
Introduction

A time series represents a collection of organized data

obtained from sequential measurements over time. In

order to extract some meaningful information out of

that data and interpret the observed values, data

mining of time series can be performed, which consists

of extracting knowledge from the shape of the time

series data. Today, time series data and time series

data mining is essential for many applications since

both scientific datasets but also data related to

demographic, finance etc. is tracked through time.

However efficient mining of such data is a problem

mainly because of its high dimensionality. This makes

research in this area of particular interest and recently

there have been many publications related to efficient

mining of time-series data.

The goal of this project was to build a framework that

would offer efficient solutions to storing, retrieving and

mining time series data.

This document will give a brief overview of the

components of the system as well as specific

implementation details of individual components and

a discussion on the challenges and possibilities for

further development.

Framework overview

Being that the system is meant to process large

datasets we decided to build it on top of Spark [1] due

to its support for fast real-time queries and built-in

methods for iterating over the data and mapping

objects to programs. Another reason is that Spark

supports loading data from an external file and storing

it into a RDD object.

An overview of the components of our system is shown

in Figure 1 and we will describe each of them in the rest

of the document.

The system is designed to be user friendly and enable

easy application development on top of the

framework.

The user loads the data via the command line. Once the

data is loaded it is stored in the system and the user

can perform transformations, compression algorithms

or indexing on such data. After these transformations

and data organization, the user can write an

application using the underlying structure.

Storage

A time series is defined by a timestamp which identifies

one row and corresponding values for that timestamp.

Due to the nature of the data, for one time series there

is more correlation amongst the consecutive values in

a column than the values in the same row. We decided

to implement a column store by storing the different

values (columns) in separate files and the timestamps

in a file of its own.

A diagram of the storage system is provided in Figure

2. A time series is defined with a Schema that enforces

constraints on the number of columns and their types

and pointers to the files containing the columns.

Figure 1 Storage system

The benefit of the data being spatially ordered is that

we don’t need to read the timestamps every time, all

we need is its timeframe defined by start and end

timestamps as well as an ε which represents the

difference between two consecutive timestamps.

Database

Timeseries

Schema

DBType

Storage backend

Row store Column store

PAST: Processing and Storage of Time series
Eleni Tzirita Zacharatou, Jasmina Malicevic, Nikolaos Kokolakis, Eric Beguet, Puneet Sharma, Saurabh Jain, Mihaela

Turcu, Nicolas Tran, Thomas Mühlematter

Figure 2 System Components

Another built-in feature of the storage system is

support for range queries. This is implemented so that

parts of the column (range) can be stored in multiple

files in order to enable splitting these pieces across

multiple machines and operations on such intervals

can be done in parallel. In such cases the column files

are identified by adhering to the following naming

convention: name{Part_Identifier} (f.e. “price0”,

“price1” etc.)

The main reason for implementing this feature is the

way Spark handles range requests. Namely, the

function that takes a part of an RDD object, take(n: int),

converts the entire data to an array before returning

the data to the user. By splitting the dataset into

intervals, we will need to perform the conversion to an

array for the first and last column of the data range in

order to perform the take function on the data. The

same is valid for drop(n:int).

Implementation of interval split

How is the split performed and how does it affect

operations such as inserting a new time series? The

mapping to these files is stored in an interval file whose

format is shown in Figure 3. The Identifier mentioned

above that is appended to the name of the time series

is the value mapped in the interval file to a certain

range.

The splitting range is not done according to some fixed

interval but rather trying to balance the number of

entries per file.

When loading a time series into the system the values

are split by creating the Interval file according to the

values of the timestamp column.

A drawback of this approach is slower insertion of new

time series into the data store due to the splitting of

data.

If the user knows he does not perform range queries,

or this optimization is not of importance for him we

provide the method insertWithNoSplit which does not

provide the separation of values into multiple files.

Row Store

As an addition to the system we added support for

row-store in case the user finds that for a particular

application that will be more beneficial.

This is completely transparent to the user. The type of

storage is chosen when the time series is created and

the system later on uses the type of store provided for

that time series without any further intervention from

the user.

Transformations

Due to the high dimensionality of such data there is

always a need to minimize the dimension and remove

noise in the data. The data is usually preprocessed in

order to remove the noise or create a representation

of the data that reduces its dimensionality. In addition

to this, performing transformations over the data

shows gain in storage and speedup. Any new

representation seeks to fulfill as much as possible of

the following requirements:

 Significant reduction of data dimensionality

 Emphasis on fundamental shape

characteristics on both local and global scales

 Low computational cost of the new

representation

 Ability to create a good reconstruction from

the reduced representation

 Insensitivity to noise in case the representation

itself is not already meant to reduce noise

Thus data transformation can be defined as follows:

Given a timeseries T=(t1,…,tn), construct a model �̅� of

reduced dimensionality �̅� (�̅� ≪ 𝑛) such that �̅� closely

approximates T. More formally |R(�̅�) – T | < εr , R(�̅�)

being the reconstruction function and εr being an error

threshold. [2]

Our system supports transformations that create a

new representation of the time series but also

transformations that perform basic computation over

the data.

Data :

 time ---- value

 1 a

 2 b

 ..

 1000 c

 ..

 2000 d

Index file :

 Interval Identifier

 1 - 1000 0

 1001 - 2000 1

 2001 - 3000 2

 ...

