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Abstract 

The theory of lists plays an important role in the context of software analysis and verification. In this 

thechnical report we investigate two different models for this theory. The first is the recursive data 

type paradigm which enables us to develop a decision procedure for statisfiablity in this theory based 

on reducing the problem to a normal form. The second approach is to represent the problem by 

adapting a model used for deciding satisfiabilty of the theory of uninterpreted function symbols. We 

investigate each of the algorithms and show that the problem can be solved in polynomial time.  

Finally, we propose several extensions that would facilitate the actual application in software 

verification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Contents 

 

1. Introduction  

2. Recursive Data Types 

3. Problem Statement  

4. Decision Procedure 1: List Normal Form Reduction  

5. Decision Procedure 2: Congruence Closure on Graph Relation  

6. Correctness and Completeness  

7. Complexity Analysis   

8. Comparison and Conclusion  

9. Future Work  

a.  SMT solvers  

b. Grammar Extension 

 

 

 

 

 



Introduction 

Reasoning about recursive data types such as lists 

and stacks is something very useful in 

programming today. The aim of this technical 

report is to provide a solution to deciding 

satisfiability in the equality theory of lists. A typical 

use case scenario would be to check that, 

depending on possible list variables assignments, 

some branch in a program could be reached. In this 

paper we present two procedures for determining 

satisfiability of conjunctions of formulas in the 

limited theory of lists, which can be extended to 

allow for more general recursive data types. We 

analyze and compare these procedures in relation 

to each other.  

 

Recursive Data Types 

The definition of a recursive data type is simply a 

type that contains elements of its own type. These 

kinds of types are often used in programming 

today. Perhaps the most well-known example 

would be the List structure where a List is defined 

as a concatenation of smaller Lists. The procedures 

presented in this paper handle a specific set of 

RDT’s, namely when we have only one constructor. 

This reduces the complexity of the problem by a 

great degree, we discuss the implications of adding 

more constructors later in this paper.  

Generally a recursive data type is defined by a set 

of constructors which generate terms of the type, 

a set of selectors to access the parameters of the 

constructed terms, a set of testers for each 

constructor to check whether a term was created 

with a specific constructor. 

Throughout the paper we will use a simple List 

type for illustrations. This List has only one 

constructor, Cons. This constructor takes one 

element and a list and results in a new list with the 

element prepended to the input list. In addition we 

have two selectors to operate on the List, Car to 

access the head of a List, Cdr to access the tail of a 

List. In our List type the elements of the List can 

only be singleton variables. The grammar of the 

List type is: 

List:=Cons(Car:Var, Cdr: List)| Var 

The list [1,2,3] would be represented as 

Cons(1,Cons(2,Cons(3,Emptylist))). For complexity 

reasons the Emptylist constructor will be omitted. 

Instead we will abstract the end of list with a 

variable. It is useful to visualize this list as a tree 

with Cons nodes with car and cdr as children. 

 

Problem Statement 

Due to the structure of lists the problem could be 

represented as a special case of the SAT problem 

which, we will show, could be solved in polynomial 

time. The problem would be modeled by a set of 

constraints on the list of variables. The operators 

allowed are the ones described in the previous 

section. We would call one of these constraints as 

a list formula. We present the grammar of the 

formula: 

Formula:=  Term = Term | Term ≠ Term  

Term:= Car(Term)|Cdr(Term) | Cons(Term,Term) |      

Var  

We consider one of these formulas to be true if 

there exists and assignment for all variables 

present in the formula under which the formula is 

satisfied. 

Consequently, finding a solution for the set of 

formulas ���|� � 1, … 
�  defined by the afore-

mentioned grammar would imply deciding 

whether there exists an interpretation of all the 

variables in our set of formulas under which the 

conjunction of all formulas evaluates to true. 

� ��



���
� ���� 

Since each of the variables could represent any list 

in our theory, trying different assignments is not a 

feasible solution. We will attempt to solve this by 

modeling the formulas in a suitable way and then 

try to build a decision procedure on that model. 

 



Decision Procedure 1: List Normal 

Form Reduction 

Our procedure builds on the fact that determining 

satisfiability is easy when the set of formulas only 

contain formulas of the type ��� � ���. When 

this is the case, we can simply go through every 

dis-equality and check for contradictions. We call 

this the normal form and present a set of rules 

with the purpose of reducing any set of formulas to 

this form. We assume that the input set of 

formulas is well typed. 

