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ABSTRACT

A method for evaluating and constructing sparse crossbars which
are both area efficient and highly routable is presented. The evalu-
ation method uses a network flow algorithm to accurately compute
the percentage of random test vectorsthat can be routed. The con-
struction method attempts to maximize the spread of the switch lo-
cations, such that any given subset of input wires can connect to as
many output wires as possible. Based on Hall’s Theorem, we argue
that thisincreases the likelihood of routing.

The hardest test vectors to route are those which attempt to use
all of the crossbar outputs. Results in this paper show that area-
efficient sparse crossbars can be constructed by providing more out-
putsthan required and asufficient number of switches. Inafew spe-
cific case studies, it is shown that sparse crossbars with about 90%
fewer switches than a full crossbar can be constructed, and these
crossbars are capabl e of routing over 95% of randomly chosen rout-
ing vectors. In one case, anew switch matrix which can replacethe
onein the Altera FLEX8000 family is shown. Thisnew switch ma-
trix uses approximately 14% more transistors, yet can increase the
routability of the most difficult test vectors from 1% to over 96%.

1. INTRODUCTION

Programmable logic devices commonly use full crossbars and
sparse crosshars as building blocks in routing networks. Typically,
afull crosshar is chosen when a highly-routable crossbar isdesired,
and a sparse crossbar containing significantly fewer crosspointsis
selected when area use is most important. This naturally brings up
the question, “Isit possible to get the best of both worlds?’
Thereare many instanceswhere ahighly routable crossbar would be
preferred, but the area cost of afull crossbar is prohibitive. For ex-
ample, the PlasmaFPGA [5] inthe Hewlett-Packard Teramac [4] re-
configurablelogic system would have used full crossharsto guaran-
tee routability. However, to save area, it was necessary to use only
1/4 of the the switches.

In Teramac and large-scale logic emulation systems, such as those
by Quickturn [18], circuits are partitioned across alarge number of
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FPGAs. Each of the generated subcircuits must successfully place-
and-route in an FPGA, otherwise time-consuming re-partitioning
and re-routingisrequired. To makeroutable subcircuits, onecanin-
tentionally underutilisethe LUTsin the FPGA [9], or use an FPGA
that is designed to be highly routable.

Highly routable componentsin asingle FPGA can also benefit users
by reducing compute time and memory use. The latest FPGAS
by Altera and Xilinx have alarge number of LUTs and wiring re-
sources. Toroutethese FPGAS, CAD toolsusually storethe follow-
ing detailsin memory: arepresentation of the circuit, its mapping
to FPGA resources, and a model of the entire FPGA. This leads to
considerable memory use. For example, Alterarecommends using
1GB of RAM to route designs for the APEX 20K 1000E device[2].
It may be possibleto makethe CAD tools more efficient if they fol-
low the Teramac and logic emulation system model: partition acir-
cuit into smaller subcircuits, then place and route each piece inde-
pendently. To do this effectively without rip-up and re-partitioning,
there must be confidencethat each subcircuit isvery likely to route.
As another example, CPLDs are required to be highly routable be-
cause they are often close to 100% utilised. Full crosshars are not
normally used in the global interconnect of CPLDs due to the area
overhead involved, so an area-saving sparse pattern is required.
The above scenarios indicate that highly routable, sparsely popu-
lated crossharswould be useful, yet thereislittle published work in
this area. In this paper, this issue is addressed by describing con-
ditions for routability (Hall’s Theorem), a method for evaluating
routability without resorting to place-and-route experiments, and a
construction algorithm that achievesgood performance. Resultsfor
afew design cases are shown to exemplify the area requirements
and routability obtainable from sparse crossbars.

2. CROSSBAR TYPESAND PROPERTIES

An n x m crosshar connects n different input wires to m output
wires, typically with n > m. An example of a few crossbars are
shown in Figure 1. At the locations where an input crosses an out-
put wire, aprogrammableswitch, or crosspoint, may be present. We
use the term capacity of a crossbar to mean the number of signals
being routed through it. The term population refers to the number
of switchesin the crossbar, p.

2.1 Full Crosshars

A fully-populated crosshar or full crossbar contains switches at ev-
ery intersection point of theinput and output wires, using atotal of
p = n-mswitches. Theterm crossbar usualy refersto afull cross-
bar. An example of afull crossbar is shown on the left in Figure 1.
Full crosshars are extremely flexible because they can connect any
wire on the input side to connect to any wire on the output side,
i.e. they support any permutation of the outputs. Additionally, full
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Figure 1. Examplesof 6 x 4 crossbars: afull crossbar on the left, full-capacity minimal crossbars on the right.

crossbars can be used at full capacity: they can connect as many
signals as the number of outputsin the crossbar.

2.2 Full-Capacity Minimal Crossbars
Full-capacity minimal crossbars are well-known constructionsthat
use fewer switchesthan afull crossbar. They are dightly lessflexi-
blethan full crossbars, but they retain thefull-capacity property. For
convenience, we shall refer to them simply as minimal crossbars.
Minimal crosshars areless flexiblethan full crossbars because they
remove the freedom to assign a specific input wire to a specific out-
put wire. Thus, any minput wires can be connected to all m output
wires, but the ordering of the signals on the output wires may not be
freely chosen.

