(,) � ��

We construct the graph G according to the

algorithm presented earlier:

Due to the realation inferred by F we have that

term x is in the same equivalence class as car(w)

and term y is in the same equivalence class as

cdr(w). By congruence closure we can infer that

also cons(x,y) is in the same equivalence class as

cons(car(w),cdr(w)). However the relation implied

by F claims that z is in the same relation as

cons(x,y) and we know that cons(car(w),cdr(w)) is

actually w. This would imply by transitivity that w is

the same equivalence class as z. This yields that F is

unsatisifiable since it contains the dis-equality

between z and w.

Correctness and Completeness

We will follow a simple approach in showing that

the fist algorithm is correct. We will show that

each step we perform on our set of formulas

preserves satisfiabilty. Also we will show that if we

start with an unsatisfiable formula it will remain

unsatisfiable after we apply any of the steps.

1. Removing selectors

2. Replacing cons variables

3. Splitting cons=cons formulas

4. Substituting variables

5. Removing cons ≠ cons formulas

We will also show that we will always reach a

normal form for our set of formulas. All of these

steps are made under the assumption that we

have typed list variables.

1. Suppose there exists an assignment for

which the set of formulas F is satisfiable.

We can construct an assignment for the F-

noSelectors set of formulas that result

after step 1. We simply extend each of

the initial assignment such for the

unassigned variables in the following way.

Every variable vl is assigned to the head of

list v and to every variable vr is assigned

the tail of the list v. This is obviously

satisfiable since we represent the same

structure as the initial set of formulas.

Conversely, if the initial set is unsatisfiable.

Then also the new set of formulas is

unsatisfiable. Otherwise, suppose F-

noSelectors has a variable assignment

under which it is true. In this case we

could construct an satisfying assignment

also for the initial set of formulas by just

removing the variable introduced. For

each new formula v=cons(vl,vr) we

replace all instances of vl and vr by car(v)

and cdr(v) everywhere in our set of

formulas and remove both vl and vr from

our assignment. We would obtain the

original set F and a satisfying assignemnet

for it, thus, we have reached the

contradiction.

2. We interpret this step as a substitution of

a variable in all our formulas. Therefore, in

the initial intial conjuction of formulas,

the existential quantifier over that

variable turns itself in a universal

quantifier. It is trivial to show that:

1*1�� … 1�. * �
 %�
���, $�+��*, �� … ��

Car(Cons(x,y)

)

Cdr(Cons(x,y)

)

Cons(Car(w),Cdr(w))

Cons(x,y) Car(w)

 w

Cdr(w)

 x y z

 is equivalent to

 3*1�� … 1�. 4%�
���, $� *5 6 ��*, �� … ��

Therefore, if the first formula is satisfiable

also the second one is. The same holds for

the unstatisfiable case.

3. Again replacing a cons=cons formulas will

result in an equivalent sets of formulas.

This results from the fact that

%�
���, $� � %�
��%, �� is equivalent to

� � $ + % � �.

4. The correctness proof for this step is

identical to step 2 .

5. We have two situations here. In the first

case, we are trying to remove a formula

%�
���, �1� � %�
���, �2�. This formula is

equivalent to �1 � �2. In the second case

we have %�
���, �1� � %�
��%, �2� . At

this point we can completely remove the

formula. This is becasuse since the heads

of the lists are different and the dis-

equality can always be satisfied. It is

imporntant note that, due to step 4, at

this point if we would have had

information that a=c there would be just

one variable for this element and we

would be in the first case. Another

important aspect is that we cannot have a

cons term as the first parameter of

another cons term but only a variable

term because the head of a list cannot be

a list but only an element. This is a direct

implication to that fact that we are

dealing with typed lists.

To prove completeness we must show that this

algorithm ensures that the normal form is always

reached. As pointed out previously, the normal

form we reach is a set of dis-equlities between

variables. The first rule makes sure that we have

no selectors in the terms of our set of formulas.

The next two steps are run over the obtained set

exhaustively untill neither is applicable anymore.

By defintion of these rules, this means that after

this part of the algorithm we will not have any

other formulas except for the ones of type

%�
���, $� � %�
��%, ��, � � $ �� � � $. Also this

step terminates too because with each cons-

variable repalcement we remove completely one

variable from our set of formulas. Since we have

finite number of variables and finite number of

formulas this shows completeness of these 2 steps.