1. Remove selectors 

2. Reduce ��
� � ��
� and ��
� � ��� 

3. Remove ��� � ��� 

4. Remove ��
� � ��
� 

5. Check for contradictions 

More specifically each step can be explained like 

this: 

1. Firstly we remove the selectors from the 

formula. This can be easily done by 

introducing for each pair ������  or 

������  a formula � � ��
����, ���  if 

one does not exist and then evaluate the 

operator. In this case ������ would be 

substituted by �� and ������ by ��. 

2. Now we want to remove Cons��, $� �
��
��%, ��  and ��
���, $� � ��� .  

To do this we apply two rules until they 

cannot be applied any more. 

The first rule:   

For every ��
� � ��� or ��� � ��
� we 

substitute the occurrences of that variable 

in the set with the cons. 

The second rule:   

For every ��
���, $� � ��
��%, ��  we 

break the formula into two new formulas 

�� � %, $ � ��  and remove the original 

one. 

This will reduce the original set into an 

equivalent set that only contains formulas 

of the types ��� � ���, ��� �
���, ��
� � ��
�. 

3. Now we want to remove the ��� � ��� 

formulas. This is very straight forward. If 

the right hand side equals the left hand 

side we do nothing. Otherwise we go 

through the set and replace all 

occurrences of the left hand side with the 

right hand side and then remove the 

original formula. 

4. At this moment no more equalities will be 

generated or exist in the set. So when we 

encounter a ��
���, $� � ��
��%, �� 

formula we just need to check that 

� � % & $ � �  holds by examining the 

names of the variables. If it does not hold 

we can end the algorithm here and return 

un-satisfiable. If it holds we simply 

remove the formula from the set and 

continue. 

5. Now we have a formula in normal form 

and we can iterate over the inequalities 

and try to find contradictions. If no 

contradiction is found the set is satisfiable. 

If we find any contradiction the set is un-

satisfiable. 

We provide an example to depict the way the 

procedure works.  

Consider the set:  

���
��', (� � ), ������ � ', ������ � (, ) � �� 

To begin with, we want to remove the selectors so 

we introduce � � ��
����, ��� and evaluate the 

selectors which gives us 

���
��', (� � ), �� � ', �� � (, ) � �, � �
��
����, ����.  

Now we reduce equalities between Cons and Var 

and between Cons and Cons by applying rule 2. 

Which gives us: 

��� � ', �� � (, ��
��', (� � ��
����, ����. 

We apply rule 3 and get rid of the two Var-Var 

equalities. The set becomes just  

���
����, ��� � ��
����, ���} 

Since the first arguments of the two Cons are the 

same(the head elements), we apply rule 4 and 

reach the normal form { �� � ��} . This obviously 

leads to a contradiction in the last step and, 

therefore, the set of formulas is un-satisfiable. 



Decision Procedure 2: Congruence 

Closure on Graph Relation 

Open and Nelson have presented a different 

approach to solving this problem. More precisely, 

they showed how it can be reduced to the 

“congruence closure” problem of a relation in a 

directed graph. 

Let G = (V, E) be a directed graph with labeled 

vertices, possibly with multiple edges. For a vertex 

v, let λ(v) denote its label and δ(v) its outdegree, 

that is, the number of edges leaving v. The edges 

leaving a vertex are ordered. For 1≤t≤δ(v), let v[i] 

denote the ith successor of v, that is, the vertex to 

which the ith edge of v points. A vertex u is a 

predecessor of v if v = u[i] for some i. Since multiple 

edges are allowed, possibly v[t] = v[j] for i ≠ j. 

Let n be the number of vertices of G and m the 

number of edges of G. We assume there are no 

isolated vertices and therefore that n = O(m). 

Let R be a relation on V. Two vertices u and v are 

congruent under R if λ(u) = λ(v), δ (u)= δ (v), and, 

for all i such that 1≤1 ≤δ (u), (u[t], v[i]) E R. R is 

closed under congruence if, for all vertices u and v 

such that u and v are congruent under R, (u, v) E R. 

There is a unique minimal extension R' of R such 

that R' is an equivalence relation and R' is closed 

under congruence; R' is the congruence closure of 

R. 

