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Introduction 

 Cementitious binder? 

 Glue binding solid materials (through solid-solid grain boundaries 
that remain attractive in H2O) 

 Filler of empty space between particles 

 

 Activation of (alumino-)silicates: 

 Blended cement environment: 

 pH: 13 – 13.5 

 C-(A)-S-H products 

 Alkali activation 

 pH >> 14  

 Product assemblage depend on material composition and 
activator 
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Why studying kinetics? 

Hydration/reaction kinetics 

Availability of  reactive species 

Reaction product formation 

Distribution of  products: microstructure 

Strength development, heat generation 

Porosity, permeability: durability 
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Reaction kinetics in cementitious binders 

 Chemical and microstructural processes are complex and 
interdependent 

 Difficult to resolve individual mechanisms or parameters 
that determine kinetics 
 

 Fundamental approach: hydration as series of coupled 
processes (flow chart approach) 

 Breaking down problem to study kinetics of individual mechanistic 
steps 

 Foundation for understanding interactions among coupled 
phenomena 

 Kinetics are often controlled by one significantly slower step 

 

 

 [Morrow et al., 2009] 
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Rate controlling mechanisms 

 

 

 

1. Surface dissolution control 

 

2. Water availability 

 

3. Space filling of reaction products 

 

4. Diffusion through leached layer or reaction product layer 

𝑆𝐶𝑀 + 𝑤𝑎𝑡𝑒𝑟 (+ 𝑋𝑚+) 
pH, T

 ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠  

1, 4 2 3 
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 Changes in reaction environment: 

 Solution composition (pH, [H2O], solution saturation) 

 Availability of growth space 

 Leached layer/reaction product layer development 

 

 Changes in rate controlling mechanism at different stages 

 

Rate controlling mechanisms 

[Snellings et al., 2012] 
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Rate controlling mechanisms 

 Dissolution and precipitation processes are simultaneous 

 Rate control depends on properties of reactants and 
hydration products 

 e.g. Alite hydration: rate control of main reaction by N & G 

 Reaction mechanisms and rates of glassy phases in solutions largely 
unknown 
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Theories for dissolution kinetics 
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Dissolution 

 Dissolution rate measurements 

 In bulk: increase in concentration of solutes through time, solid 
mass loss 

 Rates are normalised to the total surface area (BET measurements 
or geometric calculation) 

 Initial parabolic kinetics followed by steady state rate (reported) 

 

[Hamilton et al., 2000] 

Parabolic regime 

Steady state  

regime 
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Reactivity trends for mineral and glass dissolution 

 Congruent dissolution:  

 Dissolution rates of MO oxides and orthosilicates scale with rate 
of exchange of inner sphere H2O (kH2O) from the ion in solution   

[Casey & Westrich, 1992; Ohlin et al. 2010] 
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Reactivity trends for mineral and glass dissolution 

 Incongruent (nonstoichiometric) dissolution: 

 Preferential leaching of elements from the surface 

 Leached surface layer of sparingly soluble components 

[Casey & Westrich, 1992; Ohlin et al. 2010] 
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 Polymer connectivity 

 Silicate network: the higher the connectivity, the lower the 
dissolution rate 

 Ab initio calculations indicate rate control of Q2 detachment 

Reactivity trends for mineral and glass dissolution 

[Brantley et al., 2004; Brantley, 2008] 
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Surface dissolution control: driving force  

 Saturation state of a solution with respect to a crystalline 
or amorphous solid 

𝑎𝐴 + 𝑏𝐵 = 𝑐𝐶 + 𝑑𝐷 

∆𝐺 = ∆𝐺0 + 𝑅𝑇𝑙𝑛
𝐶 𝑐 𝐷 𝑑

𝐴 𝑎 𝐵 𝑏
 

Q = reaction quotient 

𝐾𝑠𝑝 =
𝐶 𝑐 𝐷 𝑑

𝐴 𝑎 𝐵 𝑏
𝑒𝑞

 At equilibrium:  ∆𝐺 = 0 

∆𝐺0 = −𝑅𝑇𝑙𝑛𝐾𝑠𝑝 

In general:  ∆𝐺 = −𝑅𝑇𝑙𝑛𝐾𝑠𝑝 + 𝑅𝑇𝑙𝑛𝑄 = 𝑅𝑇𝑙𝑛
𝑄

𝐾𝑠𝑝
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Surface dissolution control: saturation state 

