
Introduction 

A time series represents a collection of organized data 

obtained from sequential measurements over time. In 

order to extract some meaningful information out of 

that data and interpret the observed values, data 

mining of time series can be performed, which consists 

of extracting knowledge from the shape of the time 

series data. Today, time series data and time series 

data mining is essential for many applications since 

both scientific datasets but also data related to 

demographic, finance etc. is tracked through time. 

However efficient mining of such data is a problem 

mainly because of its high dimensionality. This makes 

research in this area of particular interest and recently 

there have been many publications related to efficient 

mining of time-series data. 

The goal of this project was to build a framework that 

would offer efficient solutions to storing, retrieving and 

mining time series data.  

This document will give a brief overview of the 

components of the system as well as specific 

implementation details of individual components and 

a discussion on the challenges and possibilities for 

further development.  

Framework overview 

Being that the system is meant to process large 

datasets we decided to build it on top of Spark [1] due 

to its support for fast real-time queries and built-in 

methods for iterating over the data and mapping 

objects to programs. Another reason is that Spark 

supports loading data from an external file and storing 

it into a RDD object.  

An overview of the components of our system is shown 

in Figure 1 and we will describe each of them in the rest 

of the document.  

The system is designed to be user friendly and enable 

easy application development on top of the 

framework.  

The user loads the data via the command line. Once the 

data is loaded it is stored in the system and the user 

can perform transformations, compression algorithms 

or indexing on such data. After these transformations 

and data organization, the user can write an 

application using the underlying structure. 

Storage 

A time series is defined by a timestamp which identifies 

one row and corresponding values for that timestamp. 

Due to the nature of the data, for one time series there 

is more correlation amongst the consecutive values in 

a column than the values in the same row. We decided 

to implement a column store by storing the different 

values (columns) in separate files and the timestamps 

in a file of its own.  

A diagram of the storage system is provided in Figure 

2. A time series is defined with a Schema that enforces 

constraints on the number of columns and their types 

and pointers to the files containing the columns.  

 

Figure 1 Storage system 

The benefit of the data being  spatially ordered is that 

we don’t need to read the timestamps every time, all 

we need is its timeframe defined by start and end 

timestamps as well as an ε which represents the 

difference between two consecutive timestamps.  
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Another built-in feature of the storage system is 

support for range queries. This is implemented so that 

parts of the column (range) can be stored in multiple 

files in order to enable splitting these pieces across 

multiple machines and operations on such intervals 

can be done in parallel. In such cases the column files 

are identified by adhering to the following naming 

convention: name{Part_Identifier}  (f.e. “price0”, 

“price1” etc.)  

The main reason for implementing this feature is the 

way Spark handles range requests. Namely, the 

function that takes a part of an RDD object, take(n: int), 

converts the entire data to an array before returning 

the data to the user. By splitting the dataset into 

intervals, we will need to perform the conversion to an 

array for the first and last column of the data range in 

order to perform the take function on the data. The 

same is valid for drop(n:int).  

Implementation of interval split  

How is the split performed and how does it affect 

operations such as inserting a new time series? The 

mapping to these files is stored in an interval file whose 

format is shown in Figure 3. The Identifier mentioned 

above that is appended to the name of the time series 

is the value mapped in the interval file to a certain 

range. 

 

The splitting range is not done according to some fixed 

interval but rather trying to balance the number of 

entries per file.  

When loading a time series into the system the values 

are split by creating the Interval file according to the 

values of the timestamp column. 

A drawback of this approach is slower insertion of new 

time series into the data store due to the splitting of 

data.  

If the user knows he does not perform range queries, 

or this optimization is not of importance for him we 

provide the method insertWithNoSplit which does not 

provide the separation of values into multiple files.

  

Row Store 

As an addition to the system we added support for 

row-store in case the user finds that for a particular 

application that will be more beneficial.  

This is completely transparent to the user. The type of 

storage is chosen when the time series is created and 

the system later on uses the type of store provided for 

that time series without any further intervention from 

the user. 

Transformations 

Due to the high dimensionality of such data there is 

always a need to minimize the dimension and remove 

noise in the data. The data is usually preprocessed in 

order to remove the noise or create a representation 

of the data that reduces its dimensionality. In addition 

to this, performing transformations over the data 

shows gain in storage and speedup. Any new 

representation seeks to fulfill as much as possible of 

the following requirements: 

 Significant reduction of data dimensionality 

 Emphasis on fundamental shape 

characteristics on both local and global scales 

 Low computational cost of the new 

representation 

 Ability to create a good reconstruction from 

the reduced representation 

 Insensitivity to noise in case the representation 

itself is not already meant to reduce noise 

Thus data transformation can be defined as follows:  

Given a timeseries T=(t1,…,tn), construct a model �̅� of 

reduced dimensionality �̅� (�̅� ≪ 𝑛) such that �̅� closely 

approximates T. More formally |R(�̅�) – T | < εr , R(�̅�) 

being the reconstruction function and εr being an error 

threshold. [2] 

Our system supports transformations that create a 

new representation of the time series but also 

transformations that perform basic computation over 

the data. 

Data :  

 time ---- value 

 1   a 

 2  b 

 .. 

 1000  c 

 .. 

 2000  d 

 

Index file : 

 Interval  Identifier 

 1 - 1000   0 

 1001 - 2000  1 

 2001 - 3000  2 

 ... 