After this construction we define the following 

algorithm: 

Given a conjunction of formulas: 

*� � ��+ … + *, � �,+ 

'� � (�+ … + '- � (- 

Which could contain constructors and selectors 

Cons, Car and Cdr but also un-interpreted function 

symbols. 

1. We build a graph G which corresponds to 

the set of all terms appearing in the 

conjunction For each term t appearing in 

the conjunction, let τ(t) be the vertex m G 

representing t For 1≤t≤r, call 

MERGE(τ(vt),τ(wt)). 

2. For each node u in G labeled CONS, add 

vertices v, labeled CAR, and w, labeled 

CDR, both with outdegree i, such that v[l] 

= w[l] =u. Call MERGE(v,u[1]) and 

MERGE(w,u[2]) (That is, given a term 

CONS(x, y), add verttces representing 

CAR(CONS(x, y)) and CDR(CONS(x, y)) and 

merge them with the vertices 

representing x and y ). 

3. For each vertex u in G labeled Car(or Cdr), 

add vertex v, labeled Cons such that v[1] 

=u(v[2]=u). Call MERGE(v,u[1]) (or 

MERGE(w,u[2])).  

4. For i from 1 to s, τ(xi) is equivalent to τ(xj), 

return UNSATISFIABLE. Otherwise return 

satisifiable.  

 

We present the pseudo code for the Merge 

method (which does performs the main tasks of 

congruence closure). 

 

MERGE(u, v) 

1. If FIND(u) = FIND(v), then return 

2. Let P be the set of all predecessors of 

vertices equivalent to u and Po the set of 

all predecessors of vertices equivalent to v. 

3. Call UNION(u, v) 

4. For each pair (x, y) such that x Є P, and y Є 

Po, If FIND(x) ≠ FIND(y) but CONGRUENT(x, 

y) =TRUE, then MERGE(x, y). 

 

CONGRUENT(u, v) 

1. If δ (u) ≠ δ (v), then return FALSE 

2. For 1 ≤ t ≤ δ(u), if FIND(u[t]) ≠ FIND(v[t]), 

then return FALSE 

3. Return TRUE 

 

UNION(u,v) 

1. Unify the classes of vertices u and v 

In the follwing we will present the correspondence 

of the above algorithm to our list problem . 

First, we construct the grah G. Each term in our set 

of formulas represents a node in G. A term a is a 

predecessor of another term  b if  a is a function of 

b. We must however not forget that we are not 

just dealing with uninterpreted functions but with 

list constructors and selctors. Therefore we must 

introduce additional nodes. For every Cons(a,b) 

term we shoud introduce Car(Cons(a,b)) which has 

the same equivalence clas as a and Cdr(Cons(a,b)) 

which has the same equivalence class of  b. Also, 

for each Car(a) and Cdr(a) terms we introduce a 

new term Cons(Car(a),Cdr(a)) which has the same 

equivalence class as a. These new terms/nodes are 

just to model the idea that the concation of the 

head of a list and tail of the list is the list itself. 



The Relation R is determined by the equalities in 

the given set of formulas. For each formula a=b we 

have that ��, $�./. The next step is to call the 

MERGE procedure for each pair (a,b) . 

The final step of the decision procedure is to 

iterate throught each dis-equality in the set of 

formulas and check if the two terms have the same 

equivalence class. In case they do, then we can 

safely say that the set of formulas is unsatisfiable. 

Otherwise, we can conclude that the problem is 

satisfiable. 

For example let F be the set of formulas. 

0 � � ��
��', (� � ), ������ � ', ������ �
(, ) � ��  

We construct the graph G according to the 

algorithm presented earlier:  

 

 

 

 

 

Due to the realation inferred by F we have that 

term x is in the same equivalence class as car(w) 

and term y is in the same equivalence class as 

cdr(w). By congruence closure we can infer that 

also cons(x,y) is in the same equivalence class as 

cons(car(w),cdr(w)). However the relation implied 

by F claims that z is in the same relation as 

cons(x,y) and we know that cons(car(w),cdr(w)) is 

actually w. This would imply by transitivity that w is 

the same equivalence class as z. This yields that F is 

unsatisifiable since it contains the dis-equality 

between z and w. 