Step 4 is equivalent to building equivalence classes

for each varible based on the equality formulas of

type � � $. Again, this will always terminate

because at each step we remove at least one

variable from our formulas.

The final step reduces the set of formulas to the

normal form. It is important to notice that by

replacing formula %�
���, $� � %�
���, $� we will

never introduce equalities but only dis-equalities.

This ensures that the previous steps do not need to

be applied again after this step. At this point we

will have only dis-equalities between equivalence

clases. We will decide that the formula is

unsatisfialbe only if we encounter a formula of

type � � �. If we don’t find such a formula we

canc safely say that the inital set of formulas is

satisfiable due to the correctness of the algorithm.

Since this step will also alway terminate we can

conclude that the algorithm is complete.

The correctness and complteness of the second

algorithm shown quite easily by costructing of

satisfying interpretations just as we have done for

the first algorithm and is presented in detail in [2].

Complexity

The complexity of the second algorithm is shown

to be O(m
2
) where m is the number of edges in the

resulting Graph. The proof can be found in [2].

We shall however analyze the complexity of the

first procedure.

The algorithm is divided into four steps:

1. Selector removal

2. Reducing ��
� � ��
� and
��
� � ���

3. Removing ��� � ���

4. Removing ��
� � ��
�

5. Checking for contradictions

Selector removal works by iterating over the set

and for each selector found we introduce a Cons

construction for that variable and attempt to

evaluate all selectors on that variable in the set.

This gives us complexity of O(|Terms|x|Terms|).

The second step we can visualize as a loop:

while(changeMade){

 removeConsCons();

 removeConsVar();

}

The removeConsCons will search through the set

for a Cons = Cons formula and then reduce it. The

reduce step is constant in complexity so the total

complexity of removeConsCons is O(|Terms|). The

removeConsVar operation will each time it is

applied reduce the amount of variables by one.

Hence it can at most be applied as many times as

the amount of variables we have in the set.

Applying the rule once means that we have to go

through every term in the set to search for possible

variables to substitute. This gives us the complexity

of O(|Vars|x|Terms|).

The ��� � ��� replacing procedure is quadratic in

terms of the amount of terms since we go through

each formula and for every ��� � ��� we have to

search through the set again for the substitution.

O(|Terms|x|Terms|).

Removing ��
� � ��
� works by iterating over

the set to find the ��
� � ��
� formulas and for

each of them search for the head equalities and if

it exists also search for tail equalities. This gives us

complexity of O(|Terms|x|Terms|).

The final contradiction step works by for each

��� � ��� formula check whether the right hand

side is equal to the left side. This is linear in terms

of the amount of terms in the set, O(|Terms|).

So in total we have 8�|9��:�|; < |9��:�| <
 |9��:�| = |����|� which is the same as

8�|9��:�|; < |9��:�| = |����|�.

NP completeness

Earlier in the paper we have stated that including

the empty list in the List type makes the

satisfiability problem significantly harder. The

problem actually becomes NP complete. There is a

quite simple reduction to 3CNF-SAT. To begin with,

if we add the Nil constructor to the List we will

have to define the behavior of the selectors on

that List. The most reasonable behavior is that

evaluating Car(Nil) and Cdr(Nil) will result in Nil.

Also we add that ��
��>��, >��� � >��, although it

does not make sense to write ��
��>��, >��� since

the first argument must be an element but since

we defined ����>��� � >�� it does work.

Given a 3CNF-SAT problem consisting of ?� … ?

truth variables and a conjunction F of 3-element

clauses containing ?� … ? we construct the

conjunction G of variables '�, (�, … , ', (and we

add the initial construction of G:

�����'�� � ����(��, ����'�� � ����(��,
'� � (�� where � � 1 …

This would mean that '� and (� cannot both be Nil.

Since the heads and the tails of them would be

equal, one will have to be >�� and one would be

��
��>��, >���. We define that for ?� to be true

then '� must be >�� and conversely ?� is false then

 (� � >��.

Now it is easy to model the 3-CNF problem into a

List satisfiability problem. For example, say that we

want to model the clause ?� & ~?; & ?A which is

equivalent to '� � >�� & (; � >�� & 'A � >�� .

Rewriting this into a conjunction we get ~�(� �
>�� B '; � >�� B (A � >��� This would give us the

List formula ��
�C(�, ��
��';, (A�D �
��
�C>��, ��
��>��, >���D.