 Saturation state σ 

 

 

 

 σ < 0 for dissolution 

 

 e.g. dissolution of amorphous silica 

𝜎 =
∆𝐺

𝑅𝑇
= 𝑙𝑛

𝑄

𝐾𝑠𝑝
 

𝑆𝑖𝑂2 + 2𝐻2𝑂 = 𝐻4𝑆𝑖𝑂4
0 

𝜎 = 𝑙𝑛
𝑄

𝐾𝑠𝑝
= 𝑙𝑛

𝐻4𝑆𝑖𝑂4
0

𝐾𝑠𝑝
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Surface dissolution control: linear rate law 

 Linear dependence of dissolution rate on driving 
force 

 

 

 

 

 

 

 Assumptions: 

 One single, slow rate controlling step (first order reaction) 

 Based on bulk dissolution studies/empirical rate laws 

 Surface defects do not play a role 

𝑟𝑑𝑖𝑠𝑠 = 𝑘+ 1 − 𝑒𝑥𝑝
∆𝐺

𝑅𝑇
= 𝑘+ 1 −

𝑄

𝐾𝑠𝑝
 

[Rimstidt & Barnes, 1980; Lasaga, 1981; Aagaard & Helgeson, 1982 

Icenhower et al., 2004; Dove et al., 2008] 
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Surface dissolution control: exponential rate laws 

 Problems: 

 Non-linear dependence: introduction of reaction orders n 

  1) dissolution plateau at high degree of undersaturation 

 

 

 

  2) exponential dependence on driving force  

 

 

   

 Wide variation in reaction orders 

 Contradictions in rate law applicability 

Control of surface defects on dissolution 

𝑟𝑑𝑖𝑠𝑠 = 𝑘+ 1 − 𝑒𝑥𝑝
𝒏∆𝐺

𝑅𝑇
= 𝑘+ 1 −

𝑄

𝐾𝑠𝑝

𝒏

 

[Dove & Crerrar, 1990; Nagy & Lasaga, 1992] 

[Burch et al., 1993; Schott & Oelkers, 1995] 

𝑟𝑑𝑖𝑠𝑠 = 𝑘+ 1 − 𝑒𝑥𝑝
∆𝐺

𝑅𝑇

𝒏

= 𝑘+ 1 −
𝑄

𝐾𝑠𝑝

𝒏 
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 Mechanistic description of congruent dissolution and growth 

 

 Depending on solution composition dissolution occurs: 

 1) At pre-exisiting surface steps (Q2 species at surface) 

 2) At dislocation defects intersecting the surface (crystals) 

 3) Homogeneously across the surface (or at impurities)  

 

 

 
 

 Parameters: 

 Temperature T (K) 

 Saturation state σ 

 Step edge energy α (mJ/m2) 

 Step kinetic coefficient β (cm/s) 

 

 

Surface dissolution control: mechanistic description 

[Cabrera et al., 1954; Lasaga & Lüttge, 2001; Dove et al., 2005] 

[Development of  theory in Dove et al., 2005] 
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 Quartz dissolution mechanism depends on σ, T, salt concentration, 
presence of adsorbate species, compositional impurities 

Surface dissolution control: mechanistic description 

[Brickmore et al., 2006; Dove et al., 2007] 
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Surface dissolution control: crystal vs. amorphous 

 Step retreat = Q2 detachment, surface pitting = Q3 detachment 

 Dissolution rate of amorphous phases is usually higher due to: 

 Lower interfacial energy 

 Greater strain on Si-O-Si bonds 

Quartz 

Amorphous SiO2 

[Dove et al., 2008] 
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Surface dissolution control: surface morphology 

 Total dissolution is the combined sum of: 

 Step retreat velocity (depends on saturation state) 

 Nucleation of steps (formation of etch pits) 

 

 Increasing the surface roughness (#steps) will increase 
initial dissolution rate: 

