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Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland.

Abstract— In this paper, we present Majority-Inverter Graph (MIG), a
novel logic representation structure for efficient optimization of Boolean
functions. An MIG is a directed acyclic graph consisting of three-input
majority nodes and regular/complemented edges. We show that MIGs
include any AND/OR/Inverter Graphs (AOIGs), containing also the well-
known AIGs. In order to support the natural manipulation of MIGs,
we introduce a new Boolean algebra, based exclusively on majority
and inverter operations, with a complete axiomatic system. Theoretical
results show that it is possible to explore the entire MIG representation
space by using only five primitive transformation rules. Such feature
opens up a great opportunity for logic optimization and synthesis. We
showcase the MIG potential by proposing a delay-oriented optimization
technique. Experimental results over MCNC benchmarks show that MIG
optimization reduces the number of logic levels by 18%, on average,
with respect to AIG optimization performed by ABC academic tool.
Employed in a traditional optimization-mapping circuit synthesis flow,
MIG optimization enables an average reduction of {22%, 14%, 11%}
in the estimated {delay, area, power} metrics, before physical design, as
compared to academic/commercial synthesis flows.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Automatic Synthesis, Optimization

General Terms
Algorithms, Design, Performance, Theory.
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Majority Logic, Boolean Algebra, DAG, Logic Synthesis.

I. INTRODUCTION

The performance of today’s digital integrated circuits largely
depends on the capabilities of logic synthesis tools. In this context,
efficient representation and optimization of Boolean functions are key
features. Some data structures and algorithms have been proposed
for these tasks [1]–[8]. Most of them consider, as basis operations,
inversion (INV), conjunction (AND), disjunction (OR) [2]–[5] and
if-then-else (MUX) [6], [7]. Other Boolean operations are derived by
composition. Even though existing design automation tools, based on
original optimization techniques [1]–[8], produce good results and
handle large circuits, the possibility to push further the efficacy of
logic synthesis continues to be of paramount interest to the Electronic
Design Automation (EDA) community. With this aim in mind, we
approach the logic optimization problem from a new angle.

In this paper, we propose a novel methodology to represent and op-
timize logic, by using only majority (MAJ) and inversion (INV) as ba-
sis operations. We present the Majority-Inverter Graph (MIG), a logic
representation structure consisting of three-input majority nodes and
regular/complemented edges. MIGs include any AND/OR/Inverter
Graphs (AOIGs), therefore containing also AIGs [8]. To provide
native manipulation of MIGs, we introduce a novel Boolean algebra,
based exclusively on majority and inverter operations. A set of five
primitive transformations forms a complete axiomatic system. Using
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a sequence of such primitive axioms, it is possible to explore the
entire MIG representation space. This remarkable property opens up
great opportunities in logic optimization and synthesis. We showcase
the potential of MIGs by proposing a delay-oriented optimization
technique. Experimental results, over the MCNC benchmark suite,
show that MIG optimization decreases the number of logic levels
by 18%, on average, with respect to AIG optimization run by
ABC academic tool. Applied in a standard optimization-mapping
circuit synthesis flow, MIG optimization enables a reduction in the
estimated {delay, area, power} metrics of {22%, 14%, 11%}, on
average before physical design, as compared to academic/commercial
synthesis flows.

The study of majority-inverter logic synthesis is also motivated
by the design of circuits in emerging technologies. In the quest
for increasing computational performance per unit area [9], major-
ity/minority gates are natively implemented in different nanotech-
nologies [10]–[12] and also extend the functionality of traditional
NAND/NOR gates. In this scenario, MIGs and their algebra represent
the natural methodology to synthesize majority logic circuits in
emerging technologies. In this paper, we focus on standard CMOS,
to first showcase the interest of MIGs in an ordinary design flow.

The remainder of this paper is organized as follows. Section II pro-
vides a background on logic representation and optimization. Section
III presents MIGs and their new associated Boolean algebra. Section
IV describes the optimization of MIGs using primitive transformation
rules. Section V validates, through experimental results, MIG-based
optimization and also presents and compares synthesis results to state-
of-art academic/commercial tools. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

This section presents relevant background on logic representations
and optimization for logic synthesis. Notations and definitions for
Boolean algebra and logic networks are also introduced.