 Figure 3 Interval (index) file structure

Power Transformations

Even though simple, a power transformation can be

very effective as a way of stabilizing the variance across

time. Data will become more normally-distributed and

less skewed. We are using the square root and the

logarithmic transformations.

Mean/Mode/Range/Subtract Mean/Standard

Deviation/Normalization

These are necessary functions used to compute

information about time series, as their name says,

generally used in other transformations as well. The

subtract mean filter can be used to remove noises with

low frequencies. All these functions and

transformations can be performed on complete data,

or on partial subsets. As data can be observed

periodically, it can present more variance for different

periods. Thus it is generally useful to compute the

standard deviation on subsets of periods, and create a

new, normalized time series.

Moving Average Smoother

A moving average linear filter is generally used in time

series to smoothen short-term fluctuations on data,

and highlight longer trends and cycles. Having a fixed

subset size, each entry in the time series is recomputed

by averaging a fixed subset of the series. For an item,

the average is computed by using both items before

and after the current one, except for the first and last

element in the series. Thus, for each element the

subset will be different, but the resulting values will be

closer.

Given a time series X, we create the new time series Y.

For the new series, its m-th value represents the

average of X(m), the first k values before m, and the

following k values after m, where k is the fixed subset

size. The resulting series will be smoother than the

original, as consecutive values of Y will have many

common values from X in their computed average.

Dynamic Time Warping Distance:

For computing the similarity measure, we had to take

into account that time series may not overlap exactly

with respect to time, and that there can be more

similarities if we consider a shifting in time. The

dynamic time warping distance is generally used for

measuring similarity between two temporal

sequences, as it gives better results than a simple

distance measure, such as Euclidian distance. When

computing the similarity measure of two series, we are

allowed to extend time sequences by repeating values.

Shift and Scale

A degree of similarity between two time series can also

be achieved if one can be scaled and shifted such that

it is shaped in a form closely resembling the other.

These transformations can be local, on pairs of

subsequences, and in this case, the two time series are

similar if they share enough pairs of contiguous similar

subsequences. The transformations can as well be

directly global.

Piecewise Aggregate Approximation (PAA)

This transformation [3] reduces the dimensionality of

time series data". Then you say that the segments are

disjoint and modeled using regression. To my

knowledge they are not modeled using regression (but

they are indeed disjoint). Remove the thing about

regression. The idea is to have a fixed frame size, and

minimize dimensionality by using the mean values on

each frame. If we consider a time series X, and a frame

size k, the new time series Y will be composed of

length(X) / k values, which represents the average on

each of the frames. The segments are disjoint and

modeled using regression. Figure 4 shows an example

of the approximation of a given time series.

 It is considered a non-data adaptive representation

being that the intervals are fixed regardless of the type

Figure 4 PAA Representation of timeseries

of the data and provides a foundation for the next type

of transformation.

Symbolic Aggregate Approximation (SAX)

Taking as input the reduced time series obtained using

PAA, it discretizes it into a predefined alphabet of

symbols, with a given cardinality. The range obtained

from PAA values is split into c subsets, where c is the

chosen cardinality. Each subset of values is mapped to

a different symbol, where the symbol in our case is a

natural number. The SAX [4] representation changes

every entry in the time series with its corresponding

symbol.

Figure 5 shows the symbolic representation of a time

series of length 16 with cardinalities of 4 and 2. This

representation will be further explored when building

an index based on the symbolic representation of this

data.

Figure 5 SAX representation of timeseries

Compression

The most obvious step when it comes to processing big

data is reducing the amount of data. In the sense of

spatial data series, compression is a means of

transforming that data such that the total amount of

data being stored is reduced. Our goal was to find a

compression scheme supporting the characteristics of

data obtained from a simulator over time, where data

points that are close have similar values. An additional

requirement we found crucial for a compression

scheme is fast decompression speed as the data will be

frequently accessed and we wanted to be able to also

perform queries on the compressed data.

Compression using Piecewise Linear Regression (PLR)

The data is divided into a series of disjoint segments

such that each segment is a good representative of the

containing data and then we try to fit a polynomial

model to each segment.

For each of the segments we store:

 Start time, End time

 Minimum and maximum values of the segment

 Model coefficient

After creating this model we don’t store raw data

anymore but use the stored variables and the model in

order to do further computations.

In order to form this data structure we have opted for

two approaches: Bottom-up and Sliding Window.

In Figure 6 we show the process of compression when

using the bottom-up approach. The idea is to treat

every two adjacent points as a segment and keep

merging adjacent segments in an agglomerative

fashion until a threshold is reached. This threshold is

defined as a mean absolute error allowed in modelling

a segment.

Into this bottom up approach we integrated the

Adaptive Piecewise Constant Approximation (APCA)

model where we take the average of the time segment

as the model. The reason for implementing this is that

it enables similarity queries for time.

This is an offline method being that it is aware of the

global view of the data while building the model.

In contrary to this, compressing using a sliding window

approach is an online model where we start with a

fixed window size which we keep expanding until a

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7 Seg 8 Seg 9 Seg 10

Least error on merging out of all adjacent segments

Merge if the error on merging is below the threshold (MAE)

Seg 1 Seg 2 Seg 3 - 4 Seg 5 Seg 6 Seg 7 Seg 8 Seg 9 Seg 10

Merge if the error on merging is below the threshold (MAE)

Seg 1 Seg 2 Seg 3 - 4 Seg 5 - 6 Seg 7 Seg 8 Seg 9 Seg 10

Merge if the error on merging is below the threshold (MAE)

Least error on merging out of all adjacent segments

Seg 1 Seg 2 - 3 - 4 Seg 5 - 6 Seg 7 Seg 8 - 9 - 10
Figure 6 Compression: Bottom-up approach

certain threshold is reached. The process is aware only

about local data.