A minimal crossbar aways uses p= (n—m+1)-m switches.
Nakamura [16] has shown that no switches can be removed from
a minimal crossbar without also removing the full-capacity prop-
erty. Minimal crosshars do not save many switches when n>> m,
but the number of switchesis reduced from a quadratic expression
to aroughly linear onewhenn~ m.

There are many different topol ogiesfor minimal crosshars, afew of
which are shown in Figure 1. The simplest topology, called a fat-
and-slim crossbar, usesafull crosshar between thefirst n— minput
wires and all m output wires. Each of the remaining minput wires
have only one switch and are connected to a different output wire.
Thisresultsin balanced fan-in for the output wires, but largely un-
balanced fan-out on the inputs.

Some minimal crossbar topologies simultaneously balance the
number of switches on the input and output wires. Fujiyoshi [11]
defines a class of minimal crossbars called bi-scattered which have
naturally balanced fan-in. They also provide a switch placement
algorithm to generate bi-scattered crossbars with balanced fan-out.
Guo [12] suggests a transformation that redistributes switches of a
fat-and-slim crossbar, yet preserves full-capacity and the already-
balanced fan-in arrangement. They prove this transformation can
be used to obtain balanced or nearly-balanced (within +1) fan-outs.
2.3 Perfect Crossbars

Since both full and minimal crossbars support full-capacity, it is
convenient to refer to them as perfect crossbars. Perfect crossbars
are one way to implement an (n, m)-concentrator, a type of graph
that can digjointly route any m-sized subset of the n inputsto mout-
puts.

24 SparseCrossbhars

A sparse crosshar refers to a crossbar which has few switches,
i.e. is sparsely populated. The demarcation point of when a cross-
bar becomes “sparse” is debatable: for example, nearly square
crossbars can be sparsely populated yet support full capacity. This

paper assumes that a crossbar is sparse if it contains fewer than
p < (n—m+1)-m switches. Hence, no matter how well it is de-
signed, a sparse crosshar can never be made perfect.

Orug [17] has proven that a sparse crossbar of guaranteed capac-
ity ¢, wherec <m, must contain p > [m- (n—m+1)/(m—c+1)]

switches. Thislower bound isnot necessarily tight, but whenc=m,
the number of switches in a minimal crossbar is obtained. Sparse
crosshars with guaranteed capacity ¢ are also referred to as (n, m,
c)-concentrators

The transformation suggested by Guo [12] can also be applied to
sparse crossbars, provided that there exists some input which cov-
ersall of the outputsreachable by another input. Thetransformation
states that switches can be moved from the one input to the other,
causing the guaranteed routing capacity of thecrosshar, ctoincrease
or stay the same — but it will never decrease. Thisis a beneficia
transformation, but it is not often applicable in sparse crossbars be-
cause it isuncommon to have one input completely cover another.

25 Graph Representation

Crosshars are easily modeled as agraph when wires are represented
by nodes and switchesare represented by edges. A crossbar formsa
bipartite graph G composed of two sets of nodes and a set of edges.
The node sets are aset of input wires | and a set of output wires O.
There are no edges within each set, but an edge can exist between
any nodein set | and any nodein set O.

3. EVALUATING ROUTABILITY

Thetraditional approach to evaluatetheroutability of an FPGA, and
hence eval uatethe sparse crossbarscontained therein, isto run place
and route experimentswith a suite of benchmark circuits. Thisisan
effective method to design an FPGA and its CAD toolsin concert,
but it can be alengthy process. Aswell, the routing performance of
the crossbarsin the FPGA relies upon the effectiveness of the CAD
tools and the benchmarks to exercise the architecture.

Our goal wasto find a quicker way to test the routability of sparse
crossbars independently of the CAD tool or benchmark circuits
used. Aswell, thisnew method should provide amore sensitive, yet
still practical, measurement of routability. Thisapproach also helps
avoid the problem of “training” an FPGA architecture or CAD tool
to a particular benchmark suite.

Oneroutability metric considered was the maximum guaranteed ca-
pacity of a crossbar, c. With this metric, we wish to find the largest
valuec suchthat any subset1” C | of size|l’| < cisguaranteedto be
routable. Themain problemwiththismetricisthatitisvery difficult
to compute: the algorithm has inherently exponential complexity
becauseit must examineall subsetsof | with cardinality cor smaller.
We implemented a branch-and-bound algorithm to search for this



value, but it is impractical for large crossbars. A greedy heuristic
search was also implemented, but the results were not robust.
Instead, the routability of a crossbar is measured using a Monte
Carlotest. For thistest, anumber of random test vectors are gener-
ated, and each isrouted on the crossbar using a network flow algo-
rithm. Theroutability of the crosshar is estimated as the percentage
of test vectors which can be successfully routed.