A. Logic Representation and Optimization

Virtually, all digital integrated circuits are synthesized thanks
to efficient logic representation forms and associated optimization
algorithms [1]. Early data structures and related optimization algo-
rithms [2] are based on two-level representation of Boolean functions
in Sum Of Product (SOP) form, which is a disjunction (OR) of
conjuctions (AND) where variables can be complemented (INV).
Another pioneering data structure is the Binary Decision Diagram
(BDD) [6]: a canonical representation form based on nested if-
then-else (MUX) formulas. Later on, multi-level logic networks [3],
[4] emerged, employing AND, OR, INV, MUX operations as basis
functions, with more scalable optimization and synthesis tools [4],
[7]. To deal with the continuous increase in logic designs complexity,
a step further is enabled by [5], where multi-level logic networks are
made homogenous, i.e., consisting of only AND nodes interconnected
by regular/complement (INV) edges. The tool ABC [8], which is
based on the AND-Inverter Graphs (AIGs), is considered the state-
of-art academic software for (large) optimization and synthesis.

We propose, in this paper, a new logic optimization paradigm that
aims at extending the capabilities of modern synthesis tools.



B. Notations and Definitions

1) Boolean Algebra: In the binary Boolean domain, the symbol
B indicates the set of binary values {0, 1}, the symbols ∧ and ∨
represent the conjunction (AND) and disjunction (OR) operators,
the symbol ′ represents the complementation (INV) operator and
0/1 are the false/true logic values. A standard Boolean algebra is a
non-empty set (B,∧,∨,′ , 0, 1) subject to commutativity, associativity,
distributivity, identity and complement axioms over ∧,∨ and ′ [16].
Boolean algebra is the ground to operate on logic networks.

2) Logic Network: A logic network is a Directed Acyclic Graph
(DAG) with nodes corresponding to logic functions and directed
edges interconnecting the nodes. The direction of the edges follow the
natural computation from inputs to outputs. The terms logic network,
Boolean network, and logic circuit are used interchangeably in this
paper. The incoming edges of a node link either to other nodes, to
input variables or to logic constants 0/1. Two logic networks are
said equivalent when they represent the same Boolean function. A
logic network is said irredundant if no node can be removed without
altering the represented Boolean function. A logic network is said
homogeneous if each node has an indegree (number of incoming
edges, fan-in) equal to k and represents the same logic function.
In a homogeneous logic network, edges can have a regular or
complemented attribute, to support local complementation. The depth
of a node is the length of the longest path from any input variable
to the node. The depth of a logic network is the largest depth of a
node. The size of a logic network is its number of nodes.

3) Majority Function: The n-input (n odd) majority function M
returns the logic value assumed by more than half of the inputs.

III. MAJORITY-INVERTER GRAPH

In this section, we present MIGs and their associated Boolean
algebra. Notable properties of MIGs are discussed.

A. MIG Logic Representation

Definition An MIG is a homogeneous logic network with indegree
equal to 3 and with each node representing the majority function. In
an MIG, edges are marked by a regular or complemented attribute.

We show the properties of MIGs by comparison to the general
AND/OR/Inverter Graphs (AOIGs), that are also including the pop-
ular AIGs [8]. For this purpose, note that the majority operator
M(a, b, c) behaves as the conjunction operator AND(a, b) when
c = 0 and as the disjunction operator OR(a, b) when c = 1.
Therefore, majority can be seen as a generalization of conjunction
and disjunction. This property leads to the following theorem.

Theorem 3.1: MIGs ⊃ AOIGs.

Proof: In both AOIGs and MIGs, inverter are represented by
complemented edge markers. An AOIG node can be seen as a special
case of an MIG node, with the third input biased to logic 0 or 1 to
realize an AND or OR, respectively. On the other hand, an MIG node
is not a special case of an AOIG node, as the functionality of the
three input majority cannot be realized by a single AND or OR.

Fig. 1 depicts two logic representation examples for MIGs. They
are obtained by translating their optimal AOIG representations into
MIGs. Note that even if such logic networks are optimal for AOIGs,
they can be further optimized with MIGs, as detailed later.