This technique of creating a polynomial model of the

data using a user defined N as the degree of the curve

enables us to answer queries without having to worry

about the missing values which can be reconstructed.

The degree of the curve along with the compression

type (regression or APCA) and the maximum mean

error can be tuned by the user in order to impact

performance. A full list of tunable options can be

obtained on the Wiki page of the project.

Query support

The model-view representation of the data enables

efficient query processing over the modeled data

without the need for accessing raw data.

The types of queries we were most interested of

supporting are:

 Time point or time range queries: returns the

values at certain time point or in a time range

 Value point or value range queries: returns

timestamps for which the values are equal to

the query or they match some predefined

condition

 Composite queries: returns a key-value pair of

timestamp and value and performs a search

for a match in both dimensions: time and value

The first step to answering such queries is finding the

qualifying segments (segments whose

timestamp/value correspond to the range defined in

the query). We have implemented an index to support

this.

As the timestamp values are not uniformly distributed,

it is not possible to retrieve a timeseries entry using

only its timestamp value. This type of queries are

common enough and as a result an interval index is

used on the timestamp field.

The index is implemented as a disk interval tree that

stores associations of ranges of timestamps to entry

row numbers.

The interval index is optional and it requires that the

timestamp of each new entry added is older than any

of the timestamps of the existing entries.is process.

Once these segments are identified the data can be

extracted in two ways depending on the query: the

time point queries can efficiently be performed by just

using the model coefficients whereas the other queries

can be supported by sampling on all qualifying

segments in parallel. In the later case each worker

node does sampling and filtering on its own partition

and returns the required output.

The sampling granularity can be defined by the user.

Implementation

The underlying framework as for the rest of the system

was Spark.

For the bottom-up approach we took advantage that

the modelling has a global overview of the system and

partitioned the data so that processing of each

partition was done in parallel.

We first opted to use the MLlib [5] but it turned out

that it was not compatible with the approach we

wanted to implement for bottom-up. The reason was

that MLlib requires parallelized objects to work upon

but Spark does not allow the creation of parallel

objects while working on partitions if the number of

partitions is greater than the number of working nodes.

Data point 1
(tmp_seg1)

Merge if the error on merging is below the threshold (MAE)

Data Point 1
(tmp_seg1)

Data Point 2
(tmp_seg2)

Read

Read

Read

Merge if the error on merging is below the threshold (MAE)

Read

True

False

Data Point 1,2
(tmp_seg1)

Data Point 3
(tmp_seg2)

DATA STREAM

Data point 1,2
Segment 1

Data point 3
(temp_seg2)

Data Point 4
(tmp_seg3)

Figure 7Compression: Sliding Window approach

Therefore for the bottom-up approach we used Weka

[6], a machine learning library for creating regression

models.

In order to support the sliding window model we

needed to adapt the algorithm to Spark. Spark allows

only extracting the first N elements from a parallelized

object hence making arbitrary access to a sub-section

of data impossible.

We were able to mitigate this behavior by applying the

sliding window approach sequentially, partition by

partition followed by converting the subsections of a

partition into parallelized objects forwarded to MLlib.

The compression ratio for a test dataset representing

individual household electric power consumption for a

duration of 4 years using the bottom-up approach is

displayed in Table 1.

Indexing
A crucial component to every big data mining system is

the support of efficient retrieval of the data.

In addition to adding support for efficient range

queries in the storage layer of the system we

implemented two types of indexes for similarity

queries.

Similarity search is of fundamental importance for a

variety of time series analysis and data mining tasks.

Consider stock time series, one may expect having

queries like:

Query1: find all stocks which behave “similar” to stock

A.

Or consider marketing time series:

Query2: find past sale patterns that resemble last

month.

Or a scientific weather database:

Query3: find past days in which solar wind showed

similar patterns to today’s.

In order to compare two time series we cannot use

exact match like in the case of string matching. We

need to use a distance function to compare two time

series. The most popular distance function is the L-2

distance.

There are two important kinds of queries that we

would like to support in time series database, range

queries (e.g., return all sequences whose distance is

within an epsilon of the query sequence) and nearest

neighbor (e.g., return the k closest sequences to the

query sequence). The brute force approach to

answering these queries, sequential scanning, requires

comparing every time series Y to X. Clearly this

approach is unrealistic for large datasets

A traditional approach for indexing time series in order

to answer efficiently similarity queries is to use a

spatial access method. A time series with n values can

be considered as a point in a n-dimensional space. This

is why it could be indexed by a Spatial Access Method,

such as the R-Tree [7] . These methods partition the

space into regions along a hierarchical structure for

efficient retrieval. However, typical time series contain

over a thousand data points and most SAM approaches

are known to degrade quickly as dimensionality

increases. As R-Trees and their variants are victims of

the phenomenon known as “dimensionality curse”, a

solution for their usage is first to perform

dimensionality reduction.