 Figure 3 Interval (index) file structure 



Power Transformations 

Even though simple, a power transformation can be 

very effective as a way of stabilizing the variance across 

time. Data will become more normally-distributed and 

less skewed. We are using the square root and the 

logarithmic transformations. 

Mean/Mode/Range/Subtract Mean/Standard 

Deviation/Normalization 

These are necessary functions used to compute 

information about time series, as their name says, 

generally used in other transformations as well. The 

subtract mean filter can be used to remove noises with 

low frequencies. All these functions and 

transformations can be performed on complete data, 

or on partial subsets. As data can be observed 

periodically, it can present more variance for different 

periods. Thus it is generally useful to compute the 

standard deviation on subsets of periods, and create a 

new, normalized time series.  

Moving Average Smoother 

A moving average linear filter is generally used in time 

series to smoothen short-term fluctuations on data, 

and highlight longer trends and cycles. Having a fixed 

subset size, each entry in the time series is recomputed 

by averaging a fixed subset of the series. For an item, 

the average is computed by using both items before 

and after the current one, except for the first and last 

element in the series. Thus, for each element the 

subset will be different, but the resulting values will be 

closer.  

Given a time series X, we create the new time series Y. 

For the new series, its m-th value represents the 

average of X(m), the first k values before m, and the 

following k values after m, where k is the fixed subset 

size. The resulting series will be smoother than the 

original, as consecutive values of Y will have many 

common values from X in their computed average.  

Dynamic Time Warping Distance: 

For computing the similarity measure, we had to take 

into account that time series may not overlap exactly 

with respect to time, and that there can be more 

similarities if we consider a shifting in time. The 

dynamic time warping distance is generally used for 

measuring similarity between two temporal 

sequences, as it gives better results than a simple 

distance measure, such as Euclidian distance. When 

computing the similarity measure of two series, we are 

allowed to extend time sequences by repeating values.  

Shift and Scale 

A degree of similarity between two time series can also 

be achieved if one can be scaled and shifted such that 

it is shaped in a form closely resembling the other. 

These transformations can be local, on pairs of 

subsequences, and in this case, the two time series are 

similar if they share enough pairs of contiguous similar 

subsequences. The transformations can as well be 

directly global. 

Piecewise Aggregate Approximation (PAA)  

This transformation [3] reduces the dimensionality of 

time series data". Then you say that the segments are 

disjoint and modeled using regression. To my 

knowledge they are not modeled using regression (but 

they are indeed disjoint). Remove the thing about 

regression. The idea is to have a fixed frame size, and 

minimize dimensionality by using the mean values on 

each frame. If we consider a time series X, and a frame 

size k, the new time series Y will be composed of 

length(X) / k values, which represents the average on 

each of the frames. The segments are disjoint and 

modeled using regression. Figure 4 shows an example 

of the approximation of a given time series. 

 It is considered a non-data adaptive representation 

being that the intervals are fixed regardless of the type 

Figure 4 PAA Representation of timeseries 



of the data and provides a foundation for the next type 

of transformation.  

Symbolic Aggregate Approximation (SAX)  

Taking as input the reduced time series obtained using 

PAA, it discretizes it into a predefined alphabet of 

symbols, with a given cardinality. The range obtained 

from PAA values is split into c subsets, where c is the 

chosen cardinality. Each subset of values is mapped to 

a different symbol, where the symbol in our case is a 

natural number. The SAX [4] representation changes 

every entry in the time series with its corresponding 

symbol.  

Figure 5 shows the symbolic representation of a time 

series of length 16 with cardinalities of 4 and 2. This 

representation will be further explored when building 

an index based on the symbolic representation of this 

data.   

 

Figure 5 SAX representation of timeseries 

Compression 

The most obvious step when it comes to processing big 

data is reducing the amount of data. In the sense of 

spatial data series, compression is a means of 

transforming that data such that the total amount of 

data being stored is reduced. Our goal was to find a 

compression scheme supporting the characteristics of 

data obtained from a simulator over time, where data 

points that are close have similar values. An additional 

requirement we found crucial for a compression 

scheme is fast decompression speed as the data will be 

frequently accessed and we wanted to be able to also 

perform queries on the compressed data.  

Compression using Piecewise Linear Regression (PLR) 

The data is divided into a series of disjoint segments 

such that each segment is a good representative of the 

containing data and then we try to fit a polynomial 

model to each segment.  

For each of the segments we store: 

 Start time, End time 

 Minimum and maximum values of the segment 

 Model coefficient 

After creating this model we don’t store raw data 

anymore but use the stored variables and the model in 

order to do further computations. 

In order to form this data structure we have opted for 

two approaches: Bottom-up and Sliding Window. 

In Figure 6 we show the process of compression when 

using the bottom-up approach. The idea is to treat 

every two adjacent points as a segment and keep 

merging adjacent segments in an agglomerative 

fashion until a threshold is reached. This threshold is 

defined as a mean absolute error allowed in modelling 

a segment.  

Into this bottom up approach we integrated the 

Adaptive Piecewise Constant Approximation (APCA) 

model where we take the average of the time segment 

as the model. The reason for implementing this is that 

it enables similarity queries for time. 

This is an offline method being that it is aware of the 

global view of the data while building the model. 