As a corollary of Theorem 3.1, MIGs include also AIGs and are
capable to represent any logic function (universal representation).
This is formalized in the following.

Corollary 3.2: MIGs ⊃ AIGs.

Proof: MIGs ⊃ AOIGs ⊃ AIGs =⇒ MIGs ⊃ AIGs

Corollary 3.3: MIG is an universal representation form.
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Fig. 1. Examples of MIG representations (right) for (a) f = x⊕ y⊕ z and
(b) g = x(y+uv) derived by transposing their optimal AOIG representations
(left). Complement attributes are represented by bubbles on the edges.

Proof: MIGs ⊃ AIGs that is an universal representation [5].

So far, we have shown that MIGs can be configured to behave
as AOIGs. Hence, in principle, they can be manipulated using
traditional AND/OR techniques. However, the potential of MIGs goes
beyond standard AOIGs and, in order to unlock their full expressive
power, we introduce a new Boolean algebra, natively supporting the
majority/inverter functionality.

B. MIG Boolean Algebra

We propose here a novel Boolean algebra1, defined over the set
(B,M,′ , 0, 1), where M is the majority operator of three variables
and ′ is the complementation operator. The following set of five
primitive transformation rules, referred to as Ω, is an axiomatic system
for (B,M,′ , 0, 1). All the variables considered hereafter belong to B.
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Commutativity – Ω.C

M(x, y, z) = M(y, x, z) = M(z, y, x)
Majority – Ω.M
{

if(x = y): M(x, y, z) = x = y
if(x = y′): M(x, y, z) = z

Associativity – Ω.A

M(x, u,M(y, u, z)) = M(z, u,M(y, u, x))
Distributivity – Ω.D

M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
Inverter Propagation – Ω.I

M ′(x, y, z) = M(x′, y′, z′)

(1)

We prove that (B,M,′ , 0, 1) axiomatized by Ω is a Boolean algebra
by showing that it induces a complemented distributive lattice [17].

Theorem 3.4: The set (B,M,′ , 0, 1) subject to axioms in Ω is a
Boolean algebra.

Proof: The system Ω embed median algebra axioms [13]. In
such scheme, M(0, x, 1) = x follows by Ω.M . In [18], it is
proved that a median algebra with elements 0 and 1 satisfying
M(0, x, 1) = x is a distributive lattice. Moreover, in our scenario,
complementation is well defined and propagates through the operator
M (Ω.I). Thus, a complemented distributive lattice arises. Every
complemented distributive lattice is a Boolean algebra [17].

Note that there are other possible axiomatic systems. For example,
it is possible to show that in the presence of Ω.C, Ω.A and Ω.M , the
rule in Ω.D is redundant [14]. In this work, we consider Ω.D as part
of the axiomatic system for the sake of simplicity. Desirable proper-
ties for a logic system are soundness and completeness. Soundness
ensures that if a formula is derivable from the system, then it is valid.
Completeness guarantees that each valid formula is derivable from
the system. We prove that the proposed Boolean algebra is sound
and complete by linking back to Stone’s theorem [19].

1The claimed novelty refers to the field of logic optimization and synthesis.



Theorem 3.5: The Boolean algebra (B,M,′ , 0, 1) axiomatized by
Ω is sound and complete.

Sketch of The Proof: Owing to Stone’s representation theorem,
every Boolean algebra is isomorphic to a field of sets [19]. Stone’s
theorem implies soundness and completeness in the original logic
system [20]. Since the proposed system is a Boolean algebra, Stone’s
duality applies and soundness and completeness are true.

Intuitively, every (M,′ , 0, 1)-formula can be interpreted as an
MIG. Thus, the Boolean algebra induced by Ω is naturally applicable
in MIG manipulation2. We show hereafter that any two equivalent
MIGs can be transformed one into the other by Ω.

Theorem 3.6: It is possible to transform any MIG α into any other
logically equivalent MIG β, by a sequence of transformations in Ω.