Even so, in order to perform dimensionality reduction,

we cannot simply choose an arbitrary compression

algorithm. It requires a technique that produces an

indexable representation. For example, many time

series can be efficiently compressed by delta encoding,

but this representation does not lend itself to indexing.

In contrast a representation like DFT lends itself to

indexing, with each Fourier coefficient mapping onto

one dimension of an index tree. In order to guarantee

no false dismissals (i.e. qualifying objects are missed

because they appear distant in index space) the

distance measure in the index space must satisfy the

following condition:

Dindex_space (A,B) <= Dtrue (A,B).

That is to say, we can define a distance measure on the

reduced abstraction that is guaranteed to be less than

or equal to the true distance measured on the raw

data. The tighter the bound, the better. Ideally we

would like Dindex_space (A,B) = Dtrue (A,B). Post-

Table 1 Compression ratio and data size before and after
compression

processing is performed by computing the actual

distance between sequences in the time domain and

discarding any false alarms (i.e. objects that appear to

be close in the index but are actually distant).

To sum up, efficient indexing for time series similarity

can be achieved with the following three steps:

1) Establish a distance metric from a domain expert (in

our case we use Euclidean distance).

2) Produce a dimensionality reduction technique that

reduces the dimensionality of the data from n to N,

where N can be efficiently handled by a SAM.

3) Produce a distance measure defined on the N-

dimensional representation of the data that obeys

Dindex_space(A,B) ≤ Dtrue(A,B). In this project we

implemented the PAA dimensionality reduction of

timeseries as well as SAX which is based on PAA.

We created multidimensional index structures based

on these representations in order to be able to

efficiently support similarity queries.

R-Tree Index

In PAA a time series is divided into equally-sized

segments and the mean values of the data points that

fall within each segment is recorded. Therefore, as the

size of the segments is fixed, only one number per

segment is required in order to approximate a time

series, the number that records the mean value of all

the data points in a segment.

The PAA representation defines a N-dimensional

feature space. In other words, the proposed

representation maps each time series S = {s1,...,sn} to

a point S = {sv1,…, svN} in a N-dimensional space. Each

aggregate segment maps onto one dimension of the

index tree. We refer to the N-dimensional space as the

PAA space and the points in the PAA space as PAA

points. An example is give in Figure 4.

Data points in time series tend to be correlated with

their neighbors (a phenomenon known as

autocorrelation). This is why the PAA representation of

the time series is efficient: as data points are correlated

with their neighbors, we can efficiently represent a

"neighborhood" of data points with their mean value.

A distance measure DR defined in the index space that

has the lower bounding property described above and

thus can guarantee no false dismissals is the following:

Building R-Trees with Spark

A MapReduce-based algorithm was adapted for Spark
and was used for building the R-Tree index structure in
parallel fashion. To be exact, the index structure used
is a variant of the classic R-Tree, the Priority R-Tree [8].
Existing Java code which was downloaded from the
web (http://khelekore.org/prtree/) was used for
building the Priority R-Tree index. As Spark requires the
objects it manipulates to be serialisable in order to
send them over the network to the Worker nodes, we
had to slightly modify the code to make it serialisable.

The definition of the problem is as follows. Let T be a
compressed time series data set composed of time
series tsi, i=1,…, |T|. Each time series ts has two
attributes <ts.name, ts.values>, where ts.name is a
unique identifier for a time series and ts.values is a
vector containing the values of the compressed time
series. This vector can be interpreted as one point in
some multidimensional domain as it was explained in
the previous section.

The proposed method consists of two phases which are
executed the one after the other. First, the time series
are partitioned into groups. Then, each group is
processed to create an R-Tree for each partition. These
phases are executed on a Spark cluster.

The two main phases of the algorithm are:

1. Computation of a partitioning function f. The inputs
for this phase are the data set T, a sample quantity L
and a positive number R, which represents the number
of partitions. The purpose of f is to assign any object of
T into one of the R possible partitions. The function is
computed in such a way that applying f on T yields R
(ideally) equally-sized partitions. In practice, minimal
variance in sizes is acceptable. At the same time, f
attempts to put objects that are close in the spatial
domain in the same partition. The output of this phase
is a function f which takes as input a time series’ vector
of values ts.values and outputs a partition number.
Note that no actual partitioning or data moving
happens at this point. The next phase utilizes f for such
purpose.

2. R-Tree construction. During this phase, the function
f calculated in the first phase is used by Workers to map
each time series to its partition. Then the time series
are grouped according to their partition, and R Workers
build R independent R-Tree indices simultaneously on
their input partitions. The output of this phase is a set
of R independent R-Trees.

More details about these phases are provided in the
following subsections.

http://khelekore.org/prtree/

Partitioning Function

The purpose of the partitioning function f is to provide
a means for assigning objects of T to a pre-defined
number of R partitions. We use the idea of mapping
multi-dimensional spaces into an ordered sequence of
single-dimensional values via space-filling curves for
this purpose. More specifically, the Z-order curve [9] is
used. The time series’ vector of values ts.values is
mapped into a Z-curve. The partition number of a time
series ts is determined by f(ts.values), which evaluates
to a value from the set {1, 2, .., R}. By using a space-
filling curve, the partitioning function f achieves two
goals:
 • Generate R (almost) uniformly-sized partitions,

and

 • Preserve spatial locality. If two distinct time
series ts1 and tsp are close to each other
in the spatial domain, then they are likely to be
assigned to the same partition, i.e. f(ts1.values)
= f(ts2.values).

