
EDIC RESEARCH PROPOSAL 1

Metaprogramming with Macros
Eugene Burmako

LAMP, I&C, EPFL

Abstract—Macros realize the notion of textual abstraction. Tex-
tual abstraction consists of recognizing pieces of text that match
a specification and replacing them according to a procedure.

The focus of the study is semantics of syntactic macros
in lexically scoped programming languages. We highlight the
problems of hygiene and referential transparency and describe
the solutions employed by Template Haskell [1], Nemerle [2] and
Racket [3].

We discuss integration of hygienic macros into statically typed
languages and propose to improve upon the state of the art
by providing a flexible type system for syntax templates and
uncovering synergies with high-level language features such as
path-dependent types and implicits [4].

Index Terms—metaprogramming, macros, quasiquotes, hy-
giene, referential transparency

I. INTRODUCTION

PROCEDURAL abstraction is pervasive. Factoring out
parameterized fragments of programs into procedures is

a conventional best practice.
Modern programming languages integrate the notion of

procedures into their semantics. Procedures are viewed as
independent programs that can communicate with the main
program. As such they can be manipulated as units, and big
procedures can be built from the smaller ones. This is a
powerful way to manage complexity of software systems.

Proposal submitted to committee: September 3rd, 2012;
Candidacy exam date: September 10th, 2012; Candidacy exam
committee: Christoph Koch, Martin Odersky, Viktor Kuncak.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(R. Urbanke) (signature)

EDIC-ru/05.05.2009

However procedural abstraction is sometimes not expressive
enough, because its manifestations are bound by language
syntax and it operates within the semantics of the language.
For example, in most programming languages it is impossi-
ble to define short-circuiting logical operators as procedures,
because procedures are usually not in control of evaluation
order. Another example is a C-like for loop, which supports
optional prologue that introduces variables visible in its body.
Procedures typically cannot abstract over variable bindings, so
they cannot readily express this language construct.

Textual abstraction consists of recognizing pieces of text
that match a specification and replacing them according to a
procedure. Matched fragments are called macro calls or macro
applications, and procedures that transform them are dubbed
macros or macro transformers [5]. In general sense these
procedures can also be referred to as meta-programs [6]. The
process of applying macros is called macro expansion. Finally
macros can be classified into lexical macros that operate on
character streams and syntactic macros that work with syntax
trees. In this paper we will only study syntactic macros.

Textual abstraction enables programmers to use a multitude
of techniques. Just to name a few of them:

• reification (having code as data),
• language virtualization (overloading/overriding language

semantics to enable deep embedding of DSLs),
• domain-specific optimization (application of optimiza-

tions such as inlining or fusion based on knowledge about
the program being optimized),

• static verification (using reified representation of the
program and, possibly, its contracts defined alongside the
program, to verify invariants at compile time),

• algorithmic program construction (generation of code that
is tedious to write with supported abstractions).

To use macros efficiently programmers need to be sure that
generated programs don’t go wrong. This presents quite a
challenge, because in most macro systems even well-typed
macros can produce ill-typed code. Another common source
of errors are name clashes introduced by macro expansions,
when variables end up referring to wrong definitions.

The aim of this research is to improve upon the state
of the art by providing better typechecking disciplines for
meta-programs and looking for high-level abstractions that
encapsulate macros, e.g. those which come from already
existing language features.

The paper is organized as follows. First we introduce the
background by analyzing examples and outlining typical pit-
falls. Then we survey macro systems in Template Haskell [1],
Nemerle [2] and Racket [3] and their approaches to addressing
these pitfalls. Finally we summarize our findings and propose
new directions for research.

EDIC RESEARCH PROPOSAL 2

(let ((x 40) (y 2)) (print (+ x y)))

((lambda (x y) (print (+ x y))) 40 2)

a) Examples of a macro application and a macro expansion of the let macro

(defmacro let args
(cons

(cons ’lambda
(cons (map car (car args))

(cdr args)))
(map cadr (car args))))

(defmacro let (decls body)
‘(
(lambda
,(map car decls) ;; (x y)
,body) ;; (print (+ x y))

,@(map cadr decls))) ;; 40 2

b) Low-level creation of syntax objects. The code manipu-
lates S-expressions with standard symbol and list processing
functions.

c) Quasiquotation [8]. Backquote introduces a static code
template, commas (also known as unquotes) insert dynamic
values into the template.