A test vector of sizek isthe number of signalsto be routed through
the crossbar. More specifically, it is a subset of the input wires,
I’ 1, where|l’] = k. Intermsof real FPGA routing, thistest vector
represents the case where logic signals have aready been assigned
to specific wires due to previous routing restrictions.

A highly-routable crossbar must be able to route many of these pre-
constrained vectors. We evauate routability as a function of the
number of signals in a test vector. This distinguishes the easily
routed vectors, i.e., when k is small, from the difficult ones.

In this paper, we arbitrarily define the highly-routable point as be-
ing able to route at least 95% of the hardest test vectors, i.e., those
containing the maximum number of signals intended to be carried
by the crossbar.

A network flow algorithm [7] is used to route the test vectors be-
causeit isguaranteed to find arouting solution if one exists. When
routing atest vector of sizek, switchesare assigned unit capacity, so
aflow of sizek must be found to produce a solution. If alower flow
valueisfound, it indicatesthe largest number of wiresthat were ac-
tually routable. This guarantee of finding a solution isimportant in
that it representsan ideal routing tool, henceit isolatesthe effective-
ness of the CAD tools from the performance of the crossbar.

4. ROUTABLE SWITCH PATTERNS

Thissectionlooksat thefollowing basic problem: given p switches,
how should they be placed in asparse crossbar to makeit asroutable
as possible. The foundations for the switch-placement algorithm
presented inthe next section are based on the following theorem and
observations.

4.1 Hall'sTheorem

Hall’sTheorem[13] isaresult that can be applied to bipartite graphs
defining whether a maximum matching can be found. A matching
is asubset of the edges in the graph such that no two edges share a
node. Hence, every pair of edgesin a matching involve 4 distinct
nodes. Hall’s Theorem gives the precise conditions under which a
matching can exist.

Hall's Theorem. Given bipartite graph G composed of a set of
edges, E, and two independent sets of nodes, X and Y, then G hasa
matching of X into Y if and only if

VYSC X,|S < IN(S)|

where |§ denotes the cardinality of subset S and N(S) isthe set of
neighboursof Sin'.

4.2 Application of Hall’s Theorem

In terms of sparse crossbars, a matching actually forms a routing
solution of a sparse crossbar. The 'Y set represents the output wire
set O, and X is a specific test vector of the input wiresX =1’ C 1.
A test vector isroutable if and only if Hall's condition is satisfied,
and the matching gives the solution. The edgesin the matching are
the switches which must be turned on to form the connections.

To design a routabl e sparse crossbar, switches should be placed so
that Hall’s conditionis satisfied for as many test vectorsas possible.
For test vectors of sizek, it is a necessary condition that at least k
distinct output wires are reachable by switches.

The switch placement algorithm described in the next section as-
sumesthat the switches placed on any specific subset of input wires

should be spread out to as many output wires as possible. Thisis
equivalent to making the neighbour set N(S) aslarge as possible so
that Hall’s condition is satisfied.

Switch placement is not trivial because the switch pattern chosen
for one subset of input wires may consequently make the pattern
for some other subset too close. We argue that this also implies
that each input wire, having equal likelihood of being a part of any
particular subset, should have an equal number of switches. If one
input has fewer switches, it would not be able to “spread out” to
as many different neighbours. As aresult, subsets which included
this input may be less routable. To get around this, it should be
given more switches so the fan-outs of the input wires are roughly
equal. A similar argument implies that the fan-ins of the output
wires should also be balanced. For this reason, the switch matrices
constructed in this paper all have balanced fan-in and fan-out.

4.3 Hamming Distance and Coding Theory
The switch placement problem requires that subsets of the input
wires span as many output wires as possible. Doing this for every
possible subset of input wiresis a difficult task, so we chose to ap-
proximate this by spreading out the switchesfor every pair of input
wires. In this form, the switch placement problem becomes iden-
tical to the problem designing communication codes so that code-
design techniques such as those from [14] can be used.

The location where switches are placed on an input wire can berep-
resented by a bitvector of length m, where a 1 in the bitvector indi-
cates that a switch is present. There are n such bitvectors, one for
each input, forming the codewords of a binary code.

The number of neighbours of an input wire subset is the number
of ones in the bitwise-OR of their bitvectors. Given two bitvec-
tors, bv; and bv,, the increase in the number of neighbours (out-
put wires) reached by the combination of the two is related to the
Hamming distance! between them, d(bvy,bv,). Spreading out the
switches between a pair of input wiresi and j is the same as max-
imizing d(bv;, bvj). Code design techniques attempt to maximize
the minimum d between all of the codewords.

5. SWITCH PLACEMENT ALGORITHM

In our construction algorithm, the switch pattern is determined in
two stages: first aninitial switch patternis chosen, then that pattern
isiteratively optimized. The minimum inputs required are the ma-
trix size, n x m, and the number of switches p.

5.1 Initial Switch Pattern

Thegoal of theinitial switch patternisto place switchesso they will
obey given fan-in and fan-out specifications. These specifications
form alimit on the number of switches that will be placed on each
wire. Theuser may provideany valid fan-inand/or fan-out distribu-
tion, or, if no specification is provided, a balanced one is automati-
cally generated based on p, nand m.