This shows that the problem is NP hard, it is easy

to see that given a solution we can verify that it is

correct in polynomial time which tells us the

problem is also NP complete.

Conclusion

We have presented the technical aspects of two

approaches that could solve the decision problem

on satisfiability of quantifier free equality theory of

lists. These two algorithms differ in the approach

of handling this problem but are able to generate a

solution with similar complexity. Unlike the general

SAT problem, the solution could be found in

polynomial time.

We can distinguish a specific particularity that

differentiates the approach of the two algorithms.

They key step in the normal form reduction

algorithm is to infer relationships between the

children of two terms based on the relationship of

the parent terms. In the second algorithm we do

the opposite. We merge equivalence classes of

parents based on the equivalence classes of the

children. However, the operation count is similar in

both cases because for the second algorithm we

introduce as many nodes in our graph as new

variables introduced in the set of formulas by the

“remove selectors” of the first algorithm.

Intuitively, one can notice that the first algorithm

does some extra computation steps in case the

formulas have many selectors. This aspect

introduces a computation overhead also for the

subsequent steps of the first algorithm. In the

graph representation each selector is linked to its

argument by just one edge which makes the

congruence closure step run faster. We can

conclude that each procedure would run faster

than the other on some specific type of input

formulas.

Nonetheless it is difficult to provide an accurate

efficiency comparison because it is difficult to

come up with an exhaustive set of input examples.

A future project could consist of determining the

properties of a given set of formulas which could

recommend the most efficient of the two decision

procedures for this particular case.

Future Work

SMT Solvers

Satisfiability Modulo Theories is the problem of

determining satisfiability of a conjunction of

formulas with respect to combinations of

background theories. This extension to the

problem we have discussed is very useful in

reasoning about programs since in most practical

applications more than one theory is used. There

exists a couple of different algorithms for solving

SMT problems. For example the DPLL(T)

architechture.

DPLL(T)

DPLL stands for Davis, Putnman, Logeman, and

Loveland which are the creators of the original

DPLL algorithm. They proposed a backtracking

algorithm for solving the CNF-SAT problem, this

algorithm is widely used because of its efficiency.

The (T) stands for “modulo Theory” which means

that the DPLL(T) determines satisfiability of CNF

formulas in the theory T, in the case of EUF the

theory T would simply be the theory of equality. To

produce a DPLL(T) system one has to instantiate a

general DPLL(X) with a E��*��F for the theory T.

This E��*��F must be able to handle conjunctions

of formulas in the theory T and acts as an interface

between the general DPLL(X) and the theory T.

Combining Theories

Combining decision procedures for different

theories is very useful. Nelson and Oppen designed

an algorithm called the Nelson-Oppen combination

method[4] which exists in two variations,

deterministic and non-deterministic. This method

takes two or more theories and decision

procedures for the quantifier free fragments of

these theories and produces a system that solves

the quantifier free version of the union of these

theories.

Extending the grammar

Another possible extension would be to have more

selectors and constructors in our list theory. The

first algorithm would be more difficult to adapt

since it would require modeling also disjunctions of

formulas. The real problem stems from the fact

that, when we try to simplify the formulas, we

don’t know which constructor was used to create

that list variable. We would have to introduce

some new rules for this and assign to each list

variable a set of possible constructors that could

have been used to generate it[1]. As we process

the list of formulas we should narrow down this set

for each of the variables. In some cases we will

have to test disjunctions of sets of possible

constructors. Of course, this would introduce an

additional overhead since we would have to

explore different assignments at the same time. It

would be necessary to have a strategy that splits

the set possible assignments so that it can be

explored in an efficient way.

The second algorithm would run into the same

problem. However since the general algorithm

uses uninterpreted function symbols it would be

easier to model. The new constructors would just

be new functions in our theory. However, we

would have to model in terms of edges in our

graph the semantics of these new constructors and

selectors with respect to lists. In terms of

implementation this approach seems less error

prone due to the fact that we do not have to

modify significantly the original algorithm.

References

[1]An Abstract Decision Procedure for Satisfiability in the Theory of Recursive Data Types

Clark Barretta, Igor Shikaniana, Cesare Tinellib

[2]Fast Decision Procedures Based on Congruence Closure

Greg Nelson, Derek C. Oppen

[3]On the Theory of Structural Subtyping

Viktor Kuncak, Martin Rinard

[4]The Calculus of Computation- Decision Procedures with Application to Verification

Aaron R. Bradley, Zohar Manna