The algorithm to define f is as follows.

The input data set is partitioned via data sampling.
Given a data set T and target number of partitions R,
the algorithm takes L sample time series from T,
distributes them among M Workers (that is, each
Worker samples L/M

objects) and emits their single-

dimensional values S={U(tsi.values), i=1, .., L} given a

space filling curve U. Then S is sorted, and a list S ́ of R-
1 splitting points that split the ordered sequence of
samples into R equal-sized partitions is determined.
Then, in general, a time series ts belongs to partition j
if S ́[j-1] < U(ts.values) ≤ S ́[j]. Thus, f utilizes the splitting
points in S ́ to assign objects to partitions.

Workers read in total L samples at random offsets of
their input T, and compute their single dimensional
value given the space-filling curve U. Key-Value pairs
(ZCurveValue, C), C being a constant whose value is
irrelevant, are produced. Such pairs are produced in
order to use Spark capabilities to sort the keys into an
auxiliary list u1 , ..,uL. Once sorted, the Master collects
the L single-dimensional values generated by Workers
from which R-1 elements are taken starting at the
(L/R)-th element and subsequently at fixed-length
offsets L/R

to form a list S ́ of splitting points.

The rationale of the splitting points in S ́ is that they
provide good enough boundaries to sub-divide T into R
partitions since they come from randomly sampled
objects. Formally, the function is defined as shown in
Figure 8.

R-Tree Construction

In this phase, R individual R-Tree indices are built
concurrently. Workers map each time series to their
partition using the partitioning function f. Then the
time series are grouped by their partition.

Subsequently, every partition is passed to a Worker,
which independently builds an R-Tree on its input.
Next, every Worker outputs its constructed R-Tree, so
R R-Trees are written to the file system at the end of
this phase.

Since f balances partitions, it is expected that all
Workers will receive a similar amount of objects, thus
executing similar amount of work in constructing their
R-Trees. However, good balancing depends on the
underlying space-filling curve U used by f, and the
number of sampled time series L. More samples help in
tuning the splitting points, but incur in larger sorting
time of L elements.

Querying R-Trees with Spark

For retrieving N nearest neighbors of a given query

time series q, each R-Tree is independently queried in

parallel. The nearest neighbor method from the

downloaded Priority-RTree library is invoked in each

Worker. Each Worker will retrieve N nearest neighbors

of q that are sent to the Master. That is, the Master

receives N * R nearest neighbors of T. Then the Master

sorts all the nearest neighbors according to their

distance to T, and selects the N nearest neighbors.

iSAX

In order to support indexing over time series

represented with SAX words and to support similarity

queries the initial notation had to be extended.

Figure 5 denotes a SAX representation of a time series

whose equivalent SAX word would be {10,11,01,00}

(left) for the cardinality of 4 and {1,1,0,0} (right).

The time series would then be identified by writing the

sequence as either strings or integers. ({2,3,1,0} for the

first case) and marked as T(4,4) (Timeseries(cardinality,

word_length)).

The problem is that two time series might have

different cardinalities and this information cannot be

retrieved from the integer representation.

f(ts.values) ={

1, 𝑈(𝑡𝑠. 𝑣𝑎𝑙𝑢𝑒𝑠) ≤= 𝑆′[1]

𝑗, 𝑆′[𝑗 − 1] < 𝑆′, 𝑗 = 2, … 𝑅 − 1

𝑅, 𝑈(𝑡𝑠. 𝑣𝑎𝑙𝑢𝑒𝑠) > 𝑆′[𝑅 − 1]

 j, S’[j-1]

 Figure 8 Dividing T into R partitions

The iSAX representation therefore stores the binary

representation in order to make the cardinality visible

at any point.

The reason for which we need to know the cardinality

is that at some point we might have to compare two

time series with different cardinalities. As noticed from

the example above the values between breakpoints for

higher cardinalities are a subset of the values of their

lower counterparts. Knowing this allows us to derive

the second word from a word represented using higher

cardinality by removing the trailing bits of each symbol.

Another important reason will be explained in the

following paragraphs.

In order to compare two SAX symbols we define a

lower bounding approximation of the Euclidian

distance as follows:

𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑇2, 𝑆2) = √
𝑛

𝑤
√∑(𝑑𝑖𝑠𝑡(𝑡𝑖, 𝑠𝑖))2

𝑤

𝑖=0

Here n represents the length of the time series (16 in

this case) and w is the word size. The dist() function

represents the distance between two breakpoints and

is read-in from a lookup table. The lookup table is

generated using code provided on the project webpage

of [3]. A sample is given for cardinality of four in Table

2.

Table 2 Lookup table for cardinality 4

 00 01 10 11

00 0 0 0.67 1.34

01 0 0 0 0.67

10 0.67 0 0 0

11 1.37 0.67 0 0

In order to preserve the information about the

cardinality, we have extended our initial

implementation of SAX by storing it as an additional

attribute associated with the integer representation of

the symbol and then obtaining the binary

representation of the numbers on index insertion.

The intuition for building an index on top of this

representation is that similar time series will be

represented by the same SAX word. Thus, when issuing

a query we first transform it into its equivalent SAX

word and search for its matching counterpart in the

index.

When adding a file to an index, we simply add all the

time series with the same SAX word representation to

one index file.