 

Correctness and Completeness 

We will follow a simple approach in showing that 

the fist algorithm is correct. We will show that 

each step we perform on our set of formulas 

preserves satisfiabilty.  Also we will show that if we 

start with an unsatisfiable formula it will remain 

unsatisfiable after we apply any of the steps.  

1. Removing selectors 

2. Replacing cons variables 

3. Splitting cons=cons formulas 

4. Substituting variables 

5. Removing cons ≠ cons formulas 

We will also show that we will always reach a 

normal form for our set of formulas. All of these 

steps are made under the assumption that we 

have typed list variables. 

1. Suppose there exists an assignment for 

which the set of formulas F is satisfiable. 

We can construct an assignment for the F-

noSelectors set of formulas that result 

after step 1.  We simply extend each of 

the initial assignment such for the 

unassigned variables in the following way. 

Every variable vl is assigned to the head of 

list v and to every variable vr is assigned 

the tail of the list v. This is obviously 

satisfiable since we represent the same 

structure as the initial set of formulas. 

Conversely, if the initial set is unsatisfiable. 

Then  also the new set of formulas is 

unsatisfiable. Otherwise, suppose F-

noSelectors has a variable assignment 

under which it is true. In this case we 

could construct an satisfying assignment 

also for the initial set of formulas by just 

removing the variable introduced. For 

each new formula v=cons(vl,vr) we 

replace all instances of vl and vr by car(v) 

and cdr(v) everywhere in our set of 

formulas and remove both vl and vr from 

our assignment. We would obtain the 

original set F and a satisfying assignemnet 

for it, thus, we have reached the 

contradiction. 

2. We interpret this step as a substitution of 

a variable in all our formulas. Therefore, in 

the initial intial conjuction of formulas, 

the existential quantifier over that 

variable turns itself in a universal 

quantifier. It is trivial to show that: 

1*1�� … 1�. * �
               %�
���, $�+��*, �� … ��  

Car(Cons(x,y)

) 

Cdr(Cons(x,y)

) 

Cons(Car(w),Cdr(w)) 

Cons(x,y) Car(w) 

  w 

Cdr(w) 

   x    y    z 



 is equivalent to 

 3*1�� … 1�. 4%�
���, $� *5 6 ��*, �� … �� 

Therefore, if the first formula is satisfiable 

also the second one is. The same holds for 

the unstatisfiable case. 

3. Again replacing a cons=cons formulas will 

result in an equivalent sets of formulas. 

This results from the fact that 

%�
���, $� � %�
��%, ��  is equivalent to 

� � $ + % � �. 

4. The correctness proof for this step is 

identical to step 2 . 

5. We have two situations here. In the first 

case, we are trying to remove a formula 

%�
���, �1� � %�
���, �2�. This formula is 

equivalent to �1 � �2. In the second case 

we have %�
���, �1� � %�
��%, �2� . At 

this point we can completely remove the 

formula. This is becasuse since the heads 

of the lists are different and the dis-

equality can always be satisfied. It is 

imporntant note that, due to step 4, at 

this point if we would have  had 

information that a=c there would be just 

one variable for this element and we 

would be in the first case.  Another 

important aspect is that we cannot have a 

cons term as the first parameter of 

another cons term but only a variable 

term because the head of a list cannot be 

a list but only an element. This is a direct 

implication to that fact that we are 

dealing with typed lists. 

To prove completeness we must show that this 

algorithm ensures that the normal form  is always 

reached. As pointed out previously, the normal 

form we reach is a set of dis-equlities between 

variables.  The first rule makes sure that we have 

no selectors in the terms of our set of formulas. 

The next two steps are run over the obtained set 

exhaustively untill neither is applicable anymore. 

By defintion of these rules, this means that after 

this part of the algorithm we will not have any 

other formulas except for the ones of type 

%�
���, $� � %�
��%, ��, � � $ �� � � $. Also this 

step terminates too because with each cons-

variable repalcement we remove completely one 

variable from our set of formulas. Since we have 

finite number of variables and finite number of 

formulas this shows completeness of these 2 steps. 

Step 4 is equivalent to building equivalence classes 

for each varible based on the equality formulas of 

type � � $ . Again, this will always terminate 

because at each step we remove at least one 

variable from our formulas. 

The final step reduces the set of formulas to the 

normal form. It is important to notice that by 

replacing formula %�
���, $� � %�
���, $� we will 

never introduce equalities but only dis-equalities. 

