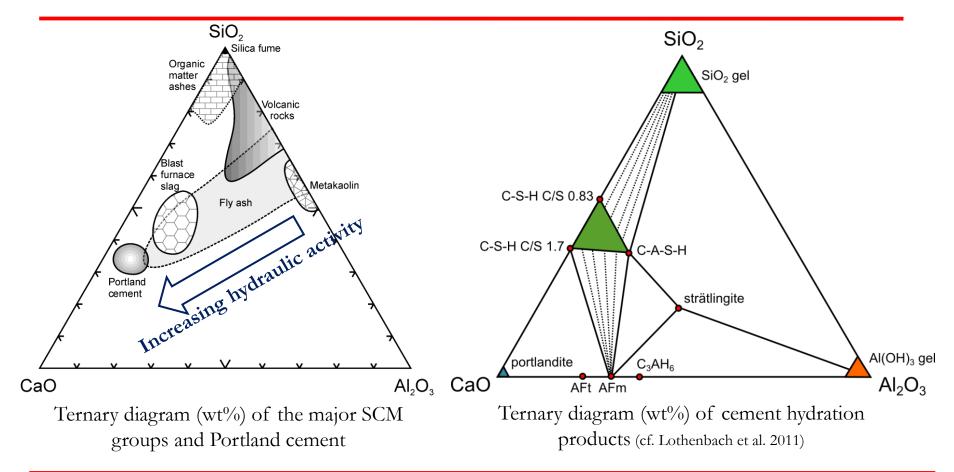
Hydration products of SCM blended cements

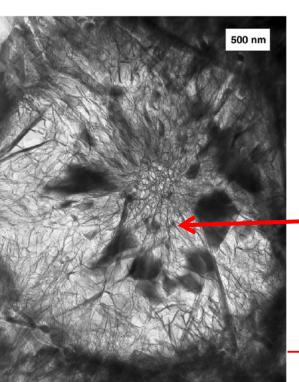
Data collection

Ruben Snellings EPFL


Outline

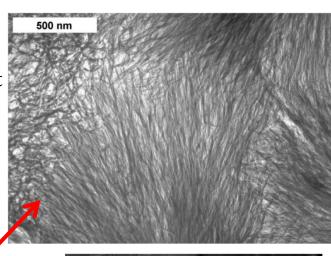
- Overview of hydrate assemblages in blended cements
- Hydration products in blended cements
 - C-A-S-H
 - AFt phases
 - Layered double hydroxides
 - AFm phases: $SO_4^{2-} CO_3^{2-} OH^{-}$
 - Al:Si; strätlingite
 - Mg:Al; hydrotalcite (-like) phases
 - Hydrogarnets
 - Metal hydroxides

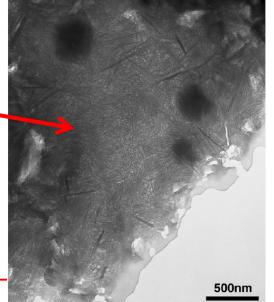
Hydrate assemblage overview


Similar hydration products as in OPC, composition and proportions change depending on:

1. Overall compositional change: CaO:(Al₂O₃-SiO₂), Al₂O₃:SiO₂, Al₂O₃:(SO₄²⁻-CO₃²⁻-X^{m-}),...

2. SCM reactivity: rate of release of constituents compared to hydration of PC components


C-(A)-S-H in blended cements


- Occurrence: morphology and microstructure
 - Outer product:
 - Fibrillar morphology linked to high Ca:Si
 - Foil-like morphology at low Ca:Si and high Al content
 - Inner product:
 - LD: coarse, wavy infill of relict particles
 - HD: fine texture, intermixed with LDH phases

TEM examples

50% slag paste OP [Richardson, 2004] 50% slag paste IP [Taylor et al., 2010] Reacted FA particle [Giraõ et al., 2010]