(define-syntax let
(syntax-rules ()

((let ((name expr) ...) body ...)
((lambda (name ...) body ...) expr ...))))

d) Macro-by-example notation [9]. Uses a tree matching macro that
can extract and reassemble fragments of syntax objects. Ellipses cap-
ture recurrent parts of the input.

(define-syntax (let stx)
(syntax-parse stx

((let ((name:identifier expr:expr) ...) body:expr ...)
#:fail-when (check-duplicate #’(name ...))

"duplicate variable name"
#’((lambda (name ...) body ...) expr ...))))

e) Macro-by-example notation augmented with a syntax specification [10]. Colons
denote syntax classes, which are first-class and can be built from the ground up.

Figure 1. Assorted implementations of the let macro in Lisp dialects

II. BACKGROUND

This section starts off with several examples of macros and
proceeds by uncovering typical errors in macro transformers
and outlining the approaches that can be used to prevent these
errors.

A. Examples

let is a language construct typical to functional program-
ming. It introduces a scope for a computation and brings
temporary variables with provided values into that scope. To
implement let the compiler might wrap the computation in a
lambda abstraction and apply it right away (Figure 1a).

This notion cannot be abstracted procedurally, because the
body of the computation typically contains free variables.
To the contrast, textual abstraction can help, because macros

manipulate the program on a level where bindings don’t exist
and therefore don’t impose restrictions.

The most straightforward implementation of let is a low-
level macro transformer (Figure 1b). It takes an S-expression
that represents a macro application, pulls it apart using stan-
dard list manipulation functions, such as car and cdr, and
creates a new S-expression with cons. Even in this simple
example the notation is very noisy. It’s quite difficult to figure
out the expected shapes of input and output expressions from
the imperative algorithm.

Quasiquotes [8] make it possible to reduce obscurity of
the macro by providing a domain-specific language for syntax
templates (Figure 1c). The quasiquote operator (‘) demarcates
a static template. Quasiquoted code is inserted verbatim into
the output (that’s why there’s no longer need in explicit
cons’ing). Unquote operators (, and ,@) temporatily interrupt
a quasiquote, creating ”holes” filled in with dynamically

EDIC RESEARCH PROPOSAL 3

(defmacro or (x y)
’(let ((temp ,x))

(if temp temp ,y)))

(or 42 "the result is 42")

a) A simple yet erroneous implementation of the or macro

(let ((temp "451 Fahrenheit"))
(or null temp))

(let ((temp "451 Fahrenheit"))
(let ((temp null))

(if temp temp temp)))

(let ((if hijacked))
(or true false))

(let ((if hijacked))
(let ((temp true))
(if temp temp false)))

b) Violation of hygiene [5]: binding established during
expansion affects call site

c) Violation of referential transparency [7]: binding estab-
lished during expansion is affected by call site

(define-syntax forever
(syntax-rules ()

((forever body ...)
(call/cc (lambda (abort)

(let loop () body ... (loop)))))))

(forever (print 4) (print 2) (abort))

d) Intentional variable capture: infinite looping construct forever provides a predefi-
ned identifier to break from the loop. abort is introduced during macro expansion,
but it should be visible to the body of the loop, which comes from the macro call site.

Figure 2. Intentional and unintentional variable capture

calculated data. For example, for let we statically know
the shape of code to produce (an application of a lambda
abstraction) - this makes up the static part of the quasiquote.
On the other hand, body and parameters of the lambda as well
as the arguments of the application may vary from expansion
to expansion - this is the dynamic part.

Another simplification of the macro can be achieved with
MBE, the macro-by-example notation [9]. In their seminal
work Kohlbecker and Wand came up with a specification
of a pattern matcher that extracts singular and repetitive
parts of S-expressions. Identifiers which appear in the input
pattern are treated as pattern variables. Ellipses (...) used
as a last element of a list that contains pattern variables
denote repetition. Ellipses can also be nested capturing pattern
variables as lists of arbitrary depth. The revised version of the
let macro clearly shows the shapes of the input and the output
and the relation between them (Figure 1d).