The obvious drawback of this approach is that there

may be many time series mapping to one file. If this

happens and we issue a query that matches this file,

then we still have to sequentially traverse through all

the time series mapped to that file. In this case we have

no gain with the index.

In order to deal with this situations, the additional

information about cardinality is used in order to split

the data from one file to two files by promoting the

first symbol to a higher cardinality. This way, similar

time series will still be close and the index is balanced.

The promotion is further explained below.

A split occurs when the maximum amount of data

stored in one index file is greater than a user defined

threshold variable th.

Index Construction

The algorithm provided in [10] was implemented in

Java as a tree index with small modifications to the

index structure as well as adaptation to Spark and

other components of the system.

As described in [10] there are three types of nodes:

 Internal Node: this node contains pointers to

it’s children and the initial SAX word before

promotion. Every internal node was initially a

terminal node with pointers to timeseries

 Root Node: It has the same behavior as the

internal node, except it never contained any

info about time series

 Terminal Node: The terminal node is the only

type of node that contains pointers to time

series that match the SAX word of it’s

preceding parent and the binary string

obtained after promoting one symbol from it’s

predecessor.

The difference and benefit of our implementation is

that the terminal node does not store the actual data,

only the path to the time series that is being indexed.

This way the index structure itself is not very large. This

could be used for a future optimization of forcing the

SAX(T,4,16) = T16 = {1100,1101,0110,0001}

SAX(T,4,8) = T8 = {110 ,110 ,011 ,000 }

SAX(T,4,4) = T4 = {11 ,11 ,01 ,00 }

SAX(T,4,2) = T2 = {1 ,1 ,0 ,0 }

Figure 9 Example of SAX words with different cardinalities

index structure to be cached in the cluster nodes so the

traversal itself will be even faster.

Since our testing applications were comparison

between subsequences of time series with a million

entries, the index creation included storing an index

file with the data of the subsequence. The file was

stored in the same path as the original time series with

the extension “.sax” and identifier of the part.

It is worth noticing that this causes some redundancy

in data but the use case of indexing only a smaller parts

of a bigger dataset will perform better if we retrieve

that whole file which represents only the subsequence

from disk sequentially than randomly reading parts of

a larger file.

Ideally, as a future improvement, this should be an

optional parameter depending on the application.

The tree nodes are kept as a key-value pair identified

by the SAX word of the containing time series. Each

terminal node has a list of pointers to the time series

matching its id.

When inserting a time series to the index we first

obtain its SAX representation. We convert the int

symbols using the information about the cardinality to

its binary representation. We try to obtain a terminal

node with the matching key. In case such a node exist

there are two options:

a) The threshold has not been reached yet so we

just append information about the current

time series to the node

b) The time series causes the node to split.

When a split occurs, the first symbol is chosen

and moved to higher cardinality by adding a

trailing bit which is assigned in a round-robin

fashion. All time series pointed to by this node

are reassigned to the newly created terminal

nodes and this node becomes an internal

node.

In case we did not find a node that matches the iSAX

representation of the data, we create a new terminal

node and add it as a child of the root node.

In order for this functionality to be accessible to the

rest of the system and to take advantage of spark, the

interface takes RDD objects as input, one object for the

timestamps and another for the matching values but

the insertion itself is done in a sequential manner for

all the entries in one rdd object. This however does not

prevent the application user to insert multiple time

series represented as RDD objects in parallel.

Querying the iSAX index

For many queries it will not be necessary to read the

time series from disk. For example if we want to find

the approximate distance between the query and the

time series, it is enough to convert the query into a SAX

word and if there is not a matching word, calculate the

distance using the MINDIST function provided above.

The system provides this by implementing a function

that returns to the user this distance. This again can be

invoked as a spark function over RDD objects and done

in parallel.

In case the user has a need for an exact distance to the

provided time series there is a more advanced

algorithm that uses the fact that SAX was built on top

of PAA. In the first step of indexing, instead of

obtaining the SAX word for the query, we obtain the

PAA representation. Then we calculate the distance

among this representation and the node keys for the

index tree. This provides us with a tighter lower bound

and is calculated according to the following function:

𝑀𝐼𝑁𝐷𝐼𝑆𝑇_𝑃𝐴𝐴_𝑆𝐴𝑋(𝑇𝑃𝐴𝐴, 𝑆𝑆𝐴𝑋)

= √
𝑛

𝑤
√∑ {

(𝛽𝐿𝑖 − 𝑇𝑃𝐴𝐴𝑖)
2 𝑖𝑓 𝛽𝐿𝑖 > 𝑇𝑃𝑃𝐴𝑖

(𝛽𝑈𝑖 − 𝑇𝑃𝐴𝐴𝑖)
2 𝑖𝑓 𝛽𝑈𝑖 < 𝑇𝑃𝑃𝐴𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤

𝑖=0

Where n and w are length and word size respectively

and β Li is the lower bound of the particular segment

and βUi the corresponding upper bound. These bounds

are obtained from [10] .

After obtaining the node with the smallest distance to

the query, all-time series corresponding to that node

(or it’s children if it is an internal node) are fetched and

the Euclidian distances amongst the query and the time

series are returned in order to find the minimal.

System parameters

There are certain parameters that can be set by the

user and affect performance and result accuracy. The

larger the cardinality, the higher will be the granularity

of the data providing more accurate maps to symbols

and hence increasing the accuracy of approximate

searches.