In contrary to this, compressing using a sliding window 

approach is an online model where we start with a 

fixed window size which we keep expanding until a 

 

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7 Seg 8 Seg 9 Seg 10

Least error on merging out of all adjacent segments

Merge if the error on merging is below the threshold (MAE)

Seg 1 Seg 2 Seg 3 - 4 Seg 5 Seg 6 Seg 7 Seg 8 Seg 9 Seg 10

Merge if the error on merging is below the threshold (MAE)

Seg 1 Seg 2 Seg 3 - 4 Seg 5 - 6 Seg 7 Seg 8 Seg 9 Seg 10

Merge if the error on merging is below the threshold (MAE)

Least error on merging out of all adjacent segments

Seg 1 Seg 2 - 3 - 4 Seg 5 - 6 Seg 7 Seg 8 - 9 - 10
Figure 6 Compression: Bottom-up approach 



certain threshold is reached.  The process is aware only 

about local data.  

This technique of creating a polynomial model of the 

data using a user defined N as the degree of the curve 

enables us to answer queries without having to worry 

about the missing values which can be reconstructed.  

The degree of the curve along with the compression 

type (regression or APCA) and the maximum mean 

error can be tuned by the user in order to impact 

performance. A full list of tunable options can be 

obtained on the Wiki page of the project.  

Query support 

The model-view representation of the data enables 

efficient query processing over the modeled data 

without the need for accessing raw data.  

The types of queries we were most interested of 

supporting are: 

 Time point or time range queries: returns the 

values at certain time point or in a time range 

 Value point or value range queries: returns 

timestamps for which the values are equal to 

the query or they match some predefined 

condition 

 Composite queries: returns a key-value pair of 

timestamp and value and performs a search 

for a match in both dimensions: time and value 

The first step to answering such queries is finding the 

qualifying segments (segments whose 

timestamp/value correspond to the range defined in 

the query). We have implemented an index to support 

this.  

As the timestamp values are not uniformly distributed, 

it is not possible to retrieve a timeseries entry using 

only its timestamp value. This type of queries are 

common enough and as a result an interval index is 

used on the timestamp field. 

The index is implemented as a disk interval tree that 

stores associations of ranges of timestamps to entry 

row numbers. 

The interval index is optional and it requires that the 

timestamp of each new entry added is older than any 

of the timestamps of the existing entries.is process.  

Once these segments are identified the data can be 

extracted in two ways depending on the query: the 

time point queries can efficiently be performed by just 

using the model coefficients whereas the other queries 

can be supported by sampling on all qualifying 

segments in parallel. In the later case each worker 

node does sampling and filtering on its own partition 

and returns the required output.  

The sampling granularity can be defined by the user.  

Implementation 

The underlying framework as for the rest of the system 

was Spark. 

For the bottom-up approach we took advantage that 

the modelling has a global overview of the system and 

partitioned the data so that processing of each 

partition was done in parallel.  

We first opted to use the MLlib [5] but it turned out 

that it was not compatible with the approach we 

wanted to implement for bottom-up. The reason was 

that MLlib requires parallelized objects to work upon 

but Spark does not allow the creation of parallel 

objects while working on partitions if the number of 

partitions is greater than the number of working nodes. 

 

Data point 1 
(tmp_seg1)

Merge if the error on merging is below the threshold (MAE)

Data Point 1
(tmp_seg1)

Data Point 2
(tmp_seg2)

Read

Read

Read

Merge if the error on merging is below the threshold (MAE)

Read

True

False

Data Point 1,2
(tmp_seg1)

Data Point 3
(tmp_seg2)

DATA STREAM

Data point 1,2
Segment 1

Data point 3
(temp_seg2)

Data Point 4
(tmp_seg3)

Figure 7Compression: Sliding Window approach 



Therefore for the bottom-up approach we used Weka 

[6], a machine learning library for creating regression 

models. 

In order to support the sliding window model we 

needed to adapt the algorithm to Spark. Spark allows 

only extracting the first N elements from a parallelized 

object hence making arbitrary access to a sub-section 

of data impossible.  

We were able to mitigate this behavior by applying the 

sliding window approach sequentially, partition by 

partition followed by converting the subsections of a 

partition into parallelized objects forwarded to MLlib. 

The compression ratio for a test dataset representing 

individual household electric power consumption for a 

duration of 4 years using the bottom-up approach is 

displayed in Table 1. 

Indexing  
A crucial component to every big data mining system is 

the support of efficient retrieval of the data. 

In addition to adding support for efficient range 

queries in the storage layer of the system we 

implemented two types of indexes for similarity 

queries.  

Similarity search is of fundamental importance for a 

variety of time series analysis and data mining tasks. 

Consider stock time series, one may expect having 

queries like: 

Query1: find all stocks which behave “similar” to stock 

A. 

Or consider marketing time series: 

Query2: find past sale patterns that resemble last 

month. 

Or a scientific weather database: 

Query3: find past days in which solar wind showed 

similar patterns to today’s. 

In order to compare two time series we cannot use 

exact match like in the case of string matching. We 

need to use a distance function to compare two time 

series. The most popular distance function is the L-2 

distance.  

There are two important kinds of queries that we 

would like to support in time series database, range 

queries (e.g., return all sequences whose distance is 

within an epsilon of the query sequence) and nearest 

neighbor (e.g., return the k closest sequences to the 

query sequence). The brute force approach to 

answering these queries, sequential scanning, requires 

comparing every time series Y to X. Clearly this 

approach is unrealistic for large datasets 

A traditional approach for indexing time series in order 

to answer efficiently similarity queries is to use a 

spatial access method. A time series with n values can 

be considered as a point in a n-dimensional space. This 

is why it could be indexed by a Spatial Access Method, 

such as the R-Tree [7] . These methods partition the 

space into regions along a hierarchical structure for 

efficient retrieval.  However, typical time series contain 

over a thousand data points and most SAM approaches 

are known to degrade quickly as dimensionality 

increases. As R-Trees and their variants are victims of 

the phenomenon known as “dimensionality curse”, a 

solution for their usage is first to perform 

dimensionality reduction.  