This ensures that the previous steps do not need to 

be applied again after this step. At this point we 

will have only dis-equalities between equivalence 

clases. We will decide that the formula is 

unsatisfialbe only if we encounter a formula of 

type � � �. If we don’t find such a formula we 

canc safely say that the inital set of formulas is 

satisfiable due to the correctness of the algorithm. 

Since this step will also alway terminate we can 

conclude that the algorithm is complete. 

The correctness and complteness of the second 

algorithm shown quite easily  by costructing of 

satisfying interpretations just as we have done for 

the first algorithm and is presented in detail in [2].  

 

Complexity  

The complexity of the second algorithm is shown 

to be O(m
2
) where m is the number of edges in the 

resulting Graph. The proof can be found in [2]. 

We shall however analyze the complexity of the 

first procedure. 

The algorithm is divided into four steps: 

1. Selector removal 

2. Reducing ��
� � ��
�  and  
��
� � ��� 

3. Removing ��� � ��� 

4. Removing ��
� � ��
� 

5. Checking for contradictions 

Selector removal works by iterating over the set 

and for each selector found we introduce a Cons 

construction for that variable and attempt to 



evaluate all selectors on that variable in the set. 

This gives us complexity of O(|Terms|x|Terms|).  

The second step we can visualize as a loop: 

while(changeMade){ 

    removeConsCons(); 

    removeConsVar(); 

} 

 

The removeConsCons will search through the set 

for a Cons = Cons formula and then reduce it. The 

reduce step is constant in complexity so the total 

complexity of removeConsCons is O(|Terms|). The 

removeConsVar operation will each time it is 

applied reduce the amount of variables by one. 

Hence it can at most be applied as many times as 

the amount of variables we have in the set. 

Applying the rule once means that we have to go 

through every term in the set to search for possible 

variables to substitute. This gives us the complexity 

of O(|Vars|x|Terms|). 

The ��� � ��� replacing procedure is quadratic in 

terms of the amount of terms since we go through 

each formula and for every ��� � ��� we have to 

search through the set again for the substitution. 

O(|Terms|x|Terms|). 

Removing ��
� � ��
�  works by iterating over 

the set to find the ��
� � ��
� formulas and for 

each of them search for the head equalities and if 

it exists also search for tail equalities. This gives us 

complexity of O(|Terms|x|Terms|). 

The final contradiction step works by for each 

��� � ��� formula check whether the right hand 

side is equal to the left side. This is linear in terms 

of the amount of terms in the set, O(|Terms|).  

So in total we have 8�|9��:�|; <  |9��:�| <
 |9��:�| = |����|�  which is the same as 

8�|9��:�|; < |9��:�| = |����|�. 

NP completeness 

Earlier in the paper we have stated that including 

the empty list in the List type makes the 

satisfiability problem significantly harder. The 

problem actually becomes NP complete. There is a 

quite simple reduction to 3CNF-SAT. To begin with, 

if we add the Nil constructor to the List we will 

have to define the behavior of the selectors on 

that List. The most reasonable behavior is that 

evaluating Car(Nil) and Cdr(Nil) will result in Nil. 

Also we add that ��
��>��, >��� � >��, although it 

does not make sense to write ��
��>��, >��� since 

the first argument must be an element but since 

we defined ����>��� � >�� it does work. 

Given a 3CNF-SAT problem consisting of ?� … ? 

truth variables and a conjunction F of 3-element 

clauses containing  ?� … ?  we construct the 

conjunction G of variables '�, (�, … , ', ( and we 

add the initial construction of G: 

�����'�� � ����(��, ����'�� � ����(��, 
'� � (�� where  � � 1 … 
 

This would mean that '� and (� cannot both be Nil. 

Since the heads and the tails of them would be 

equal, one will have to be >�� and one would be 

��
��>��, >���. We define that for ?� to be true 

then '� must be >�� and conversely ?� is false then 

 (� � >��. 

Now it is easy to model the 3-CNF problem into a 

List satisfiability problem. For example, say that we 

want to model the clause ?� & ~?; & ?A which is 

equivalent to '� � >�� & (; � >�� & 'A � >�� . 

Rewriting this into a conjunction we get ~�(� �
>�� B '; � >�� B (A � >��� This would give us the 

List formula  ��
�C(�, ��
��';, (A�D �
��
�C>��, ��
��>��, >���D. 