Proof: Say that α is one-to-one equivalent to the (M,′ , 0, 1)-
formula A and β is one-to-one equivalent to the (M,′ , 0, 1)-formula
B. All tautologies in (B,M,′ , 0, 1) are theorems provable by Ω
[Theorem 3.5]. The statement A = B is equivalent to the tautology
M(1,M(A′, B′, 0),M(A,B, 0)) = 1 (that means A⊕B = 1). Us-
ing the sequence in Ω proving M(1,M(A′, B′, 0),M(A,B, 0)) = 1
we can then transform MIG α into MIG β.

As a consequence of Theorem 3.6, it is possible to traverse the
entire MIG representation space just by using Ω. From a logic
optimization perspective, it means that we can always reach a
desired MIG starting from any other equivalent MIG. However, the
lenght of the exact transformation sequence might be impractical
for modern computers. To alleviate this problem, we derive from
Ω three powerful transformations, referred to as Ψ, that facilitate
the MIG manipulation task. The first, relevance (Ψ.R), replaces
and simplifies reconvergent variables. The second, complementary
associativity (Ψ.C), deals with variables appearing in both polarities.
The third and last, substitution (Ψ.S), extends variable replacement
also in the non-reconvergent case. We represent a general variable
replacement operation, say replace x with y in all its appearence in
z, with the symbol zx/y .
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Relevance – Ψ.R

M(x, y, z) = M(x, y, zx/y′)
Complementary Associativity – Ψ.C

M(x, u,M(y, u′, z)) = M(x, u,M(y, x, z))
Substitution – Ψ.S

M(x, y, z) =
M(v,M(v′,Mv/u(x, y, z), u),M(v′,Mv/u′(x, y, z), u′))

(2)
By showing that Ψ can be derived from Ω, the validity of Ψ follows

from Ω soundness.
Theorem 3.7: The transformations in Ψ follow from Ω.

Proof: Relevance (Ψ.R): Let S be the set of all the possible
primary input combinations for M(x, y, z). Let Sx=y (Sx=y′ ) be the
subset of S such that x = y (x = y′). Note that Sx=y ∩ Sx=y′ = ∅
and Sx=y∪Sx=y′ = S. According to Ω.M , variable z in M(x, y, z)
is only relevant for Sx=y′ . Thus, it is possible to replace x with y′

(x/y′) in all its appearance in z, preserving the original functionality.
Complementary Associativity (Ψ.C):

M(x, u,M(u′, v, z)) = M(M(x, u, u′),M(x, u, v), z) (Ω.D)
M(M(x, u, u′),M(x, u, v), z) = M(x, z,M(x, u, v)) (Ω.M )

Substitution (Ψ.S): We set M(x, y, z) = k for brevity.
k = M(v, v′, k) = (Ω.M )
= M(M(u, u′, v), v′, k) = (Ω.M )
= M(M(v′, k, u),M(v′, k, u′), v) = (Ω.D)
Then, M(v′, k, u) = M(v′, kv/u, u) (Ψ.R) and
M(v′, k, u′) = M(v′, kv/u′ , u) (Ψ.R)

2Transformations involving MIG inner nodes with multiple outputs require
temporarily nodes duplication. Sharing is re-enabled immediately upon.

Recalling that k = M(x, y, z), we finally obtain: M(x, y, z) =
M(v,M(v′,Mv/u(x, y, z), u),M(v′,Mv/u′(x, y, z), u′))

So far, we have presented the theory for MIGs and their native
Boolean algebra. We show now how to optimize an MIG accordingly.

IV. MIG OPTIMIZATION

The optimization of an MIG, representing a Boolean function,
ultimately consists of its transformation into a different MIG, with
better figures of merit in terms of area (size), delay (depth), and power
(switching activity). In the rest of this section, we present heuristic
algorithms to optimize the size, depth and activity of an MIG using
transformations from Ω and Ψ.