A switch pattern which obeys the fan-in/out specifications is gen-
erated in one of two ways: either randomly, or by network flows.
The random method generatesrandom locationsin the crossbar and
placesaswitchthereif it won't violate the fan-in/out specifications.
If, after a certain number of tries, it cannot find avalid location for
the next switch, it erasesall switchesand startsover. Usually anini-
tial patternisfound thefirst time, unlessthere are alarge number of
switchesto place. If it still fails after restarting a number times, the
tool falls back to the network flow method.

The network flow method temporarily places a switch at every lo-
cation in the crossbar, and assigns each a unit capacity. The maxi-
mum flow from the input to output wiresis found, using the fan-out
and fan-in specificationsasflow capacitiesfor thewires. If aninitial

1The Hamming distance is the number of bit positions that differ
between the two bitvectors.



11213141516

731

11213141516

Figure 2. The switch matrix on the left has identical Hamming costs before and after the swap indicated. After the swap, it cannot route
any subsets which include wires {1,5,6}. Hence, the cost function is not always effective at distinguishing good switch swaps. The switch
matrix on the right haslower Hamming cost after the swap indicated, and routes all subsetsof size 3. Beforethe swap it could not route subset

{1,2,3}. Inthis case, the cost function can identify a good swap.

switch pattern can be generated to obey the given constraints, it will
be found as solution with atotal flow of p. The switches which the
flow solver used are kept, and the other switches are discarded. The
network flow method is used as a backup method because solving
the flow network is usually slower than the random method.

5.2 Switch Placement Optimizer

Theroutability of aninitial switch pattern can beimproved by mov-
ing anumber of switchesto produce amore*“ spread out” pattern us-
ing a number of “switch swaps’. A simulated-annealing approach
was initially used [15], following the approach used in [10]. Since
the overall goal was similar, we chose to minimize the same cost
function:

ot
V% d(bVi,ij)z-

In the process of designing many switch matrices, it was noticed
that any hill-climbing moves which raised the cost function were
nearly always found again and undone. Instead, an algorithm that
follows the simple approach of accepting any swap that |lowers the
cost function proved to be just as effective and considerably faster.
An agorithm that systematically evaluated all possible swap candi-
dates was also tried, but that algorithm ran considerably slower.
The resulting improvement algorithm worksin agreedy fashion: it
generates random swap candidates, but it only accepts the swapsiif
the routability improves. The algorithm stops when it is unable to
find any improvement in cost after checking alarge set of swap can-
didates (about 10 000, for example).

5.3 Cost Function Pitfalls

Other cost functions have been considered. As noted in [10], the
alternative of maximizing the minimum Hamming distance of the
code is difficult because not all switch swaps would lead to an ob-
servable change in the cost function.

Another cost functionwould beto maximizethetotal Hamming dis-
tance between al pairs, i.e.,

de(thij).
15

Unfortunately, this does not sufficiently penalize close bitvectors.
For example, consider the 3 bitvectors 111000, 011100, 000111
with Hamming distances of 2, 4, and 6. The aternative switch
topology 111000, 001110, 010011 givesdistancesof 4, 4, and 4 and
has better routability. However, no difference between these bitvec-
tor setsisfound if only the total Hamming distance is examined.

It would aso be possible to run a Monte Carlo simulation and ac-
cept aswap only if routability improved. However, thisleadsto two
problems. First, a Monte Carlo simulation would be much sower
to compute. Second, the results of asingle swap may not be readily
discernible by the simulation.

In comparison to the above aternatives, the Hamming distance cost
used isrelatively quick to compute and it can distinguish most (but
not all) changesto the switch pattern.

54 Generating Swap Candidates

Swap candidates are determined by the four intersection points of
two input wires and two output wires. To preserve the fan-in/out
distribution profiles, aswap operation must consist of two switches
and two empty locations positioned diagonally on the intersection
points.

To generate a swap candidate, two input wires are chosen at ran-
dom. Given the placement of switches on these two wires, two out-
put wires are randomly selected chosen to form a swap candidate.
If no valid candidate exists, anew pair of input wiresis chosen.
The fan-infout distribution profiles can also be preserved while
moving asingle switch, provided the following conditions are met.
A switch can be moved to another output wire (along the same in-
put wire) if the original output wire fan-in is one greater than the
new output wire fan-in before the move. Similarly, a switch can be
moved along an output wire provided the fan-outs of the old and
new input wire locations differ by one. Improvementsarising from
these single swaps are done exhaustively after the greedy algorithm
gives up on swapping switch pairs.

5.5 Limitationsof the Algorithm

When p < 2n, the switch matrix is very sparse and we have exam-
plesof suboptimal performanceby our algorithm. Under these con-
ditions, small disconnected componentsmay be present in the bipar-
tite graph, yet they are indistinguishable by the cost function. For
example, consider the leftmost matrix in Figure 2. Performing the
switch swap indicated produces amatrix with identical cost, yet the
new matrix is not as routable. The original matrix routes any test
vector of size 3, but the new matrix cannot route the input subset
{1,5,6}.