Even so, in order to perform dimensionality reduction, 

we cannot simply choose an arbitrary compression 

algorithm. It requires a technique that produces an 

indexable representation. For example, many time 

series can be efficiently compressed by delta encoding, 

but this representation does not lend itself to indexing. 

In contrast a representation like DFT lends itself to 

indexing, with each Fourier coefficient mapping onto 

one dimension of an index tree. In order to guarantee 

no false dismissals (i.e. qualifying objects are missed 

because they appear distant in index space) the 

distance measure in the index space must satisfy the 

following condition: 

Dindex_space (A,B) <= Dtrue (A,B).  

That is to say, we can define a distance measure on the 

reduced abstraction that is guaranteed to be less than 

or equal to the true distance measured on the raw 

data. The tighter the bound, the better. Ideally we 

would like Dindex_space (A,B) = Dtrue (A,B). Post-

Table 1 Compression ratio and data size before and after 
compression 



processing is performed by computing the actual 

distance between sequences in the time domain and 

discarding any false alarms (i.e. objects that appear to 

be close in the index but are actually distant). 

To sum up, efficient indexing for time series similarity 

can be achieved with the following three steps: 

1) Establish a distance metric from a domain expert (in 

our case we use Euclidean distance). 

2) Produce a dimensionality reduction technique that 

reduces the dimensionality of the data from n to N, 

where N can be efficiently handled by a SAM. 

3) Produce a distance measure defined on the N-

dimensional representation of the data that obeys 

Dindex_space(A,B) ≤ Dtrue(A,B). In this project we 

implemented the PAA dimensionality reduction of 

timeseries as well as SAX which is based on PAA.  

We created multidimensional index structures based 

on these representations in order to be able to 

efficiently support similarity queries.  

R-Tree Index 

In PAA a time series is divided into equally-sized 

segments and the mean values of the data points that 

fall within each segment is recorded. Therefore, as the 

size of the segments is fixed, only one number per 

segment is required in order to approximate a time 

series, the number that records the mean value of all 

the data points in a segment. 

The PAA representation defines a N-dimensional 

feature space. In other words, the proposed 

representation maps each time series S = {s1,...,sn} to 

a point S = {sv1,…, svN} in a N-dimensional space. Each 

aggregate segment maps onto one dimension of the 

index tree. We refer to the N-dimensional space as the 

PAA space and the points in the PAA space as PAA 

points. An example is give in Figure 4. 

Data points in time series tend to be correlated with 

their neighbors (a phenomenon known as 

autocorrelation). This is why the PAA representation of 

the time series is efficient: as data points are correlated 

with their neighbors, we can efficiently represent a 

"neighborhood" of data points with their mean value.  

A distance measure DR defined in the index space that 

has the lower bounding property described above and 

thus can guarantee no false dismissals is the following:  

 

Building R-Trees with Spark 

A MapReduce-based algorithm was adapted for Spark 
and was used for building the R-Tree index structure in 
parallel fashion. To be exact, the index structure used 
is a variant of the classic R-Tree, the Priority R-Tree [8]. 
Existing Java code which was downloaded from the 
web (http://khelekore.org/prtree/) was used for 
building the Priority R-Tree index. As Spark requires the 
objects it manipulates to be serialisable in order to 
send them over the network to the Worker nodes, we 
had to slightly modify the code to make it serialisable.   

The definition of the problem is as follows. Let T be a 
compressed time series data set composed of time 
series tsi, i=1,…, |T|. Each time series ts has two 
attributes <ts.name, ts.values>, where ts.name is a 
unique identifier for a time series and ts.values is a 
vector containing the values of the compressed time 
series. This vector can be interpreted as one point in 
some multidimensional domain as it was explained in 
the previous section.   

The proposed method consists of two phases which are 
executed the one after the other. First, the time series 
are partitioned into groups. Then, each group is 
processed to create an R-Tree for each partition. These 
phases are executed on a Spark cluster. 

The two main phases of the algorithm are: 

1. Computation of a partitioning function f. The inputs 
for this phase are the data set T, a sample quantity L 
and a positive number R, which represents the number 
of partitions. The purpose of f is to assign any object of 
T into one of the R possible partitions. The function is 
computed in such a way that applying f on T yields R 
(ideally) equally-sized partitions. In practice, minimal 
variance in sizes is acceptable. At the same time, f 
attempts to put objects that are close in the spatial 
domain in the same partition. The output of this phase 
is a function f which takes as input a time series’ vector 
of values ts.values and outputs a partition number. 
Note that no actual partitioning or data moving 
happens at this point. The next phase utilizes f for such 
purpose. 

2. R-Tree construction. During this phase, the function 
f calculated in the first phase is used by Workers to map 
each time series to its partition. Then the time series 
are grouped according to their partition, and R Workers 
build R independent R-Tree indices simultaneously on 
their input partitions. The output of this phase is a set 
of R independent R-Trees. 