A recent development of the MBE syntax has been proposed
by Culpepper and Felleisen [10]. Their refinement addresses
the need for principled input validation and error report-
ing. Indeed, MBE covers the success path, but doesn’t help
with detecting errors. For example, duplicate identifier names
as in (let ((x 40) (x 2)) (print (+ x y)) will go

unnoticed until the compiler gets to the resulting lambda
form, which will produce confusing error messages. Authors
enhance MBE with both declarative and procedural means of
validation (Figure 1e). In the example colons next to the names
of pattern variables denote syntax classes, which put restric-
tions on the shape of the variables and the #:fail-when

clause contains imperative validation code and error messages.
These validation facilities can be packed into custom syntax
classes, which can be built from the ground up.

B. Bindings

When writing procedures in lexically scoped languages,
programmers typically don’t need to think about name clashes
between variables declared inside procedures and at their call
sites. Except for recursion, scopes of procedure bodies and
procedure call sites are different, so neither variables defined
inside the procedures can change the semantics at the call site,
nor vice versa.

In a macro-enabled language, especially in presense of
quasiquotes which make macros look like normal procedures,
this intuition becomes compromised, because after macro
expansion the scopes of macro definition and macro call site
are mechanically merged by the expander.

EDIC RESEARCH PROPOSAL 4

Conider the or macro shown on Figure 2a. This macro picks
one of its two arguments based on the truthiness of the first
argument. To prevent double evaluation, the macro introduces
a temporary variable temp that holds the result of evaluation
of the first argument. The temporary variable is then tested
with if, which selects the resulting value.

As simple as this code can be, it is also incorrect, having
two potential bugs.

The first problem happens when the call site defines its own
variable named temp and relies on it in the second argument
of a call to or (Figure 2b). After the expansion, two temps
clash, which produces incorrect results if the first argument of
the call is falsy. This problem is dubbed hygiene violation,
and the macro is said to introduce the temporary variable
unhygienically.

In his thesis [5] Kohlbecker defines the hygiene condition
and presents a macro system that automatically prevents such
naming collisions:

Hygiene Condition for Macro Expansion.
Generated identifiers that become binding instances
in the completely expanded program must bind
only identifiers that are generated during the same
transcription step.

The second problem happens when the call site redefines
one of the procedures or macros used in the expansion. For
example, on Figure 2c the call site hijacks the meaning of if,
which destroys the original intent of the macro author. This is
a referential opaqueness problem.

Dybvig et al. [7] build on Kohlbecker’s work and devise a
macro expander that automatically avoids this class of errors:

Macros defined in [our] high-level specification lan-
guage are referentially transparent in the sense that
a macro-introduced identifier refers to the binding
lexically visible where the macro definition appears
rather than to the top-level binding or to the binding
visible where the macro call appears.

This notion is also called cross-stage persistence, because
bindings in place at the compilation stage are persisted into
the runtime stage. When viewed in this light, it becomes clear
why referential transparency is usually supported only for top-
level definitions. Top-level values are uniquely identified by
their compile-time signatures (e.g. a static method in Java can
be addressed by a full name of a class, name of the method
and types of its parameters). To the contrast local values are
represented by transient state (contents of processor registers,
stack, heap etc), which in general case cannot be persisted.

Despite the conveniency of automatic segregation of the
scopes of macro definitions and macro call sites, at times it
is necessary to have them melded. A looping macro forever

from Figure 2d demonstrates the need for this. Expansion of
this macro is an infinite loop that provides a magic identifier
abort to exit the loop. In this case automatic hygiene facility
will do harm, making the body of the loop unable to see the
loop control lever.

Because of similar situations some programmers argue in
favor of manual control over the scoping discipline, proposing
manual (or macro-powered!) renaming of identifiers whose
capture would be undesired [11,12].

Another popular line of thought favors further empowerment
of macro systems to minimize the necessity for low-level
tinkering. In fact, one of the macro systems reviewed below
provides a design pattern [3] that solves the abort challenge
in a hygienic way (i.e. without having generated identifiers
bind across logical scopes).

C. Typechecking

An important feature of macros is that macro expansion
happens before the code is executed (below in the paper
this phase is referred to as compile-time, despite that, strictly
speaking, interpreted languages can also support macros).
Therefore macro expansions can be checked for absense of
semantic errors (to the extent supported by the language)
in an automatic fashion, without requiring effort from the
programmer.