In contrast, consider the switch matrix ontheright of Figure2 which
cannot route the subset {1,2,3}. Here, the agorithm will find the
single switch move indicated to lower the cost, and the resulting
switch pattern routes all groups of 3.

6. RESULTS

We have devel oped atool in C++ to construct and test sparse cross-
bars using the switch placement algorithm and evaluation method
described above. A number of routing experiments have been run
on sparse crosshars with 168 inputs and 24 outputs. This default
size was chosen because it is small enough to run experiments
quickly, anditisthesamesizeastheoneused in Altera’'sFL EX8000
family [1]. Altera has confirmed that the FLEX8000 sparse cross-
bar contains 2 switchesfor every crosshar input [3], however weare
not privy to the location of the switches.

6.1 Adding Extra Switches

Thefirst set of experiments investigate how sensitive the routabil -
ity of a sparse crossbar is to the addition of switches. It is uncer-
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tain if thereis an obvious breakpoint in routability improvement, if
routability increases in a smooth or discrete fashion, or how many
switches are required to maintain a desired level. In Figure 3, a
number of graphs and curves of the same data are shown to illus-
trate the effect of adding switches on routability.

The leftmost graph in Figure 3 shows a routability curve for each
fixed switch count. For a given number of signals (i.e., test vector
size), 10,000 random vectors are routed. One curve shows the per-
centage of vectors routed as the test vector size increases. Clearly,
large test vectors are more difficult to route, and sometimes the
dropoff is very rapid. Each curve represents holding the number
of switches constant: from 175 to 700 switches, in steps of 25. As
switches are added, the entire routability curve shifts upward. Typ-
ically, the amount of the shift decreases as more switches are added,
implying less utility is gained from each additional switch.

The middle graph in Figure 3 shows a similar routability curve
for each test vector size, but the number of switches varies along
the x-axis. For a given test vector size of 20 signals, for exam-
ple, the greatest improvement in routability occurs as the number of
switches is increased from 300 to 500. The largest test vector size
of 24 signals shows the slowest improvement rate, and requires a
large number of switchesto become highly routable.

Therightmost graph in Figure 3 measuresthe utilisation of switches
when routing the test vector signals. Each curve represents a fixed
routability level, say 90%. The x-axis is the number of signals to
be routed, and the y-axisisthe smallest number of switchesper sig-
nal required to achieve 90% routability. The curvesshow that most,
but not all, of the crossbar outputs should be used to make efficient
use of the switches. If nearly al of the outputs are used, i.e., more
than 20, significantly more switches per signal are needed to sustain
thedesired level of routability. Hence, the value obtained by adding
each additional each switch in this region is small; many switches
are needed to make a significant contribution to routability.

Two additional curves of interest are shown in thisthird graph: the
entropy curve and the lower bound curve. The 100% lower bound
curve, obtained from the formula [(n—k-+1)m/(m—k-+1)],
showsalower bound for the minimum number of switchesrequired
to reach perfect routability. A large number of additional switches
per signal is needed to go from 99.9% to 100% routability for large
test vector sizes. Thislower bound may alsoindicateinefficiency in
our switch placements when the number of signalsis small (< 16)
— except the lower bound is not guaranteed to be tight.

The entropy curve shows the absolute minimum number of SRAM
bits that would be needed to program the switch matrix. As shown

by DeHon [8], the number of bitsrequiredis [log, ( E )].

6.2 Adding Extra Output Wires

In the previous subsection, the switch matrix was designed with ex-
actly 24 outputs to match the size of the Altera crossbar. Next, the
number of crosshar output wires were gradually increased from 24
to 48, but the crossbar is used for only up to 24 signals. The re-
sults are shown in Figure 4 for anumber of different switch counts.
When the number of switches islow, the routability increase from
having more output wires is not significant. However, once 340
switches are reached, dramatic improvements of up to 100% can be
seen when additional output wires are used. Hence, a certain mini-
mum number of switches must be present to take advantage of the
extra output wires.

Inthe Altera FLEX 8000 architecture, thereis a cost associated with
having more output wires. Each additional output must be consid-
ered as an additional input to the local interconnect in the Altera
LABS2. If the local interconnect is to remain fully connected, ad-
ditional switches must be placed inside the LAB. The total number
of switches(sparsecrosshar +local cluster) must be considered, and
isshownin Figure 5. From this graph, it can be seen that the mini-
mum number of switches at 99.95% routability is obtained with 30
output wires and approximately 1470 switches (510 switchesinthe
sparse crossbar and 960 inside the LAB). Thisis significantly more
than Altera’s 1104 switches, but thelevel of routability isalso much
higher.

6.3 Adding Both Switchesand Wires

To examine the combined effect of adding switches and widen-
ing the output stage of the sparse matrix, see Figure 6. Three key
curves are shown: the baseline architecture, which is similar to the
FL EX8000 with 336 switchesand 24 outputs (dotted curve), theim-
provement fromincreasing to 30 output wires, and theimprovement
fromincreasing to 30 output wires and 510 switches (solid curves).
In comparison, the 24-output crossbar is shown to be less routable
with the same 510 switches (lower dashed curve).