More details about these phases are provided in the 
following subsections. 

http://khelekore.org/prtree/


Partitioning Function 

The purpose of the partitioning function f is to provide 
a means for assigning objects of T to a pre-defined 
number of R partitions. We use the idea of mapping 
multi-dimensional spaces into an ordered sequence of 
single-dimensional values via space-filling curves for 
this purpose. More specifically, the Z-order curve [9] is 
used. The time series’ vector of values ts.values is 
mapped into a Z-curve. The partition number of a time 
series ts is determined by f(ts.values), which evaluates 
to a value from the set {1, 2, .., R}. By using a space-
filling curve, the partitioning function f achieves two 
goals: 
 • Generate R (almost) uniformly-sized partitions, 

and  

 • Preserve spatial locality. If two distinct time 
series ts1 and tsp are close to each other  
in the spatial domain, then they are likely to be 
assigned to the same partition, i.e. f(ts1.values) 
= f(ts2.values). 

The algorithm to define f is as follows.  

The input data set is partitioned via data sampling. 
Given a data set T and target number of partitions R, 
the algorithm takes L sample time series from T, 
distributes them among M Workers (that is, each 
Worker samples L/M

 
objects) and emits their single-

dimensional values S={U(tsi.values), i=1, .., L} given a 

space filling curve U. Then S is sorted, and a list S ́ of R-
1 splitting points that split the ordered sequence of 
samples into R equal-sized partitions is determined. 
Then, in general, a time series ts belongs to partition j 
if S ́[j-1] < U(ts.values) ≤ S ́[j]. Thus, f utilizes the splitting 
points in S ́ to assign objects to partitions.  

Workers read in total L samples at random offsets of 
their input T, and compute their single dimensional 
value given the space-filling curve U. Key-Value pairs 
(ZCurveValue, C), C being a constant whose value is 
irrelevant, are produced. Such pairs are produced in 
order to use Spark capabilities to sort the keys into an 
auxiliary list u1 , ..,uL. Once sorted, the Master collects 
the L single-dimensional values generated by Workers 
from which R-1 elements are taken starting at the 
(L/R)-th element and subsequently at fixed-length 
offsets L/R 

 
to form a list S ́ of splitting points. 

The rationale of the splitting points in S ́ is that they 
provide good enough boundaries to sub-divide T into R 
partitions since they come from randomly sampled 
objects. Formally, the function is defined as shown in 
Figure 8. 

R-Tree Construction 

In this phase, R individual R-Tree indices are built 
concurrently. Workers map each time series to their 
partition using the partitioning function f. Then the 
time series are grouped by their partition. 

Subsequently, every partition is passed to a Worker, 
which independently builds an R-Tree on its input. 
Next, every Worker outputs its constructed R-Tree, so 
R R-Trees are written to the file system at the end of 
this phase. 

Since f balances partitions, it is expected that all 
Workers will receive a similar amount of objects, thus 
executing similar amount of work in constructing their 
R-Trees. However, good balancing depends on the 
underlying space-filling curve U used by f, and the 
number of sampled time series L. More samples help in 
tuning the splitting points, but incur in larger sorting 
time of L elements. 

Querying R-Trees with Spark 

For retrieving N nearest neighbors of a given query 

time series q, each R-Tree is independently queried in 

parallel. The nearest neighbor method from the 

downloaded Priority-RTree library is invoked in each 

Worker. Each Worker will retrieve N nearest neighbors 

of q that are sent to the Master. That is, the Master 

receives N * R nearest neighbors of T. Then the Master 

sorts all the nearest neighbors according to their 

distance to T, and selects the N nearest neighbors.  

iSAX  

In order to support indexing over time series 

represented with SAX words and to support similarity 

queries the initial notation had to be extended. 

Figure 5 denotes a SAX representation of a time series 

whose equivalent SAX word would be {10,11,01,00} 

(left) for the cardinality of 4 and {1,1,0,0} (right). 

The time series would then be identified by writing the 

sequence as either strings or integers. ({2,3,1,0} for the 

first case) and marked as T(4,4) (Timeseries(cardinality, 

word_length)). 

The problem is that two time series might have 

different cardinalities and this information cannot be 

retrieved from the integer representation.  

f(ts.values) ={

1, 𝑈(𝑡𝑠. 𝑣𝑎𝑙𝑢𝑒𝑠) ≤= 𝑆′[1]   

𝑗, 𝑆′[𝑗 − 1] < 𝑆′, 𝑗 = 2, … 𝑅 − 1

𝑅, 𝑈(𝑡𝑠. 𝑣𝑎𝑙𝑢𝑒𝑠) > 𝑆′[𝑅 − 1]

   j,   S’[j-1]  

 Figure 8 Dividing T into R partitions 



The iSAX representation therefore stores the binary 

representation in order to make the cardinality visible 

at any point.  

The reason for which we need to know the cardinality 

is that at some point we might have to compare two 

time series with different cardinalities. As noticed from 

the example above the values between breakpoints for 

higher cardinalities are a subset of the values of their 

lower counterparts. Knowing this allows us to derive 

the second word from a word represented using higher 

cardinality by removing the trailing bits of each symbol. 

Another important reason will be explained in the 

following paragraphs.  

In order to compare two SAX symbols we define a 

lower bounding approximation of the Euclidian 

distance as follows: 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑇2, 𝑆2) =  √
𝑛

𝑤
√∑(𝑑𝑖𝑠𝑡(𝑡𝑖, 𝑠𝑖))2

𝑤

𝑖=0

 

 

Here n represents the length of the time series (16 in 

this case) and w is the word size. The dist() function 

represents the distance between two breakpoints and 

is read-in from a lookup table. The lookup table is 

generated using code provided on the project webpage 

of [3]. A sample is given for cardinality of four in Table 

2.  