Another important parameter that can be set is the

threshold that determines when the node splits.

Although, since we are not storing the actual time

series in the node but only pointers, this threshold can

remain high in order to prevent unnecessary splits.

Benefits of iSAX indexing

By traversing the tree trying to find the most similar

word to the query we prune the dataset and perform

expensive computation only on a subset of data. If we

find a matching terminal node then the distance to the

node is 0 and if we need to provide the exact distance

then we are guaranteed to find the minimal in the time

series mapped to that node. In case it is not the

terminal node for which we have a match, we traverse

trough the children of the node in order to find the

terminal node which matches the most to the

upgraded cardinality of the query by calculating the

distance using the MINDIST or MINDIST_PAA_SAX

functions.

Clustering

Clustering is used to categorize data into groups, which

are not predefined, but rather defined by the time

series data itself, based on similarity measures

between time series. We use the affinity propagation

algorithm [11], which considers all data points as

possible centers - exemplars.

The algorithm utilizes a similarity matrix S, where S(i,k)

indicates how well the data point with index k is suited

to be the exemplar for data point i. The similarity

matrix is constructed by computing the dynamic time

warping distance between time series, and set to the

negative value of the distance, as the purpose is to

minimize the error.

Further, the algorithm mainly consists in updating two

matrices: responsibility matrix and availability matrix.

Messages passed between points reflect the current

affinity that a given data point has for choosing another

data point as its exemplar. The responsibility matrix R

describes how appropriate is a data value to serve as

the exemplar for another data. An entry r(i,k) of the

matrix, shows how representative k is to be the

exemplar for i, in relation to other candidate exemplars

for i. The availability matrix A describes how

appropriate would be for a value to pick another value

as its representant. For an entry a(i,k) of the matrix, we

compute how appropriate it would be for i to pick k as

its exemplar, also considering the preference of other

points for k as an exemplar.

The responsibility and availability matrices are

initialized with zeroes, and further updated according

to the formulas:

The procedure can be terminated when no change

passes a given threshold, or after a selected number of

iterations.

Unfortunately this feature has not been fully

implemented in our system due to the lack of time. We

have started writing a parallel algorithm of affinity

propagation using map/reduce, based on [12], it is not

yet complete and integrated. The idea was to break

down into separate map/reduce jobs for the

availability, responsibility and similarity matrices.

User interface

In order for the above components to be available to

the user and make the application programming as

easy as possible we have implemented a command line

utility built by extending the Scala REPL [13] which

allows mixing Scala variables into the system.

The idea was to create a friendly user interface

providing functions calls such as those implemented in

matlab. The User Interface was particularly hard to

implement since it included intercommunication

between the modules. The complications arose from

the decision to code both in Scala and in Java. Even

though Scala supports Java functionalities it turned out

the opposite is quite difficult to implement. The

storage interface was writen entirely in Scala but the

rest of the system was done in Java so the command

line module had to enable interoperability. We are still

working on fully integrating in a user friendly way all

the modules in the system.

To issue a query via the command line the user writes

a pseudo-sql statement starting with a single quote (‘).

The command is then converted to Scala and executed.

Some of the basic commands supported by the

system are:

The system supports also functions to manipulate the

database, start/stop spark etc., find the minimum,

maximum or mean value of the time series. We enable

r(i, k) = s(i, k) − max{a(i, k′) + s(i, k′)}

a(i, k) = min{0, r(k, k) + sum(max{0, r(i′, k)}), for i ! = k

a(k, k) = sum(max{0, r(i′, k)})

Time series creation
scala> 'CREATE timeseriesX (column1 INT, column2
FLOAT) BACKEND ColumnStore
Column selection
scala> 'SELECT column1, column3 FROM
timeseriesY WHERE column1 > 2 AND column1 < 3
Data insertion
scala> 'INSERT csv("path/to/file") INTO timeseries;

Transformation over a timeseries

scala> import past.Transformations

scala> 'SELECT @Transformations.mean(columnX)

FROM timeseriesY

scaling, shifting and normalization through the

transformations.

Another very interesting feature is allowing users to

mix Scala variables into the commands and we will

show an application of that in the following section

where we describe our experiments.

Experiments

We performed a modest set of tests over the individual

modules in order to explore their features.

We decided to test the similarity queries by converting

a human DNA string to time series and find the smallest

distance to a smaller DNA set belonging to an animal.

Our ideal test case was to use the range index to

extract subsequences of both DNAs and then index the

data using iSAX and the R-Tree Index. We will provide

the description of some of those tests. The tests not

included are those who were not entirely integrated

into the system and are still in the debugging phase.

The human DNA contained ~1 million entries which

were split into subsequences of 1024.

We have implemented an application performing this

similarity search both in Hadoop and on top of our

system when using no indexing. Then we have

implemented this using the iSAX index in order to

compare results.

In order to insert the DNA as time series without

converting it by an external script we used the

functionality of our system to mix Scala variables in the

command line.

The results we obtained by using our index showed

that the execution time was less than when using the

map/reduce implementation of the sequential scan

but the index creation time added some overhead to

the overall runtime.

Finally we noticed that when running with different

cardinalities for iSAX we got slightly different results in

the sense that the exact distance obtained was smaller

than the distance when comparing to use-cases with

smaller cardinalities. This is due to the higher

granularity of the approximation.