This shows that the problem is NP hard, it is easy 

to see that given a solution we can verify that it is 

correct in polynomial time which tells us the 

problem is also NP complete. 

 

Conclusion 

We have presented the technical aspects of two 

approaches that could solve the decision problem 

on satisfiability of quantifier free equality theory of 

lists. These two algorithms differ in the approach 

of handling this problem but are able to generate a 

solution with similar complexity. Unlike the general 

SAT problem, the solution could be found in 

polynomial time.  



We can distinguish a specific particularity that 

differentiates the approach of the two algorithms. 

They key step in the normal form reduction 

algorithm is to infer relationships between the 

children of two terms based on the relationship of 

the parent terms. In the second algorithm we do 

the opposite. We merge equivalence classes of 

parents based on the equivalence classes of the 

children. However, the operation count is similar in 

both cases because for the second algorithm we 

introduce as many nodes in our graph as new 

variables introduced in the set of formulas by the 

“remove selectors” of the first algorithm. 

Intuitively, one can notice that the first algorithm 

does some extra computation steps in case the 

formulas have many selectors. This aspect 

introduces a computation overhead also for the 

subsequent steps of the first algorithm. In the 

graph representation each selector is linked to its 

argument by just one edge which makes the 

congruence closure step run faster. We can 

conclude that each procedure would run faster 

than the other on some specific type of input 

formulas. 

Nonetheless it is difficult to provide an accurate 

efficiency comparison because it is difficult to 

come up with an exhaustive set of input examples. 

A future project could consist of determining the 

properties of a given set of formulas which could 

recommend the most efficient of the two decision 

procedures for this particular case. 

 

Future Work 

SMT Solvers 

Satisfiability Modulo Theories is the problem of 

determining satisfiability of a conjunction of 

formulas with respect to combinations of 

background theories. This extension to the 

problem we have discussed is very useful in 

reasoning about programs since in most practical 

applications more than one theory is used. There 

exists a couple of different algorithms for solving 

SMT problems. For example the DPLL(T) 

architechture. 

DPLL(T) 

DPLL stands for Davis, Putnman, Logeman, and 

Loveland which are the creators of the original 

DPLL algorithm. They proposed a backtracking 

algorithm for solving the CNF-SAT problem, this 

algorithm is widely used because of its efficiency. 

The (T) stands for “modulo Theory” which means 

that the DPLL(T) determines satisfiability of CNF 

formulas in the theory T, in the case of EUF the 

theory T would simply be the theory of equality. To 

produce a DPLL(T) system one has to instantiate a 

general DPLL(X) with a E��*��F  for the theory T. 

This E��*��F  must be able to handle conjunctions 

of formulas in the theory T and acts as an interface 

between the general DPLL(X) and the theory T. 

Combining Theories 

Combining decision procedures for different 

theories is very useful. Nelson and Oppen designed 

an algorithm called the Nelson-Oppen combination 

method[4] which exists in two variations, 

deterministic and non-deterministic. This method 

takes two or more theories and decision 

procedures for the quantifier free fragments of 

these theories and produces a system that solves 

the quantifier free version of the union of these 

theories. 

 

Extending the grammar 

Another possible extension would be to have more 

selectors and constructors in our list theory. The 

first algorithm would be more difficult to adapt 

since it would require modeling also disjunctions of 

formulas. The real problem stems from the fact 

that, when we try to simplify the formulas, we 

don’t know which constructor was used to create 

that list variable. We would have to introduce 

some new rules for this and assign to each list 

variable a set of possible constructors that could 

have been used to generate it[1]. As we process 

the list of formulas we should narrow down this set 

for each of the variables. In some cases we will 

have to test disjunctions of sets of possible 

constructors. Of course, this would introduce an 

additional overhead since we would have to 

explore different assignments at the same time. It 



would be necessary to have a strategy that splits 

the set possible assignments so that it can be 

explored in an efficient way. 

The second algorithm would run into the same 

problem. However since the general algorithm 

uses uninterpreted function symbols it would be 

easier to model. The new constructors would just 

be new functions in our theory. However, we 

would have to model in terms of edges in our 

graph the semantics of these new constructors and 

selectors with respect to lists. In terms of 

implementation this approach seems less error 

prone due to the fact that we do not have to 

modify significantly the original algorithm. 
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