What’s even better is that there is another line of defense.
Macros operate on syntax objects, which are snippets of the
code to be, thus it might be a good idea to typecheck the code
represented by these snippets in advance.

One approach is to treat quasiquotes similarly to functions,
requiring all free variables to be bound in the enclosing lexical
scope and assigning all quasiquotes a definitive type (Figure
3a). This strategy is used in MetaML [13], a statically type-
checked language with special support for program generation.

All quasiquotes in MetaML are typechecked individually
and receive one of the <a> types (which means ”code that
evaluates to a value of type a”). For example, on Figure 3a
the quasiquote in the body of pow represents a function from
int to int, so it has the <int -> int> type.

Programs in MetaML can generate and run programs at run-
time, these programs can do the same, and so on. Quasiquotes
here represent templates of the programs to be generated and
delineate execution stages. Due to its specific nature, MetaML
requires strong guarantees from the type system. At runtime,
if program generation fails because of an error in the meta-
program, it’s too late to report typechecking errors.

Unfortunately this means that MetaML has to give up the
freedom of arbitrary manipulations of syntax objects, the most
important of which are pattern matching and introduction of
new bindings. (e.g. in MetaML its impossible to express let
as a macro).

MacroML [14], a macro system built atop of MetaML,
provides a way to partially alleviate this restriction, letting the
programmer introduce new binding constructs in a controlled
setting. This is achieved by having the type system track
not only the regular environments containing declared macros
and variables, but also so called body parameter environments
that remember which parts of quasiquotes see which variables
introduced by those quasiquotes.

This still doesn’t allow arbitrary manipulations, e.g. simi-
larly to MetaML there is no way to pull apart a syntax object
and reassemble it using a quasiquote as a template (as done
in the let macro on Figure 1).

Therefore later research on macros focuses on relaxing the
typechecking discipline of MetaML.

EDIC RESEARCH PROPOSAL 5

-| fun pow n = <fn x =>
˜(if n = 0 then <1> else <x * (˜(pow (n - 1)) x)>)>;

val pow = fn : int -> <int -> int>

-| val cube = (pow 3);
val cube = <(fn a => x %* x %* x %* 1)> : <int -> int>

-| (run cube) 5;
val it = 125 : int

a) Strict typechecking [13]: each quasiquote is typechecked individually and is assigned
a ”code of something” type (<a> stands for code that evaluates to a value of type a).

[| ’a’ + True |] -- rejected

printf :: String -> Expr -- allowed
$(printf "Error: %s on line %d") "urk" 341

f :: Q Type -> Q [Dec] -- rejected
f t = [d| data T = MkT $t; g (MkT x) = x + 1 |]

b) Lenient typechecking [1]: quasiquotes are sanity checked to prevent obvious errors
and are required to have their bindings established before macro expansions kick in.
No additional checks are done, and all quasiquotes get the same type-agnostic Expr type.

macro using(name, expr, body) {
<[

def $name = $expr;
try { $body } finally { $name.Dispose() }

]>
}
using(db, Database("localhost"), db.LoadData())

c) No typechecking [2]: quasiquotes are not typechecked at all until a macro
that uses them expands, after which the result is typechecked as a whole. This provides
maximum freedom, permitting even unquotes in binding positions (like in def $name).

Figure 3. Typechecking strategies for quasiquotes

Template Haskell [1] employs a lenient typechecking strat-
egy for meta-programs (but not for expanded programs, which
are typechecked with the usual rigor of Haskell).

Unlike in MetaML, the type of syntax objects is non-
polymorphic - Expr , not Expr a - and Template Haskell
doesn’t try to provide up-front guarantees that meta-programs
produce well-typed code. For example, well-typedness of the
printf macro application (Figure 3b) is checked on the spot,
immediately after the expansion, not ahead of time.

However Template Haskell does require the bindings of
variables used in quasiquotes to be resolved statically. This is
done to enforce the ”static scope is absolute” design principle
(which is a rehash of hygiene and referential transparency
conditions outlined above) as stated in [16]:

If an occurrence of a variable x looks as if it is

lexically bound to an enclosing binding for x, then it
is so bound, and no Template-Haskell transformation
can threaten that binding.