C-(A)-S-H in blended cements

Impact of SCM addition on C-A-S-H composition

Data collection for real systems

Reference	System						C-A-S-H					
		SCM %	Т	Age	Curing	w/b	Ca/Si	Ca/(Al+Si)	Al/Si	MCL	Ip Morphology	Op Morphology
	OPC	0	20	1y, 26y	water	0.4	1.7-1.8		0.05	3.3-5.0	Fine	fibrillar
Taylor et al 2010	OPC-Slag	10	20	20y	water	0.4	1.6		0.12	6.7	Fine	fibrillar to foil (increasing slag content)
Taylor et al 2010	OPC-Slag	90	20	20y	water	0.4	1.18		0.18	14.3	Fine	fibrillar to foil (increasing slag content)
Girao et al 2010	OPC-FA	30	55	1 mth	water		1.57		0.2	15.6	low density foil fibrillar in FA	foils and fibrils
Love et al 2007	OPC-MK	20	25	1 day	water	0.55			0.06	2.8		fibrils
Love et al 2007	OPC-MK	20	25	1 mth	water	0.55	1.43	1.14	0.25	11	Fine	foils and fibrils
Richardson 2000	OPC-SF	>50	40	3 mth	water	0.7	0.7-0.8			8.5	20% SF fine >50% SF: foil	foil-like
Rayment 1982	OPC-FA	20	20	8 d	water	0.5	1.55	1.38	0.12			[L Posson]

[J. Rossen]

- GGBFS: lowers (slightly) Ca:Si, increases Al:Si
- Pozzolans: lowers Ca:Si, increases Al:Si (except SF)
- Compositional changes depend on **SCM%** and **age**

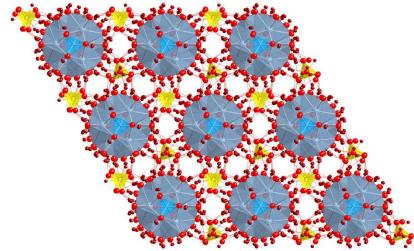
C-(A)-S-H in blended cements

Impact of SCM addition on C-A-S-H atomic structure

- Most likely defect tobermorite models for C-S-H of low Ca:Si typically found in blended cements (Richardson, 2004)
- Decrease of Ca/(Si+Al) leads to chain polymerisation
- Incorporation of Al[4] predominantly in bridging sites
- Lack of thermodynamic relationships Al[5] and Al[6] may substitute Ca in interlaver (NI) describing incorporation/sorption of ions on

C-(A)-S-H

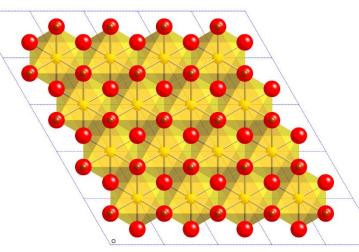
- Limite
 - Mg
 - Fe
 - Sulfate
 - Alkalies
- Difficulties in distinguishing structural incorporation from fine-scale intermixing and adsorption

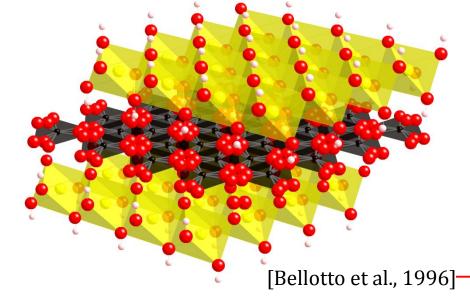

[Bonaccorsi et al., 2005]