However, adding output wires forced more switches to be added
to the local interconnect. To make a fair comparison, these same
switches should also be added to the 24-output crossbar, for a to-
tal of 702 switches (upper dashed curve). The result is till not as
effective as the crossbar with more outputs.

6.4 Summary

The results from this section indicate that, to be area-€efficient, a
sparse crossbar should not be used at maximum utilisation. Rather,
the number of outputs should be more than the number of signals

2A FLEX8000 LAB is a completely-connected cluster of eight 4-
LUTs sharing 24 inputs.
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Figure 4: The effect of adding extra output wires on routability of a 168 x 24 crossbar. The number of switchesis fixed in each graph. The
curvesin each graph show how routability improves as the number of output wiresisincreased from 24 to 48. There were 10,000 test vectors

used for each signal level.
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Figure 5: Effect of adding output wireson total switch counts. The
number of outputs is varied along the x-axis, from 24 to 37. The
total number of switches (including thosein the sparse crossbar plus
those in the full crossbar inside the LAB) varies along the y-axis.
The shading of the graph representsthe level of routability obtained
for 20,000 test vectors, each containing 24 signals.
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Figure 6: Combined effect of adding output wires and switches to
achievenearly 100% routability. A total of 20,000 test vectorswere
used for each signal level.

that are to be routed through it. Aswell, it isimportant to choose
the number of switches and wires together, since a minimum num-
ber of switches are needed to benefit from the extra output wires.

7. DESIGN EXAMPLES

In the following design examples, based on architecture modelsin
Figure 7, we searched for a number of sparse crossbar configura-
tionswhich could achieve 95% or better routability and had the low-
est area cost in terms of total transistors per LUT input. In count-
ing transistors, we counted both the sparse crossbar switchesand the
switches of afully-connected lower interconnect level.

Rather than use one SRAM cell and pass transistor per switch, we
assumed a crossbar output is implemented using a single n-input
multiplexer and encoded SRAM bits. We also assumed that each
SRAM cell uses6 transistors, and the n-input multiplexer usesatree
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of 2: 1 muxesrequiring 2n— 2 passtransistors. To keep thingssim-
ple, we did not account for any additional buffering of signals or
wider transistor sizes that would accompany area design.

To find the lowest-area configuration, we explored a variety of
switch densities and wider-than-required output stages. Designs
with 20% or more transistors than the baseline architecture were
immediately rejected. The baseline architecture chosen assumed
two switches per input wire and a fully connected local intercon-
nect (similar to AlteraFL EX8000). We performed aquick routabil-
ity simulation for the remaining designs using only a few (1000)
test vectors, and rejected those with less than 95% routability at the
largest test vector size. We retested the some of the remaining de-
signswith alarger number of test vectors to ensure their measured
performance.

7.1 Altera FLEXS8000

The Altera FLEX8000 device uses a 168 x 24 sparse crossbar to
connect the FastTrack row wiresinto the LAB clusters. The sparse
crossbar is 1/12 popul ated, such that each row wire hastwo “ oppor-
tunities” to connect into a cluster. Within the cluster, the eight 4-
LUT inputs select from 24 sparse crosshar outputsand 8 LUT feed-
back signals using a full crossbar. This design uses approximately
129 transistors per LUT input, including the cluster interconnect.
With our switch placement, the routability is excellent when there
arefewer than 10 signals entering a cluster. However, if 15 or more
signals enter a cluster, the routability drops below 90%. At full ca-
pacity, the routability of 24 signals drops below 1%.

Our construction techniques and search found a 168 x 29 sparse
crossbar containing 464 switching points, or 2.7 connections per in-
put wire. This design uses approximately 157 transistors per LUT
input, including the LUT feedback connections, representing anin-
crease of 22%. Assuming the cluster interconnect used a minimal
crossbar instead of a full crossbar, our search found a 168 x 26
crossbar with 546 switching points, using 147 transistors per LUT
input, an increase of only 14%. For a modest increase in transistor
count, theimprovement in routability shownin Figure 8 isdramatic.

Some other organizations found are listed in Table 1.

7.2 HP Teramac Plasma

Teramac[4], from HP Labs, is alarge reconfigurable system made
up of custom-designed Plasma[5] FPGASs. A full Teramac systemis
designed to have the capacity of about one million gates distributed
over 1728 FPGA chips. An important goa in the Plasma design
was to design a highly routable FPGA: to limit compile times to
about an hour, placing and routing each FPGA must bedonequickly
(within 3 seconds). This approach meant each FPGA should be
nearly 100% routable so that almost no time would be spent in rip-
up or repartitioning the mapped circuit.

ThePlasmaZ2-level hierarchy comprisessixteen clusters, called hex-
tants, of sixteen LUTseach. Thesix LUT inputsin each cluster are
fully connected to 100 cluster-level wires, and thetwo LUT outputs
are 1/2 populated. At thetop level there are 400 signal wires, which
must connect to the 100 cluster wires. This400 x 100 partial cross-
bar is 1/4 populated using 10, 000 crosspoints, implying it is com-
posed of four diagonally placed 100 x 25 full crossbars. Conser-
vative measurements of the die photograph in [5] indicates that the
partial crossbar switches alone consume 23% of total chip area, or
32% of the core area (excluding the I/O pads).