A. Optimizing the Size of an MIG

To optimize the size of an MIG, we aim at reducing its number of
nodes. Node reduction can be done, at first instance, by applying
the majority rule. In the novel Boolean algebra domain, that is
the ground to operate on MIGs, this corresponds to the evaluation
of the majority axiom (Ω.M ) from Left to Right (L → R), as
M(x, x, z) = x. A different node elimination opportunity arises
from the distributivity axiom (Ω.D), evaluated from Right to Left
(R → L), as M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z).
By applying repeatedly Ω.ML→R and Ω.DR→L over an entire MIG,
we can actually eliminate nodes and thus reduce its size. Note
that the applicability of majority and distributivity depends on the
peculiar MIG structure. Indeed, there may be MIGs where no direct
node elimination is evident. This is because (i) the optimal size is
reached or (ii) we are stuck in a local minima. In the latter case,
we want to reshape the MIG in order to enforce new reduction
opportunities. The rationale driving the reshaping process is to locally
increase the number of common inputs/variables to MIG nodes.
For this purpose, the associativity axioms (Ω.A, Ψ.C) allow us to
move variables between adjacent levels and the relevance axiom
(Ψ.R) to exchange reconvergent variables. When a more radical
transformation is beneficial, the substitution axiom (Ψ.S) replaces
pairs of independent variables, temporarily inflating the MIG. Once
the reshaping process created new reduction opportunities, majority
(Ω.ML→R) and distributivity (Ω.DR→L) run again over the MIG
simplifying it. Reshape and elimination processes can be iterated
over a user-defined number of cycles, called effort. Such MIG-size
optimization strategy is summarized in Alg. 1.

Algorithm 1 MIG-size Optimization Pseudocode

INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R(α); Ω.DR→L(α);
Ω.A(α); Ψ.C(α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R(α); Ω.DR→L(α);

end for

reshape eliminate

For the sake of clarity, we comment on the MIG-size optimization
procedure of a simple example, reported in Fig. 2(a). The input MIG
is equivalent to the formula M(x,M(x, z′, w),M(x, y, z)), which
has no evident simplification by majority and distributivity axioms.
Consequently, the reshape process is invoked to locally increase the
number of common inputs. Associativity Ω.A swap w and M(x, y, z)
in the original formula obtaining M(x,M(x, z′,M(x, y, z)), w),
where variables x and z are close to the eachother. Later, relevance
Ψ.R applies to the inner formula M(x, z′,M(x, y, z)), exchanging
variable z with x and obtaining M(x,M(x, z′,M(x, y, x)), w).
At this point, the final elimination process runs, simplifying
the reshaped representation as M(x,M(x, z′,M(x, y, x)), w) =
M(x,M(x, z′, x), w) = M(x, x, w) = x by using Ω.ML→R. The
obtained result is optimal.
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Fig. 2. Examples of MIG optimization for (a) size, (b-c) depth and (c) switching activity. The initial MIGs appear in purple and the final MIGs are in blue.

Note that MIGs resulting from Alg. 1 are irredundant, thanks to
the final elimination step. Portions of Alg. 1 can be interlaced with
other optimization methods, to achieve a size-recovery phase.

B. Optimizing the Depth of an MIG

To optimize the depth of an MIG, we aim at reducing the length
of its critical path. A valid strategy for this purpose is to move late
arrival (critical) variables close to the outputs. In order to explain how
critical variables can be moved preserving the original functionality,
we consider the general case in which a part of the critical path
appears in the form M(x, y,M(u, v, z)). If the critical variable is
x, or y, no simple move reduce the depth of M(x, y,M(u, v, z)).
Whereas, instead, the critical variable belongs to M(u, v, z), say z,
depth reduction is achievable. We focus on the latter case, with order
tz > tu ≥ tv > tx ≥ ty for the variables arrival time (depth). Such
order arises from (i) an unbalanced MIG whose inputs have equal
arrival times or (ii) a balanced MIG whose inputs have different
arrival times. In both cases, z is the critical variable arriving later
than u, v, x, y, hence the local depth is tz + 2. If we apply the
distributivity axiom Ω.D from left to right (L → R), we obtain
M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z) where z is
pushed one level up, reducing the local depth to tz+1. Such technique
is applicable to a broad range of cases, as all the variables appearing
in M(x, y,M(u, v, z)) are distinct and independent. However, a
size penalty of one node is introduced. In the favorable cases for
which associativity axioms (Ω.A, Ψ.C) apply, critical variables can
be pushed up with no penalty. Furthermore, where majority axiom
applies Ω.ML→R, it is possible to reduce both depth and size. As
noted earlier, there exist cases for which moving critical variables

cannot improve the overall depth. This is because (i) the optimal
depth is reached or (ii) we are stuck in a local minima. To move
away from a local minima, the reshape process is useful. Reshape
and critical variable push-up processes can be iterated over a user-
defined number of cycles, called effort. Such MIG-depth optimization
strategy is summarized in Alg. 2.