Unfortunately even this lightweight typecheck has proven to
impose unwanted limitations. For example, the meta-program
f from Figure 3b that uses another meta-program t to insert
a type declaration in a quasiquote is rejected. This happens
because the compiler cannot prove that the usage of this type
declaration (MkT x) is correct for all possible ts.

It is due to this reason that Nemerle [2], a macro-enabled
language inspired by Template Haskell, has ceased typecheck-
ing quasiquotes altogether. As we will see below this doesn’t
prevent the macro expander in Nemerle from being hygienic,
but with respect to typechecking this brings the evolution to
square one.

EDIC RESEARCH PROPOSAL 6

III. CASE STUDY

This section discusses Template Haskell [1], Nemerle [2]
and Racket [3] in the light of hygiene and referential trans-
parency.

Syntax objects in all three presented macro systems can
be manipulated both at low level (using raw construction of
corresponding data structures) and at high level (with the help
of quasiquotation facilities).

However in this survey we will only be studying and
evaluating high-level notations and APIs. Low-level facilities
are undoubtedly useful for getting things done, but our intent
here is to get to the bottom of abstractions introduced by the
scrutinees.

We will also take for granted the ability of meta-programs
to ask the expander for the information about the parts of
the program that lie outside of a macro application current
to a given expansion (the reify family of functions in
Template Haskell, Macros.ImplicitCTX in Nemerle and the
syntax-local family of functions in Racket) or for metadata
of syntax objects (e.g. their types, scopes, etc).

Another aspect that we will omit from consideration is
the way the macro expander acquires and loads binary code
of macros. For the record, all three reviewed languages are
compiled, but they differ in their treatment of the situation.
Template Haskell and Nemerle require separate compilation
of macros and their usages, whereas Racket allows joint com-
pilation with extra precautions against cross-stage pollution of
top-level scope [18].

Finally, in Nemerle and Racket macros can change the
syntax of the language. Syntax extensibility is a lively research
topic, but it is outside the scope of this study.

A. Template Haskell

Template Haskell is a macro-enabled extension to a stat-
ically typed functional programming language. Macro trans-
formers in Template Haskell are represented by regular func-
tions that produce data of type Expr. Macro expansion is
triggered explicitly by unquoting outside quasiquotes - either
with $ which unquotes expressions, or with splice which
unquotes declarations.

printf :: String -> Expr
printf s = gen (parse s) [| "" |]

gen :: [Format] -> Expr -> Expr
gen [] x = x
gen (D : xs) x =

[| \n-> $(gen xs [| $x++show n |]) |]
gen (S : xs) x =

[| \s-> $(gen xs [| $x++s |]) |]
gen (L s : xs) x =

gen xs [| $x ++ $(lift s) |]

$(printf "Error: %s on line %d") msg line

The snippet above illustrates the introduced concepts.
printf and gen are functions that operate on syntax objects.
In particular, printf generates a lambda abstraction from a
C-like string format specification using helpers parse (whose
declaration is not present in a snippet) and gen. Quasiquotes

are encoded with [|...|] brackets and can contain arbitrary
Haskell code (to be precise, the notation for quoted patterns,
declarations and types is slightly different, but it doesn’t make
much difference in the context of this discussion).

Quasiquotes in Template Haskell are hygienic and referen-
tially transparent. The former is achieved by renaming bind-
ings introduced in quasiquotes, while the latter is warranted
by keeping track of original names that unambiguously refer
to top-level variables, even if such variables are not visible
at macro use site. A curious fact is that Template Haskell
also provides cross-stage persistence for local variables that
conform to the Lift type class.