The Plasmachip is easy to route because the partial crossbars make
it predictable to route: as long as fewer than 25 signals enter each
full crossbar, it can be routed. The router need only consider which
crossbar it routesto, and not the precise detailed route. Hence, there
would be no need for ripup. Despite this advantage, there are few
signal assignments that can satisfy the partial crossbar when more
than 75 input signals are required, as shown in Figure 8.

Our sparse crosshar search found a 400 x 104 sparse crossbar with
1,456 switching points, or 3.6 switches per top-level wire, for a
switch density of roughly 1/28. Thisdesign uses approximately 292
transistors per LUT input, including the cluster-level interconnect
(but not the LUT output switches).® Even though this sparse cross-

3Plasmaused one 5T SRAM cell and one passtransistor per switch-
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Table1: Highly routable, area-efficient sparse crossbarssuitablefor
useinthe AlteraFLEX8000 family. Thefirst group showsthe num-
ber of switches required to obtain high routability with exactly 24
outputs. The second group adds a minimal crossbar between the
sparse crosshar and the LAB full crossbar to reduce the sparse cross-
bar outputsto 24. Thethird group widensthe full crossbar local in-
terconnect inside the LAB to match the number of sparse crossbar
outputs. All transistor counts include the local interconnect. Tran-
sistor countsin parentheses indicate that further reduction is possi-
bleif minimal crossbars are used within the LAB instead.

| Crossbar Size || Switching Points | Transistors | Routability ]

Provide exactly 24 outputs from the sparse crossbar.
168 x 24 336 4144 1.0%
168 x 24 1008 5776 98.6%
Reduce to exactly 24 outputs using an additional minimal crossbar.
168 x 26 x 24 546472 5468 96.1%
168 x 25x 24 700+ 48 5492 98.2%
168 x 27 x 24 567+ 96 5650 99.2%
168 x 29 x 24 464+ 144 5694 98.6%
168 x 30x 24 450+ 168 5800 98.2%
Provide more than 24 outputs, increase cluster interconnect.
168 x 29 464 5022 (4830) 98.6%
168 x 30 450 5080 (4888) 98.2%
168 x 26 546 5084 (4700) 96.1%
168 x 31 434 5134 (4942) 98.6%
168 x 27 567 5218 (4834) 99.2%
168 x 25 700 5300 (4916) 98.2%

Table2: Highly routable, area-efficient sparse crossbarssuitablefor
use in HP Plasma FPGAs. Total transistor countsinclude the local
cluster interconnect to choose LUT inputs, but not the LUT outputs.

Crossbar Size || Switching Points | Transistors | Routability |

Partial crosshar switch pattern used by HP.
400x 100 || 10000 [ 47040 | 04%
Sparse crosshar patterns found.

400 x 104 1456 28048 95.9%
400 x 105 1365 28080 95.1%
400 x 103 1648 28218 98.8%
400 x 106 1378 28320 98.6%
400 x 107 1284 28346 96.9%
400 x 108 1296 28584 99.3%
400 x 109 1199 28604 97.1%
400 x 105 1680 28710 100.0%
400 x 102 1734 28788 96.6%
400 x 108 1404 28800 99.9%

bar contains nearly 1/7 the number of switching points of Plasma,
it has significantly improved routability. It can route over 95% of
vectors containing 100 input signal's, whereas Plasmacan route less
than 1%. Given this new switch pattern, a router would have even
higher assurances it could route each Plasma chip independently.
Alternatively, a sparse crossbar of size 400 x 105 with 1,680
switching points, or 299 transistors per LUT input, can be con-
structed which routes over 99.9% of the test vectors. A few other
organizations found are listed in Table 2.

7.3 AlteraMAX7000

The Altera MAX7256 CPLD has 2-levels of hierarchy, where the
top level contains multiple sparse n x 36 crossbars. The value of n
used in the MAX7256 device is not known, but it is probably not
more than 410 (one wire for each macrocell output and 1/0 pin).
Here, we shall assume n = 410.

We have noted before that providing more than 36 crossbar out-
puts is necessary to keep area low while obtaining high routabil-
ity. Rather than increase the number of inputs to the product-term
AND planes by this amount, we have chosen to connect the cross-
bar outputsto aminimal crossbar, which can perfectly select any 36
of these signalsfor the AND plane. In this case, thisminimal cross-
bar is area-efficient becauseit iscloseto being square, soit requires

ing point, but we are assuming a different implementation here.



Table 3: Highly routable, area-efficient sparse crossbarssuitablefor
use in the AlteraMAX 7256 CPLD. Total transistor counts include
the minimal crossbar selector, if appropriate, but not the product
term array.