Table 2 Lookup table for cardinality 4 

 00 01 10 11 

00 0 0 0.67 1.34 

01 0 0 0 0.67 

10 0.67 0 0 0 

11 1.37 0.67 0 0 

 

In order to preserve the information about the 

cardinality, we have extended our initial 

implementation of SAX by storing it as an additional 

attribute associated with the integer representation of 

the symbol and then obtaining the binary 

representation of the numbers on index insertion. 

The intuition for building an index on top of this 

representation is that similar time series will be 

represented by the same SAX word. Thus, when issuing 

a query we first transform it into its equivalent SAX 

word and search for its matching counterpart in the 

index.  

When adding a file to an index, we simply add all the 

time series with the same SAX word representation to 

one index file. 

The obvious drawback of this approach is that there 

may be many time series mapping to one file. If this 

happens and we issue a query that matches this file, 

then we still have to sequentially traverse through all 

the time series mapped to that file. In this case we have 

no gain with the index.  

In order to deal with this situations, the additional 

information about cardinality is used in order to split 

the data from one file to two files by promoting the 

first symbol to a higher cardinality. This way, similar 

time series will still be close and the index is balanced. 

The promotion is further explained below. 

A split occurs when the maximum amount of data 

stored in one index file is greater than a user defined 

threshold variable th.  

Index Construction  

The algorithm provided in [10] was implemented in 

Java as a tree index with small modifications to the 

index structure as well as adaptation to Spark and 

other components of the system.  

As described in [10]  there are three types of nodes: 

 Internal Node: this node contains pointers to 

it’s children and the initial SAX word before 

promotion. Every internal node was initially a 

terminal node with pointers to timeseries 

 Root Node: It has the same behavior as the 

internal node, except it never contained any 

info about time series 

 Terminal Node: The terminal node is the only 

type of node that contains pointers to time 

series that match the SAX word of it’s 

preceding parent and the binary string 

obtained after promoting one symbol from it’s 

predecessor.  

The difference and benefit of our implementation is 

that the terminal node does not store the actual data, 

only the path to the time series that is being indexed. 

This way the index structure itself is not very large. This 

could be used for a future optimization of forcing the 

SAX(T,4,16) = T16 =  {1100,1101,0110,0001}       

SAX(T,4,8)   = T8  =  {110 ,110 ,011 ,000 }       

SAX(T,4,4)   = T4  =  {11  ,11  ,01  ,00  } 

SAX(T,4,2)   = T2  =  {1   ,1   ,0   ,0   } 

Figure 9 Example of SAX words with different cardinalities 



index structure to be cached in the cluster nodes so the 

traversal itself will be even faster.  

Since our testing applications were comparison 

between subsequences of time series with a million 

entries, the index creation included storing an index 

file with the data of the subsequence. The file was 

stored in the same path as the original time series with 

the extension “.sax” and identifier of the part.  

It is worth noticing that this causes some redundancy 

in data but the use case of indexing only a smaller parts 

of a bigger dataset will perform better if we retrieve 

that whole file which represents only the subsequence 

from disk sequentially than randomly reading parts of 

a larger file. 

Ideally, as a future improvement, this should be an 

optional parameter depending on the application.  

The tree nodes are kept as a key-value pair identified 

by the SAX word of the containing time series. Each 

terminal node has a list of pointers to the time series 

matching its id.  

When inserting a time series to the index we first 

obtain its SAX representation. We convert the int 

symbols using the information about the cardinality to 

its binary representation. We try to obtain a terminal 

node with the matching key. In case such a node exist 

there are two options: 

a) The threshold has not been reached yet so we 

just append information about the current 

time series to the node 

b) The time series causes the node to split. 

When a split occurs, the first symbol is chosen 

and moved to higher cardinality by adding a 

trailing bit which is assigned in a round-robin 

fashion. All time series pointed to by this node 

are reassigned to the newly created terminal 

nodes and this node becomes an internal 

node.  

In case we did not find a node that matches the iSAX 

representation of the data, we create a new terminal 

node and add it as a child of the root node.  

In order for this functionality to be accessible to the 

rest of the system and to take advantage of spark, the 

interface takes RDD objects as input, one object for the 

timestamps and another for the matching values but 

the insertion itself is done in a sequential manner for 

all the entries in one rdd object. This however does not 

prevent the application user to insert multiple time 

series represented as RDD objects in parallel.  

Querying the iSAX index 

For many queries it will not be necessary to read the 

time series from disk.  For example if we want to find 

the approximate distance between the query and the 

time series, it is enough to convert the query into a SAX 

word  and if there is not a matching word, calculate the 

distance using the  MINDIST function provided above.  

The system provides this by implementing    a function 

that returns to the user this distance. This again can be 

invoked as a spark function over RDD objects and done 

in parallel.  