A very interesting aspect of Template Haskell is its imple-
mentation of hygiene through renaming, an inherently stateful
operation, in the pure Haskell environment.
Expr, the type of quasiquotes, is in fact a synonym to Q

Exp, a type of low-level syntactic data structures lifted into
the quotation monad Q that provides usual monadic operations
along with gensym :: String -> Q String, a fresh name
generator. In this setting quasiquotes are mechanically trans-
lated into calls to low-level constructors wrapped in Q with
binders renamed using gensym and bindees either following
the renamed binders or persisted across stages as outlined
above:

cross2a :: Expr -> Expr -> Expr
cross2a f g = [| \(x,y) -> ($f x, $g y) |]

cross2c :: Expr -> Expr -> Expr
cross2c f g =
do { x <- gensym "x"

; y <- gensym "y"
; ft <- f
; gt <- g
; return (Lam [Ptup [Pvar x, Pvar y]]

(Tup [App ft (Var x)
,App gt (Var y)]))

}

Unfortunately this approach has limitations.
First of all, in general case roles of identifiers in quasiquotes

(binder, bound within quasiquote, bound outside) cannot be de-
termined in advance. For example, in [| f $p = x + y |],
variables x and y are on the fence until the splicee is evaluated.
To the contrast, the translation algorithm requires an up-
front decision, which makes splices into binding positions
unsupported.

Secondly, there is no way to opt out of hygiene with-
out dropping to low level. Even worse, since the transla-
tion algorithm effectively forbids unbound free variables in
quasiquotes, every call site of a macro that introduces variables
visible outside would have to drop to low level. For instance,
users of the forever macro (Figure 2d) won’t be able to write
$(forever [| abort |]), but will be forced to express
this as $(forever [| $(var "abort") |]).

B. Nemerle

Nemerle is an object-oriented/functional programming lan-
guage. Macros in Nemerle are introduced with the keyword
macro and can use quasiquotes (<[...]>) to pattern match

EDIC RESEARCH PROPOSAL 7

and compose syntax objects. Expansions are triggered auto-
matically when the compiler encounters a function application,
and the callee is deemed to be a macro. Nemerle also supports
macro attributes that expand when put on declarations. Such
macros can modify the inheritance chain of classes, generate
new members, etc.

The macro <-> shown below swaps values of two ex-
pressions like in x <-> arr[2]. In the snippet we can see
how quasiquotes can be used to pattern match against syntax
objects, extract their parts and reassemble them producing new
syntax objects. The [Hygienic] attribute is discussed later.

[Hygienic]
def cache(e: Expr): Expr * Expr
{

| <[$obj.$mem]> =>
(<[def tmp = $obj]>, <[tmp.$mem]>)

| <[$tab[$idx]]> =>
(<[def (tmp1, tmp2) = ($tab, $idx)]>,
<[tmp1[tmp2]]>)

| _ => (<[()]>, e)
}

macro @<->(e1, e2) {
def (cached1, safe1) = cache(e1);
def (cached2, safe2) = cache(e2);
<[
$cached1;
$cached2;
def tmp = $safe1;
$safe1 = $safe2;
$safe2 = tmp;

]>
}

To separate lexical scopes of macro definitions and macro
call sites, Nemerle colors the identifiers in the program. By
default each macro expansion gets a unique color, different
from the color of normal code, and this color gets assigned
to the symbols introduced by the macro expansion. After the
program is fully expanded, Nemerle resolves bindings, i.e. for
every bindee the compiler looks for a nearest preceding binder
with the same color. If there’s no such binder, the name is
looked up in a global environment that corresponds to the
definition site of the bindee (such environments are enclosed
in every symbol) [2].

An important characteristic of this algorithm is that colors
are fully customizable. Using an API exposed by the expander
it is possible to recolor individual symbols and entire bunches
into arbitrary colors. It is also possible to share colors be-
tween macros to ensure that selected parts of corresponding
expansions can see each other. Finally Nemerle supports
polychromatic symbols that bind to the nearest definitions with
the same name regardless of the color.

Standard distribution of Nemerle also bundles most fre-
quently used patterns of tweaks to bindings. For example,
$(name: usesite) introduces a symbol colored identically
to the macro call site. [Hygienic] attribute on a function
(usually used on helper functions that can be called multiple
times from the same macro) colors binders that come from that
function in a color that is generated afresh for every invocation.

C. Racket

Racket is a dynamically typed descendant of Scheme. It
uses Scheme’s syntax-case, a hygienic and referentially
transparent macro system, augmented with syntax classes.

To prevent inadvertent captures syntax-case employs
Dybvig’s algorithm [7], which is similar to Nemerle’s color al-
gorithm outlined above (in fact, the causal relation is inversed
- the algorithm in Nemerle is inspired by Dybvig’s work).
Racket’s algorithm generates fresh marks for every macro
expansion, assigns them to symbols introduced by expansions
and then uses the marks to resolve bindings and perform
renamings if necessary.