 Chemical etching (in acid, or at high undersaturation) 

 Grinding (creation of damaged, roughened layer) 

 

 

[Juilland et al., 2010] 

C3S dissolution  

at high undersaturation 
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Other rate controlling processes 
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Water availability 

 Important in practice when low w/b ratios are used (high-
performance applications) 

 Consumption of water in hydration reactions 

 Chemical shrinkage: Vhydration products < Vreactants 

  Formation of gas filled porosity/decrease in RH 

 E.g. alite hydration stops when RH < 80% [Flatt et al., 2011] 
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Space filling by hydration products 

 Main hydration period in Portland cement is controlled by 
nucleation and growth of products 

 Eventual impingement of reaction products leads to 
growth deceleration 

 

 

 

 

 

 

 

 

  Hydration of  polydisperse distribution of  alite particles 

modelled using μic [Bishnoi, 2009] 
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1. Initial stage:  

 Incongruent dissolution leads to formation of leached/passivated 
layer 

 Congruent dissolution is reached when diffusion rate of leached 
cations and Si release rate equalize  

Transport through leached/reaction product layer 

[Hamilton et al., 2001] [Tsomaia et al., 2003] 



26 

Diffusion through leached/reaction product layer 

 XPS BFS depth profiles: 

 Surface leaching 

 Precipitation of products 
 

 Alite H concentration 
profiles through time 

[Regourd et al., 1983] [Schweitzer et al., 2007] 
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2. Deceleration stage: 

 Reconstruction and condensation of leached layer during corrosion 
of Ca-Na-B glass corrosion 

Diffusion through leached/reaction product layer 

 Dense and loose BFS hydration 
products in 30 yr old concrete 

[Cailleteau et al., 2008] 
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Implications for Performance & Durability 
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Implications for performance and durability 

 Linking kinetics and bulk mechanical properties: 

 

 Do we really need the microstructure (complex)? 
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Does microstructure matter? 

 Powers’ model 

 X = 1 – porosity 

 Same relation as found in numerous 
other rocks 

 Dependence only on amount, not 
on size or location 

 Calibration needed at 3 days 
compressive strength 

 Relationship varies for different 
systems 

[Powers, 1958] 



31 

Does microstructure matter? 

 Thermodynamic modelling 

 Mass balance equations, thermodynamics indicate phase assemblage 

 Product properties need to be known (composition, solubility,density) 

 

[Lothenbach et al., 2008] 

Broad correlation between 

total porosity (measured and 

calculated) and strength.  
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Microstructure does matter 

 Distribution of porosity-cracking behaviour 

*After C. Dunant 
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Implications for bulk properties 

 Linking kinetics – microstructure – mechanics: many 
question marks remain… 

 Dissolution and reaction kinetics (how to measure degree of 
reaction?) 

 Reaction product properties: composition, density  

 Microstructural development: homogeneous or heterogeneous 
nucleation, nucleation density, growth (isotropic, planar, linear) 
behaviour, condensation,… 

 

 Numerical modelling can help: 

 To model interactions between simultaneous processes, taking into 
account large numbers of factors and data 

 To compare, test and develop experiments and hypotheses 

 

Available programs: CemHyd3D, HyMoStruc, Hydratica, μic 
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 Dissolution theories describe rate dependency on: 

 Saturation state 

 Solution composition (pH, electrolytes,…) 

 Phase composition 

 Surface morphology 

 

 Modelling global weathering processes, nutrient release,…  

 

 Extension of databases to synthetic phases/glass 

 

 Engineering of material reactivity, availability of reactive 
 species 

Conclusions and perspectives 
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Conclusions and perspectives 

 

 Key to mechanistic understanding is isolating and 
analysing the individual constitutive steps in hydration 

 e.g. insights into mineral dissolution kinetics 

 

 (Long term) scientific effort should focus on: 

 Building and expanding of quantitative databases (reactant 
dissolution rates, product properties, microstructure development) 

 Application of new and improved analytical techniques to capture 
elusive parameters 

 Integration of experimental data in numerical models using 
improved process equations 
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Thank you for your attention! 