Crossbar Size || Switching Points | Transistors | Routability |

1-level, provide exactly 36 outputs from the sparse crosshar.
410x 36 2448+0 6336 96.40%
410 x 36 2952+0 7344 99.70%
2-levels, reduce to exactly 36 outputs using a minimal crossbar.
410 x 43 x 36 11614-288 4678 97.2%
410 x 42 x 36 1218+ 252 4692 97.6%
410x 41 x 36 1271+ 216 4698 97.8%
410%x 39x 36 1443+ 144 4860 96.7%
410 x 45 x 36 1080+ 360 4932 96.2%
410 x 38 x 36 1558+ 108 4984 96.2%
410 x 40 x 36 1360+ 180 5016 97.2%
410 x 43 x 36 1333+ 288 5022 100.0%

few switching points.

Assuming an SRAM and mux-based crosshar implementation, the
best organization found used a 410 x 43 sparse crossbar containing
1161 switching points, or about 2.8 switches per input. This cross-
bar is over 97% routable when 36 signals are required. The min-
imal crossbar requires an additional 288 switching points. A total
of 4678 transistors would be required to construct the two switch-
ing stages, or 129 transistors per output. Alternatively, a 410 x
43 sparse crossbar containing 1333 switching points was found to
achieve over 99.9% routability. This system used 5022 transistors,
or 139 transistors per output.

Both of these 2-level organizations use significantly fewer transis-
tors (and switching points) than an architecturewith only one sparse
crossbar containing exactly 36 outputs. The best 2-level organiza-
tion contains 26% fewer transistorsand 40% fewer switching points
than the best 1-level. A few other organizationsfound are shownin
Table 3.

7.4 Varying FLEX8000 Cluster Size

In this section, we present the results of generating highly routable
sparse crossharsfor variations of the AlteraFL EX8000 architecture
shown in Figure 7. The goal is to understand the impact of clus-
ter size and crossbar input size on the area efficiency of the sparse
crossbar. To do this, we normalize the area based on transi stors per
LUT input. Thisaccountsfor the increased logic capacity of larger
clusters, and allows us to directly compare the results.

We varied the cluster size, N, from between 2 and 12 LUTSs, the
number of top-level wires, n, were varied from 168 to 995. The
maximum number of output signalsrequired by the crossbar was set
to be 3N, which gives 24 inputs for the FLEX8000 case of N = 8.
We also repeated these experiments with 2N + 2 output signals, as
recommended by Betz [6].

In general, it was usually possible to find multiple sparse cross-
barswhich are both area-efficient and fit within the desired routabil -
ity constraints. When multiple designs matching the criterion were
found, the one with the lowest transistors per LUT input was se-
lected. Sometimes a design could not be found, so the data point
was left out of the results.

First, we examine the impact of cluster size on areaas shown inthe
top graphs of Figure 9. For a sparse crossbar with only 168 inputs
the effect of cluster sizeisnot significant on area, but it can be seen
that a cluster size between 4 and 7 givesthe best efficiency. In con-
trast, small cluster sizes become very inefficient when the number

of crossbar inputs is increased. Selecting a cluster size of at least
8 is necessary in these cases. Letting the aspect ratio of the sparse
crossbar get too large hinders the efficiency.

Next, we examine the impact of increasing the number of crossbar
inputsfor specific cluster sizes, asshownin the lower graphsof Fig-
ure 9. Thisis an orthogonal view of the same data, except some
cluster sizes have been left out for clarity. From this data, we can
seethat theareacost for agiven cluster sizeisaroughly linear func-
tion of the size of the crossbar. The slope of the larger cluster sizes
is smaller, making them more area-efficient at larger crossbar sizes.

8. CONCLUSIONSAND FUTURE WORK

We have shown a method for evaluating and constructing sparse
crosshbars. The construction technique is based on an understand-
ing of Hall’s Theorem to generate highly routable crossbars.
Routability of sparse crosshars can be improved by adding addi-
tional switches and by widening the output stage of the crossbar.
The latter method was the most effective once there were enough
switches to be used: approximately two per input in the case of a
168 x 24 crossbar. Careful evaluation using both methodsis neces-
sary to obtain optimum routability at minimum area.

We have demonstrated with a few design examples that it is ben-
eficial to plan to underutilise the output stage of a sparse crosshar
and design using the correct number of switches. In the Plasmaex-
ample, only 4 additional output wires and a switch density of 1/28
was required to remain highly routable; this organization uses 75%
fewer switchesthan Plasma, and obtains superior results. Inthe Al-
tera FLEX8000 example, 5 additional output wires and aslight in-
crease in switch density (from 1/12 to about 1/10) was needed to
obtain over 95% routability. It was also found that cluster sizes
between 4 and 7 give the most area-efficient interconnect in the
FLEX8000.

Planning on high routability does not require an exorbitant amount
of switching resources: in the examples given, the most dense
switch pattern used was less than 1/10 popul ated.

For future work, we have tried to design and simulate cascaded
sparse crossbars that depend on one another. To date, we have not
been successful in generating consistently improved results with
cascaded crosshars — independently optimized crossbars produce
more consistent results. Also there is difficulty modeling conges-
tion with a network flow solver, so plans are underway to integrate
the construction algorithms into an actual router.
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