Challenges

The project was a big challenge for all of us especially

for our team leader. It was hard to coordinate 9 people

and we experienced problems due to bad inter-team

communication regarding sub-parts of the project.

 Also, perhaps the choice that we made at the beginning

to combine Java and Scala was not a very good one. It

turned out to be a difficult obstacle to overcome in

order to successfully integrate the project components

into one system. This has been somewhat mitigated

but the progress would have been much better had we

taken another direction.

Future work

Building such a complex system is never straight

forward and along the way some ideas arose of how it

could be improved or even how some novel modules

can be added.

One direction that might be interesting to follow is

creating bitmap indices for indexing time series values.

The idea would be as follows:

Let’s say that our goal is to find “interesting” time
series and, in them, “interesting” periods of time. More
formally, we define a time series as a discrete set of
observations X = x1 , x2 , ...xn at consecutive time steps

t = 1,2...n (ordered in time). Given a massive set of time
series XN and a query q with an upper and a lower

threshold ou and ol (with ou ≥ ol) for the observation

as well as an upper and lower bound tu and tl (with tu
≥ tl) for time, we want to find all time series X ∈ XN

where xt is between the two thresholds, i.e., ou ≥xk ≥ol
and tl ≤t≤tu.

One way to answer such a query is to use a classic
bitmap index to index all the observations, then
retrieve all the observations that are in the desired
range using the index and lastly keep only those

scala> 'CREATE humanDNA (encodedBase BYTE)

BACKEND RowStore

scala> val dna: Iterator[Byte] =
scala.io.Source.fromPath("path/to/dna").map({ case 'A' =>
2; case 'G' => 1; ...})

scala> 'INSERT @dna INTO humanDNA

Figure 10 3D bitmap matrix

observations that fall in the desired time interval. The
main limitation of this approach, is that a bitmap index
which indexes all the values of all the time series of the
data set will have a very large size. In order to control
the size of the bitmap index, techniques like binning
(i.e. discretization) and compression are typically used.
Even so, the size of the index will be large for a time
series database containing a huge amount of very long
time series.

Time series frequently have considerable similarity
between them. Additionally, consecutive observations
in one time series tend to be correlated. These
properties can be exploited for compressing the
bitmap index. The main idea is that once we obtain a
bitmap representation for each one of the time series,
these representations can be grouped together in
order to be jointly compressed. Such a group is
presented in the following figure, where the bitmaps of
the time series are stacked the one on top of the other
to create a 3D bitmap matrix.

The compression is performed by representing a 3D
chunk of the matrix where all the bits have the same
value with just its position inside the matrix and its bit
value, instead of separately storing every bit. This
procedure is similar to run-length encoding where a list
of consecutive identical bits is represented by its length
and its bit value, but in this approach compression is
performed along 3 dimensions. The first dimension is
the time step, the second dimension is the observation
bin, and the third dimension is the time series. To

identify 3D chunks where all the bits are identical, the
space can be hierarchically subdivided using e.g. quad
tree decomposition, until all the bits in one chunk are
identical.

This approach is easily parallelizable as time series are
first clustered based on their similarity. Compressed
bitmap indices, one for each cluster, can be built in
parallel and then used to answer queries in parallel.

Another interesting idea is exploring the iSAX logic of
indexing the data for a clustering algorithm. It is
actually quite intuitive being that similar datasets map
to the same SAX word and in that sense, the same way
a SAX word identifies a tree node, it can identify a node
in the cluster. This could be a data preprocessing step.

Last but not least, as mentioned in the text in the
previous chapters, there are many ways to improve our
existing components, such as allowing the user
flexibility in whether to save the index files on disk or
keep pointers to the original file or keep the index
structure cached in the cluster nodes.

References

[1] M. C. M. J. F. S. S. I. M. Zaharia, "Spark: Cluster Computing with Working Sets," HotCloud 2010. June 2010..

[2] C. P. Esling, "Time Series Data Mining," ACM Computing Surveys.

[3] E. C. K. P. M. a. M. S. Keogh, "Dimensionality reduction for fast similarity search in large time series databases.,"

2000.

[4] E. K. S. B. J.Lin, "A Symbolic Representation of Time Series, with Implications for Streaming Algorithms," June 13.

[5] "http://spark.apache.org/mllib/".

[6] "http://www.cs.waikato.ac.nz/ml/weka/".

[7] A. Guttman, "R-Trees: A Dynamic Inex Structure for Spatial Searching," in SIGMOD, 1984.

[8] M. d. B. K. Y. L. Arge, "The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree.," in SIGMOD ,

2004.

[9] G. M. Morton, "A computer Oriented Geodetic Data Base and a New Technique in File Sequencing," IBM Ltd,

Ottawa, Canada, 1966.

[10] J. K. E. Shieh, "iSAX: Indexing and Mining Terabyte Sized Time Series," Proceedings of ACM SIGKDD , 2008.

[11] D. D. Brendan J. Frey*, "Clustering by Passing Messages Between Data Points".

[12] "Parallel Hierarchical Affinity Propagation with Mapreduce," [Online]. Available:

http://www.academia.edu/6779337/Parallel_Hierarchical_Affinity_Propagation_with_MapReduce.

[13] "Scala REPL," [Online]. Available: http://www.scala-lang.org/old/node/2097.