Algorithm 2 MIG-depth Optimization Pseudocode

INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R(α); Ω.DL→R(α); Ω.A(α); Ψ.C(α);
Ω.A(α); Ψ.C(α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R(α); Ω.DL→R(α); Ω.A(α); Ψ.C(α);

end for

reshape push-up

We comment on the MIG-depth optimization procedure using two
examples depicted by Fig. 2(b-c). The considered functions are f =
x ⊕ y ⊕ z and f = x(y + uv) with initial MIG representations
translated from their optimal AOIGs. In both of them, all inputs have
0 arrival time, thus no direct push-up operation is advantageous. The
reshape process is invoked to move away from local minima. For f =
x(y + uv), complementary associativity Ψ.C enforces variable x to
appear in two adjacent levels, while for f = x⊕y⊕z substitution Ψ.S
replaces x with y, temporarily inflating the MIG. After this reshaping,
the push-up procedure is applicable. For f = x(y+uv), associativity
Ω.A exchanges 1′ with M(u, 1′, v) in the top node, reducing by
one level the MIG depth. For f = x ⊕ y ⊕ z, majority Ω.ML→R

heavily simplifies the structure and reduces by two levels the original



MIG depth. The optimized MIGs are much shorter than their optimal
AOIGs counterparts. Note that the depth of MIGs resulting from
Alg. 2 cannot be reduced by any direct push-up operation.

C. Optimizing the Activity of an MIG

To optimize the overall switching activity of an MIG, we aim at
reducing (i) its size and (ii) the probability for nodes to switch from
logic 0 to 1, or viceversa. For the size reduction task, we can run the
MIG-size optimization algorithm described previously. To minimize
the switching probability, we want that nodes do not change values
often, i.e., the probability of a node to be logic 1 (p1) is close to
0 or 1. For this purpose, relevance Ψ.R and substitution Ψ.S can
exchange variables with not desirable p1 ∼ 0.5 with more favorable
variables having p1 ∼ 1 or p1 ∼ 0. Fig. 2(d) shows an example
where relevance Ψ.R replaces a variable x having p1 = 0.5 with a
reconvergent variable y having p1 = 0.1, thus reducing the overall
MIG switching activity.

V. EXPERIMENTAL RESULTS

In this section, we show the advantage of MIG optimization and
synthesis as compared to state-of-art academic/commercial tools.

A. MIG Optimization

We present here the experimental method and results for logic
optimization based on the MIG theory.

1) Methodology: We developed MIGhty a logic manipulation
package for MIGs, consisting of about 6k lines of C code. Different
optimization methods are implemented in MIGhty. In this paper, we
employ depth-optimization interlaced with size and activity recovery
phases. The MIGhty package reads a Verilog description of a com-
binational logic circuit, flattened into Boolean primitives, and writes
back a Verilog description of the optimized MIG. The benchmarks
are the largest circuits from the MCNC suite, ranging from 0.1k and
15k nodes. For the sake of illustration, we considered separately a
large logic compression circuit having (unoptimized) 0.3M nodes.
We compare MIGs with AIGs optimized by ABC tool [8] and BDDs
decomposed by BDS tool [7]. The resyn2 script is used for ABC,
while the default execution options are used for BDS.
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Fig. 3. Optimization space for logic circuits optimized with MIG (blue),
AIG (violet) and decomposed BDD (red).