Much like in Nemerle, affiliation of symbols is customiz-
able. The datum->syntax function can be used to put an
arbitrary S-expression into lexical context of an arbitrary
syntax object, including that of macro use site and macro
definition site.

The snippet below creates a non-hygienic symbol abort
in the lexical context of the macro use site (#’forever) and
then introduces it in macro expansion as a binder, making
it possible for a macro argument to see an identifier in the
generated code:

(define-syntax (forever stx)
(syntax-case stx ()

((forever body ...)
(with-syntax
((abort (datum->syntax #’forever ’abort)))
#’(call/cc (lambda (abort)

(let loop () body ... (loop))))))))

(forever (print 4) (print 2) (abort))

In [3] Barzilay et al. investigate the consequences of break-
ing hygiene to introduce special identifiers, because the need
for that arises quite often (e.g. to implement the ubiquitous
this in a class system, to internally communicate information
between subsystems of a complex macro, etc). Authors find
that the technique outlined above doesn’t scale to derived
macros:

(define-syntax while
(syntax-rules ()
((while test body ...)
(forever (unless test (abort)) body ...))))

(while #t (abort))

In the running example, abort will not be automatically
propagated to use sites of the macros that build upon forever.
Because of datum->syntax, abort is visible inside the im-
plementation of while (which is the call site of forever), but
the hygiene condition prevents it from being visible outside.

Barzilay et al. study a workaround that involves systematic
introduction of abort into all derived macros (eventually
abstracting out the recurring pattern into an auxiliary macro)
and another one that explicitly passes special identifiers be-
tween call sites. Both approaches however involve repeated
boilerplate.

It becomes apparent that to address the abort problem
elegantly, the macro system needs to have a mechanism of
variables visible in multiple scopes.

EDIC RESEARCH PROPOSAL 8

Racket lacks the notion of Nemerle’s polychromatic sym-
bols that bind to whatever is in any scope nearby, but
all Lisps have a tradition of dynamically scoped variables.
By adapting this notion to compile-time (without changes
to the compiler, just by introducing a couple of macros:
define-syntax-parameter and syntax-parameterize)
authors of [3] arrive at a design pattern, which doesn’t impose
boilerplate tax on both the developers and the users of derived
macros:

(define-syntax-parameter
abort (syntax-rules ()))

(define-syntax forever
(syntax-rules ()
((forever body ...)
(call/cc (lambda (abort-k)

(syntax-parameterize
((abort

(syntax-rules () ((_) (abort-k)))))
(let loop () body ... (loop))))))))

As an additional bonus, syntax parameters are actually more
robust than polychromatic symbols, because dynamic variables
visible though scopes are explicitly introduced as such and are
easily discoverable, since they are defined together with the
originating macros.

IV. CONCLUSION

Textual abstraction has proven to be a powerful design tool
that can be used to implement aspects-oriented programming
[2], design patterns [15], classes, mixins and traits [19],
modules [17], etc.

Macros are powerful, but they can go wrong in unusual
ways. For example, it is not uncommon for well-typed meta-
programs to produce ill-typed programs. Moreover macro
expansion may cause inadvertent variable capture, leading to
subtle bugs. To use macros effectively programmers need to
be protected from these problems.

Typechecking algorithms that catch errors in meta-programs
are pioneered by MetaML [13]. Its static typechecking dis-
cipline for quasiquotes has proven to be overly restrictive
when applied to macros. Template Haskell features a lenient
typechecking algorithm, which unfortunately remains too re-
strictive. Therefore Nemerle doesn’t typecheck quasiquotes at
all, relying on a mandatory typecheck after macro expansion.
This area is in a need of improvement.

Evolution of Lisp identified the problems that cause inad-
vertent capture and formulated the principles of hygiene and
referential transparency that prevent such errors. This gave
rise to manual [11,12] and automatic [5,7] techniques that
increase robustness of macros. Among languages studied in
this paper, Template Haskell uses monadic representations for
quasiquotes and automatically renames introduced binders [1].
It is however incapable of breaking hygiene per programmer’s
request without dropping to a low-level notation. Nemerle
[2] and Racket [3] use approaches derived from Dybvig’s
algorithm [7], which provides scope isolation by default as
well as mechanisms for manual control. This is a universal
solution to the scoping problem, but as shown by [3] it is
sometimes inefficient, trumped by more high-level techniques.