In case the user has a need for an exact distance to the 

provided time series there is a more advanced 

algorithm that uses the fact that SAX was built on top 

of PAA.  In the first step of indexing, instead of 

obtaining the SAX word for the query, we obtain the 

PAA representation. Then we calculate the distance 

among this representation and the node keys for the 

index tree. This provides us with a tighter lower bound 

and is calculated according to the following function: 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇_𝑃𝐴𝐴_𝑆𝐴𝑋(𝑇𝑃𝐴𝐴, 𝑆𝑆𝐴𝑋)

=  √
𝑛

𝑤
√∑ {

(𝛽𝐿𝑖 − 𝑇𝑃𝐴𝐴𝑖)
2 𝑖𝑓 𝛽𝐿𝑖 >  𝑇𝑃𝑃𝐴𝑖

(𝛽𝑈𝑖 − 𝑇𝑃𝐴𝐴𝑖)
2 𝑖𝑓 𝛽𝑈𝑖 <  𝑇𝑃𝑃𝐴𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤

𝑖=0

 

Where n    and w are length and word size respectively 

and   β Li   is the lower bound of the particular segment 

and  βUi  the corresponding upper bound. These bounds 

are obtained from [10] . 

After obtaining the node with the smallest distance to 

the query, all-time series corresponding to that node 

(or it’s children if it is an internal node) are fetched and  

the Euclidian distances amongst the query and the time 

series are returned in order to find the minimal.  

System parameters 

There are certain parameters that can be set by the 

user and affect performance and result accuracy. The 

larger the cardinality, the higher will be the granularity 

of the data providing more accurate maps to symbols 

and hence increasing the accuracy of approximate 

searches.  

Another important parameter that can be set is the 

threshold that determines when the node splits. 

Although, since we are not storing the actual time 

series in the node but only pointers, this threshold can 

remain high in order to prevent unnecessary splits.  

Benefits of iSAX indexing 

By traversing the tree trying to find the most similar 

word to the query we prune the dataset and perform 



expensive computation only on a subset of data. If we 

find a matching terminal node then the distance to the 

node is 0 and if we need to provide the exact distance 

then we are guaranteed to find the minimal in the time 

series mapped to that node. In case it is not the 

terminal node for which we have a match, we traverse 

trough the children of the node in order to find the 

terminal node which matches the most to the 

upgraded cardinality of the query by calculating the 

distance using the MINDIST or MINDIST_PAA_SAX 

functions.  

Clustering 

Clustering is used to categorize data into groups, which 

are not predefined, but rather defined by the time 

series data itself, based on similarity measures 

between time series. We use the affinity propagation 

algorithm [11], which considers all data points as 

possible centers - exemplars.  

The algorithm utilizes a similarity matrix S, where S(i,k) 

indicates how well the data point with index k is suited 

to be the exemplar for data point i. The similarity 

matrix is constructed by computing the dynamic time 

warping distance between time series, and set to the 

negative value of the distance, as the purpose is to 

minimize the error.  

Further, the algorithm mainly consists in updating two 

matrices: responsibility matrix and availability matrix. 

Messages passed between points reflect the current 

affinity that a given data point has for choosing another 

data point as its exemplar. The responsibility matrix R 

describes how appropriate is a data value to serve as 

the exemplar for another data. An entry r(i,k) of the 

matrix, shows how representative k is to be the 

exemplar for i, in relation to other candidate exemplars 

for i. The availability matrix A describes how 

appropriate would be for a value to pick another value 

as its representant. For an entry a(i,k) of the matrix, we 

compute how appropriate it would be for i to pick k as 

its exemplar, also considering the preference of other 

points for k as an exemplar. 

The responsibility and availability matrices are 

initialized with zeroes, and further updated according 

to the formulas: 

The procedure can be terminated when no change 

passes a given threshold, or after a selected number of 

iterations. 

Unfortunately this feature has not been fully 

implemented in our system due to the lack of time. We 

have started writing a parallel algorithm of affinity 

propagation using map/reduce, based on [12], it is not 

yet complete and integrated. The idea was to break 

down into separate map/reduce jobs for the 

availability, responsibility and similarity matrices.  

User interface 

In order for the above components to be available to 

the user and make the application programming as 

easy as possible we have implemented a command line 

utility built by extending the Scala REPL [13] which 

allows mixing Scala variables into the system.  

The idea was to create a friendly user interface 

providing functions calls such as those implemented in 

matlab. The User Interface was particularly hard to 

implement since it included intercommunication 

between the modules. The complications arose from 

the decision to code both in Scala and in Java. Even 

though Scala supports Java functionalities it turned out 

the opposite is quite difficult to implement. The 

storage interface was writen entirely in Scala but the 

rest of the system was done in Java so the command 

line module had to enable interoperability. We are still 

working on fully integrating in a user friendly way all 

the modules in the system.  

To issue a query via the command line the user writes 

a pseudo-sql statement starting with a single quote (‘). 

The command is then converted to Scala and executed.  

Some of the basic commands supported by the 

system are:  

The system supports also functions to manipulate the 

database, start/stop spark etc., find the minimum, 

maximum or mean value of the time series. We enable 

r(i, k)  =  s(i, k)  − max{a(i, k′) + s(i, k′)} 

 

a(i, k)  =  min{0, r(k, k) + sum(max{0, r(i′, k)}), for i ! = k 

a(k, k)  = sum(max{0, r(i′, k)}) 

 

Time series creation 
scala> 'CREATE timeseriesX (column1 INT, column2 
FLOAT) BACKEND ColumnStore 
Column selection 
scala> 'SELECT column1, column3 FROM 
timeseriesY WHERE column1 > 2 AND column1 < 3 
Data insertion 
scala> 'INSERT csv("path/to/file") INTO timeseries; 

Transformation over a timeseries 

scala> import past.Transformations 

scala> 'SELECT @Transformations.mean(columnX) 

FROM timeseriesY 

 



scaling, shifting and normalization through the 

transformations. 