14 Å

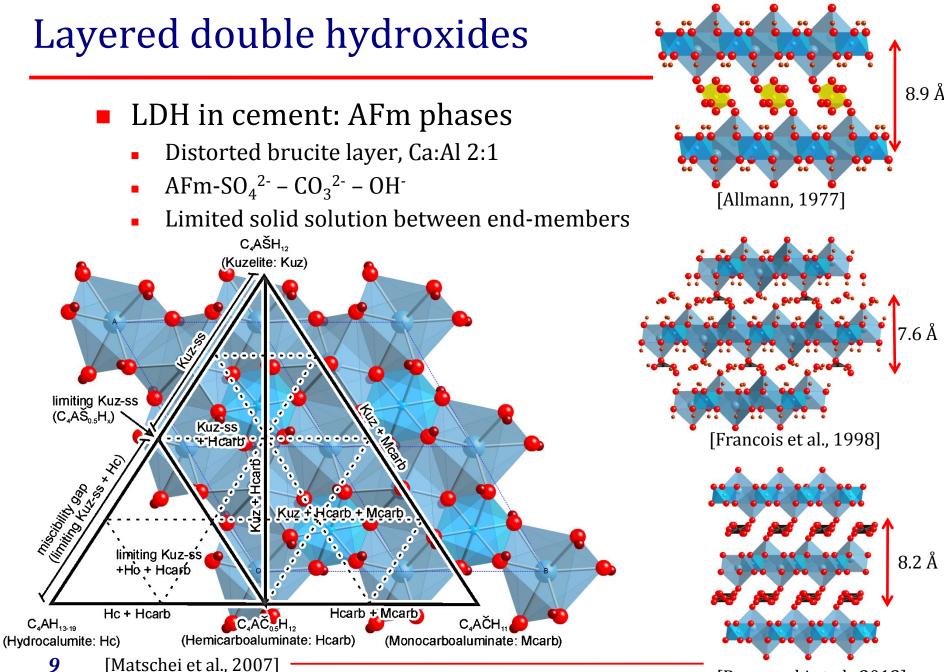
AFt phases

- $[Ca_3(Al,Fe)(OH)_6 \cdot 12H_2O]_2 \cdot X_3 \cdot xH_2O$
 - X is divalent anion
- Occurrence
 - Ettringite forms early on in blended cements
 - Transforms into AFm phases depending on sulfate and carbonate activity
- No systematic changes in composition reported for blended cements
 - Solid solution between (Al, Fe)[6], miscibility gap 0.3<Al/(Al+Fe)<0.6 (Möschner et al., 2009)
 - Incomplete solid solution between CO₃-SO₄: ettringite stabilisation of AFt-CO₃ at low T (Matschei & Glasser, 2010)

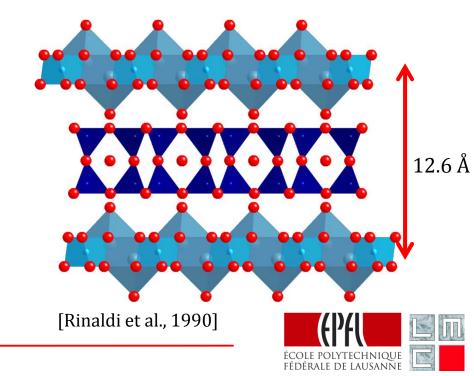



[Hartman & Berliner, 2006]

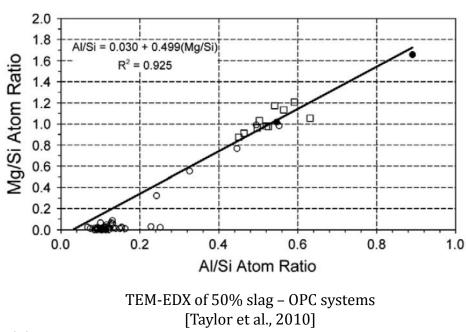
Layered double hydroxides

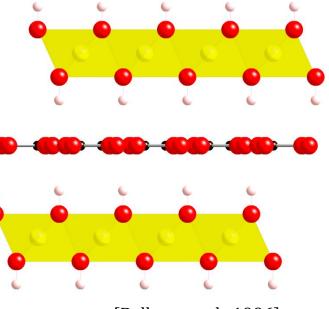

- LDH hydrotalcite supergroup nomenclature (Mills et al., IMA report 2012)
 - $[(M_{1-x}^{2+}M_x^{3+})(OH)_2]^{x+}$ layers
 - Anions in interlayer, stacking leads to polytypism
 - 8 groups within hydrotalcite supergroup
 - Hydrotalcite group (M²⁺:M³⁺ =3:1)
 - Quintinite group $(M^{2+}:M^{3+}=2:1)$
 - ...
 - Hydrocalumite group ($M^{2+}=Ca^{2+}, M^{3+}=Al^{3+}$; Ca:Al =2:1)