V. RESEARCH PROPOSAL

As a substrate for our research, we implemented a macro
system [20] for the Scala programming language [4] and
integrated it into a production version of the Scala compiler.

The cornerstone of the system is the reify macro that
bootstraps a minimalistic non-hygienic macro system into a
hygienic facility with quasiquotes.

Currently reify only works with statically well-typed syn-
tax objects. This makes it akin to MacroML [14] with all
the pros and cons. On the one hand, this technique prevents
macros based on reify from producing ill-typed code. But on
the other hand, it becomes inapplicable when pattern matching
or statically untypeable quasiquotes are involved.

Our experience and user reports show a clear need for more
flexibility, but we would not like to give up static guarantees
about meta-programs like it was done in Nemerle [2]. Coming
up with a more permissive typechecking discipline is our
immediate goal.

A long-term direction of research is a quest for high-level
abstractions that synergize with macros. For example, our early
adopters have suggested that the combination of macros and
path-dependent types can be used to contain and propagate
effects. Another conjecture is that synergy between macros
and implicits might grant Scala theorem-proving powers.

REFERENCES

[1] T. Sheard and S. Peyton Jones, Template meta-programming for Haskell.
ACM SIGPLAN Notices, 2002.

[2] K. Skalski, M. Moskal and P. Olszta, Meta-programming in Nemerle.
Generative Programming and Component Engineering, 2004.

[3] E. Barzilay, R. Culpepper and M. Flatt, Keeping it Clean with Syntax
Parameters. Scheme and Functional Programming Workshop, 2011.

[4] M. Odersky, L. Spoon and B. Venners, Programming in Scala 2nd
Edition. Artima, 2010.

[5] E. Kohlbecker, Syntactic Extensions in the Programming Language Lisp.
PhD thesis, Indiana University, 1986.

[6] T. Sheard, Accomplishments and Research Challenges in Meta-
Programming. Semantics, Applications, and Implementation of Program
Generation, 2001.

[7] R. Dybvig, R. Hieb and C. Bruggeman, Syntactic Abstraction in Scheme.
Lisp and Symbolic Computations, 1992.

[8] A. Bawden, Quasiquotation in Lisp. Partial Evaluation and Program
Manipulation, 1999.

[9] E. Kohlbecker, M. Wand, Macro-by-Example: Deriving Syntactic Trans-
formations from their Specifications. Principles of Programming Lan-
guages, 1987.

[10] R. Culpepper, M. Felleisen, Fortifying Macros. International Conference
on Functional Programming, 2010.

[11] D. Hoyte, Let Over Lambda. Lulu, 2008.
[12] W. Clinger, Hygienic macros through explicit renaming. ACM SIG-

PLAN Lisp Pointers, 1991.
[13] W. Taha, Multi-Stage Programming: Its Theory and Applications. PhD

Thesis, Oregon Graduate Institute, 1999.
[14] S. Ganz, A. Sabry, W. Taha, Macros as Multi-Stage Computations:

Type-Safe, Generative, Binding Macros in MacroML. International
Conference on Functional Programming, 2001.

[15] K. Skalski, Syntax-Extending and Type-Reflecting Macros in an Object-
Oriented Language. MsC Thesis, University of Wrocław, 2005.

[16] T. Sheard and S. Peyton Jones, Notes on Template Haskell Version 2.
Glasgow Haskell Compiler, 2003.

[17] M. Flatt and PLT, Reference: Racket, PLT Inc., 2010.
[18] M. Flatt, Composable and Compilable Macros: You Want it When?

International Conference on Functional Programming, 2002.
[19] M. Flatt, R. B. Findler and M. Felleisen, Scheme with classes, mixins,

and traits. Asian Symposium on Programming Languages and Systems,
2006.

[20] E. Burmako and M. Odersky, Scala Macros, a Technical Report. Valentin
Turchin Workshop on Metacomputation, 2012.