Another very interesting feature is allowing users to 

mix Scala variables into the commands and we will 

show an application of that in the following section 

where we describe our experiments. 

Experiments 

We performed a modest set of tests over the individual 

modules in order to explore their features.  

We decided to test the similarity queries by converting 

a human DNA string to time series and find the smallest 

distance to a smaller DNA set belonging to an animal.  

Our ideal test case was to use the range index to 

extract subsequences of both DNAs and then index the 

data using iSAX and the R-Tree Index. We will provide 

the description of some of those tests. The tests not 

included are those who were not entirely integrated 

into the system and are still in the debugging phase.  

The human DNA contained ~1 million entries which 

were split into subsequences of 1024.  

We have implemented an application performing this 

similarity search both in Hadoop and on top of our 

system when using no indexing. Then we have 

implemented this using the iSAX index in order to 

compare results.   

In order to insert the DNA as time series without 

converting it by an external script we used the 

functionality of our system to mix Scala variables in the 

command line.  

The results we obtained by using our index showed 

that the execution time was less than when using the 

map/reduce implementation of the sequential scan 

but the index   creation time added some overhead to 

the overall runtime.  

Finally we noticed that when running with different 

cardinalities for iSAX we got slightly different results in 

the sense that the exact distance obtained was smaller 

than the distance when comparing to use-cases with 

smaller cardinalities. This is due to the higher 

granularity of the approximation. 

Challenges 

The project was a big challenge for all of us especially 

for our team leader. It was hard to coordinate 9 people 

and we experienced problems due to bad inter-team 

communication regarding sub-parts of the project.  

 Also, perhaps the choice that we made at the beginning 

to combine Java and Scala was not a very good one. It 

turned out to be a difficult obstacle to overcome in 

order to successfully integrate the project components 

into one system. This has been somewhat mitigated 

but the progress would have been much better had we 

taken another direction.  

Future work 

Building such a complex system is never straight 

forward and along the way some ideas arose of how it 

could be improved or even how some novel modules 

can be added.  

One direction that might be interesting to follow is 

creating bitmap indices for indexing time series values. 

The idea would be as follows:  

Let’s say that our goal is to find “interesting” time 
series and, in them, “interesting” periods of time. More 
formally, we define a time series as a discrete set of 
observations X = x1 , x2 , ...xn at consecutive time steps 

t = 1,2...n (ordered in time). Given a massive set of time 
series XN and a query q with an upper and a lower 

threshold ou and ol (with ou ≥ ol) for the observation 

as well as an upper and lower bound tu and tl (with tu 
≥ tl) for time, we want to find all time series X ∈ XN 

where xt is between the two thresholds, i.e., ou ≥xk ≥ol 
and tl ≤t≤tu. 

One way to answer such a query is to use a classic 
bitmap index to index all the observations, then 
retrieve all the observations that are in the desired 
range using the index and lastly keep only those 

scala> 'CREATE humanDNA (encodedBase BYTE) 

BACKEND RowStore 

scala> val dna: Iterator[Byte] = 
scala.io.Source.fromPath("path/to/dna").map({ case 'A' => 
2; case 'G' => 1; ...}) 
 
scala> 'INSERT @dna INTO humanDNA 

 

Figure 10 3D bitmap matrix 



observations that fall in the desired time interval. The 
main limitation of this approach, is that a bitmap index 
which indexes all the values of all the time series of the 
data set will have a very large size. In order to control 
the size of the bitmap index, techniques like binning 
(i.e. discretization) and compression are typically used. 
Even so, the size of the index will be large for a time 
series database containing a huge amount of very long 
time series.  

Time series frequently have considerable similarity 
between them. Additionally, consecutive observations 
in one time series tend to be correlated. These 
properties can be exploited for compressing the 
bitmap index. The main idea is that once we obtain a 
bitmap representation for each one of the time series, 
these representations can be grouped together in 
order to be jointly compressed. Such a group is 
presented in the following figure, where the bitmaps of 
the time series are stacked the one on top of the other 
to create a 3D bitmap matrix. 

The compression is performed by representing a 3D 
chunk of the matrix where all the bits have the same 
value with just its position inside the matrix and its bit 
value, instead of separately storing every bit. This 
procedure is similar to run-length encoding where a list 
of consecutive identical bits is represented by its length 
and its bit value, but in this approach compression is 
performed along 3 dimensions. The first dimension is 
the time step, the second dimension is the observation 
bin, and the third dimension is the time series. To 

identify 3D chunks where all the bits are identical, the 
space can be hierarchically subdivided using e.g. quad 
tree decomposition, until all the bits in one chunk are 
identical.  

This approach is easily parallelizable as time series are 
first clustered based on their similarity. Compressed 
bitmap indices, one for each cluster, can be built in 
parallel and then used to answer queries in parallel.  

Another interesting idea is exploring the iSAX logic of 
indexing the data for a clustering algorithm.  It is 
actually quite intuitive being that similar datasets map 
to the same SAX word and in that sense, the same way 
a SAX word identifies a tree node, it can identify a node 
in the cluster. This could be a data preprocessing step.   

Last but not least, as mentioned in the text in the 
previous chapters, there are many ways to improve our 
existing components, such as allowing the user 
flexibility in whether to save the index files on disk or 
keep pointers to the original file or keep the index 
structure cached in the cluster nodes.  
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