«Proposal of compact notation for synthetic LDH phase for use by chemists as alternative to the widespread misuse of mineral names» (Mills et al., 2012)



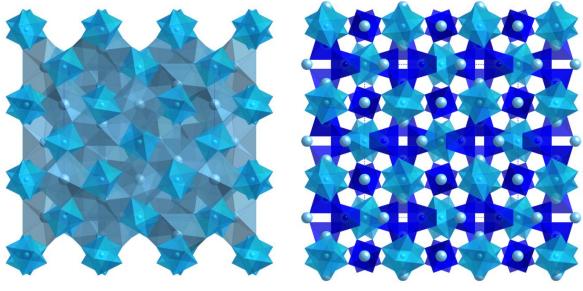
[[]Rumcevski et al., 2012]


Layered double hydroxides


- Compositional solid solution
 - Strätlingite (hydrated gehlenite)
 - (Al, Si)₂OH₈ groups in interlayer
 - Conditions of formation and solubility not well constrained
 - Occurrence
 - Low SO₃/Al₂O₃ ratio (MK, Class C FA)
 - Absence of CH

Layered double hydroxides

- Compositional solid solution:
 - Mg hydrotalcite-like phases:
 - Mg:Al ratio 2:1 (quintinite) or 3:1 (hydrotalcite)?
 - Variable anion content, most selective for CO_3^{2-}
 - Intimately mixed with C-A-S-H in SCM Ip

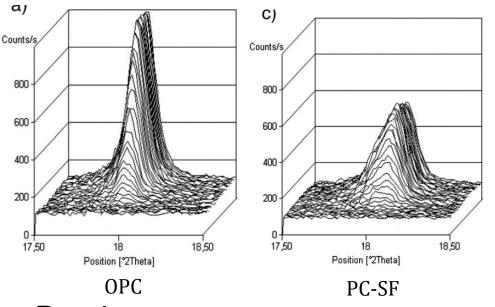

[Bellotto et al., 1996]

Hydrogarnets

Occurrence, composition and structure

- 3Ca:Al katoite
- Si[4] connects Al[6] in siliceous hydrogarnet
- Thermodynamically stable phase in many blended cements
- Forms slowly at low T (high E_a?)
- Occurs in high T cured cements and old cements

Hydrogarnet [Cohen-Addad et al., 1964]


12

Siliceous hydrogarnet [Sacerdoti & Passaglia, 1985]

Metal hydroxides

- Portlandite
 - Consumption in pozzolanic reaction
 - Change in crystallite size during consumption

[Korpa et al., 2008]

ECOLE POLYTECHNIQUE Fédérale de Lausanne

Brucite

- Not easily identified (TG)
- Forms simultaneously with ettringite, when sulfate availability is high

Summary

- Hydration product assemblages are largely similar to OPC, however SCM changes:
 - Proportions of the hydration products
 - Composition of hydration products
 - **C-A-S-H**: lower C/S, more polymerized, Al incorporation
 - More data needed that describe solid solution/sorption in function of C-A-S-H properties and (pore) solution composition
 - **AFt and LDH** phases: few *in situ* data for blended cements
 - General assumption that compositional variation is limited or similar to synthetic systems at thermodynamic equilibrium
- Fine-scale intergrowth/intermixing often interferes with hydrate characterisation in real blended cements, many data derive from simplified synthetic systems

Projected outcomes

- Papers summarizing knowledge on hydrate assemblages in blended cements already exist (Richardson, 2004; Lothenbach et al., 2011)
- Need for guidelines in characterisation of blended cements hydrate assemblages
- Review documenting
 - **XRD** identification table
 - Characteristic **TGA** weight loss intervals
 - Solid state NMR chemical shifts
 - · · · ·