2) Results: Table I-top summarizes experimental results for logic
optimization. The average depth of MIGs is 18.6% smaller than
AIGs and 23.7% smaller than decomposed BDDs. The average size
of MIGs is roughly the same than AIGs, just 0.9% of difference,
but 2.1% smaller than decomposed BDDs. The average activity of
MIGs is again the same as AIGs, just 0.3% of difference, but 3.1%
smaller than decomposed BDDs. Fig. 3 depicts these results in a

3D (size,depth,activity) space. Using a size· depth· activity figure
of merit, MIGs are 17.5% better than AIGs and 27.7% better than
decomposed BDDs. The runtime for MIGs is slightly longer than
ABC tool [8] (+7.1%) but 68% shorter than BDS [7]. Regarding the
large compression benchmark, ABC produces an optimized AIGs
with 167k nodes and 31 levels in 11.3 seconds. With MIGs instead,
the circuit is optimized with 170k (+1.7% w.r.t. ABC) nodes and 28
levels (-9.6% w.r.t. ABC) in 21.5s. Results for the large compression
circuit and clma benchmark are not given for decomposed BDDs due
to some glitches during BDS software execution.

B. MIG-based Synthesis

Experimental methods and results for MIG-based logic synthesis
are presented hereafter.

1) Methodology: We employ MIGhty in a traditional optimization-
mapping synthesis flow and we compare its results to state-of-art aca-
demic and commercial tools. For this purpose, a standard cell library
consisting of MIN-3, MAJ-3, XOR-2, XNOR-2, NAND-2, NOR-2
and INV logic gates is characterized for CMOS 22nm technology
[15]. Technology mapping after MIG-optimization is carried out
using a proprietary mapping tool. The academic counterpart is ABC
[8] (AIGs optimization) followed by the same proprietary technology
mapping tool as for MIGs. Physical design is not taken into account in
any synthesis flow. Hence, {delay, area, power} metrics are estimated
from the synthesized gate-level netlist.
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Fig. 4. Synthesis space for logic circuits optimized with MIG (blue), AIG
(violet) and Commercial Synthesis Tool (CST) (brown).

2) Results: Table I-bottom summarizes experimental results for
MIG-based logic synthesis and its counterpart flows. On average,
the MIG flow generates {delay, area, power} estimated metrics that
are {22%, 14%, 11%} smaller than the best academic/commercial
counterpart. Fig. 4 shows the dominance of MIGs synthesis results
over AIGs and commercial synthesis tool, in a 3D (area,delay,power)
space. While, in logic optimization, MIGs were mainly shorter than
AIGs, in logic synthesis they enable also remarkable area and power
savings. The reason for such improvement is twofold. On the one
hand, the structure of MIGs is further simplifiable by technology
mapping algorithms based on Boolean techniques, such as equiva-
lence checking using BDDs, internal flexibilities computation (don’t
cares), and others. This is especially effective when MIG nodes are
partially fed by logic 1/0. One the other hand, the presence of MAJ-3
and MIN-3 gates in the standard-cell library allows us to natively
recognize and preserve MIG nodes, when their decomposition in
simpler functions is not advantageous.

C. Discussions
Experimental results validate the potential of MIGs in logic

optimization and synthesis. Even though the proposed algorithms



TABLE I
LOGIC OPTIMIZATION AND SYNTHESIS RESULTS

Logic Optimization MIG AIG BDD Decomposition
Benchmarks I/O Size Depth Activity Time Size Depth Activity Time Size Depth Activity Time

C1355 41/32 481 18 133.60 0.1 392 18 126.36 0.1 315 19 109.33 0.2
C1908 33/25 459 23 124.98 0.1 363 25 159.08 0.1 414 31 169.68 0.4
C6288 32/32 2237 86 784.62 0.2 2045 94 797.91 0.3 2187 98 883.12 0.3
bigkey 487/421 4299 9 789.02 0.7 4834 9 846.57 0.5 4563 14 822.76 3.2

my adder 33/17 265 19 58.15 0.1 137 33 49.86 0.1 211 37 64.83 0.3
cla 129/65 1028 24 363.57 0.2 902 38 329.17 0.1 918 39 317.44 0.2

dalu 75/16 1443 21 283.12 0.1 1116 30 264.92 0.1 1626 39 303.70 1.6
b9 41/21 97 6 16.95 0.1 84 7 16.65 0.1 96 9 17.20 0.1

count 35/16 176 7 32.77 0.1 127 19 18.87 0.1 134 17 19.05 0.1
alu4 14/8 1380 14 237.38 0.1 1421 14 249.52 0.1 1773 27 349.33 0.5
clma 416/115 12449 42 3626.38 1.2 12928 46 3712.38 1.1 N.A. N.A. N.A. N.A.

mm30a 124/120 1174 101 209.52 0.3 1004 125 164.49 0.2 1187 111 155.29 0.9
s38417 1494/1571 8260 22 1932.78 0.8 8053 25 1854.26 1.0 8210 28 1989.22 4.1
misex3 14/14 1323 13 233.09 0.2 1274 14 209.27 0.1 1223 16 198.71 0.4

Average 212/176 2505.1 28.9 630.42 0.30 2477.1 35.5 628.52 0.28 2556.1 37.9 650.86 0.95

Logic Synthesis MIG + Tech. Map. AIG + Tech. Map. Commercial Synthesis Tool
Benchmarks I/O A (µm2) D (ns) P (µW ) A (µm2) D (ns) P (µW ) A (µm2) D (ns) P (µW )

C1355 41/32 56.34 0.74 226.68 56.27 0.76 203.55 56.34 0.76 205.54
C1908 33/25 44.72 0.78 132.98 53.47 1.06 155.07 53.54 0.99 155.96
C6288 32/32 361.47 3.18 1604.30 354.54 3.44 1822.21 343.41 3.44 1742.20
bigkey 487/421 388.57 0.82 722.68 541.24 0.73 981.06 538.09 0.70 1010.32

my adder 33/17 22.68 1.19 36.17 23.23 1.68 41.10 23.31 1.68 41.21
cla 129/65 149.52 1.42 398.34 139.92 2.32 355.47 139.50 2.33 356.53

dalu 75/16 116.34 1.07 179.42 103.25 0.94 145.10 109.97 1.09 147.98
b9 41/21 12.88 0.22 19.75 13.72 0.22 20.67 14.49 0.26 23.06

count 35/16 20.16 0.91 28.04 18.76 1.07 24.87 18.76 1.07 24.87
alu4 14/8 150.15 0.65 225.16 254.80 0.67 386.71 229.25 0.69 343.62
clma 416/115 888.79 1.59 1806.65 1180.83 1.69 2191.77 1315.02 1.62 2588.09

mm30a 124/120 130.41 2.12 210.95 148.12 4.71 240.28 164.56 3.35 296.29
s38417 1494/1571 1287.44 1.20 2577.00 1268.05 1.34 2559.54 1307.59 1.43 2589.28
misex3 14/14 159.88 0.66 234.09 291.48 0.92 379.62 207.48 0.73 284.62

Average 212/176 270.67 1.18 600.16 317.71 1.53 679.07 322.95 1.43 700.68

are simple as compared to elaborated state-of-art techniques, they
produce already competitive results, thanks to the expressive power of
MIGs and their associated algebra. Indeed, there exist logic circuits,
for example the ones in Fig 1 and Fig. 2(b-c), for which traditional
optimization reaches its limits while the proposed methodology can
optimize further. In particular, MIGs open the opportunity for efficient
synthesis of datapath circuits, where majority logic is dominant.

VI. CONCLUSIONS

We presented, in this paper, Majority-Inverter Graph (MIG), a
novel logic representation structure for efficient optimization of
Boolean functions. To natively optimize MIGs, we proposed a new
Boolean algebra, based solely on majority and inverter operations,
with a complete axiomatic system. Experimental results, over the
MCNC benchmark suite, show that delay-oriented MIG optimization
reduces the number of logic levels by 18%, on average, with respect
to AIG optimization run by ABC academic tool. Employed in a stan-
dard optimization-mapping circuit synthesis flow, MIG optimization
enables a reduction in the estimated {delay, area, power} metrics of
{22%, 14%, 11%}, on average before physical design, as compared
to academic/commercial counterparts. MIGs extend the capabilities
of modern synthesis tools, especially with respect to datapath circuits,
as majority functions are the ground for arithmetic operations.
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