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Abstract. A super-polynomial lower bound is given for the size of circuits of 
fixed depth computing the parity function. Introducing the notion of poly- 
nomial-size, constant-depth reduction, similar results are shown for the 
majority, multiplication, and transitive closure functions. Connections are 
given to the theory of programmable logic arrays and to the relativization of 
the polynomial-time hierarchy. 

1. Introduction 

It is of both practical and theoretical interest to know the size of boolean circuits 
necessary to compute common boolean functions. Despite considerable effort, the 
techniques for proving combinatorial lower bounds on circuit size remain primi- 
tive. To date, even for circuits restricted to be monotone, linear lower bounds are 
the best that can be shown for naturally arising functions [14, 2, 16]. 

Lupanov studied bounded depth circuits in 1961 and showed that parity 
circuits of depth 2 must have an exponential number of gates [11]. Krapchenko, 
investigating the complexity of the parity function, proved an n 2 lower bound on 
the size of parity formulas [9, 10]. Considering a different restriction of the circuit 
model we prove a superpolynomial lower bound: constant-depth circuits of 
q-gates and arbitrary fan-in A and V-gates must use more than a polynomial 
number of gates to compute parity, majority, multiplication, or transitive closure. 

*Research partially funded by NSF Grant MCS-81-05555 and ONR Grant N00014-76-C-0370. 
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Constant-depth circuits elegantly model programmable logic arrays (PLA's), 
a type of integrated circuit used inside microprocessors to compactly represent 
many functions [14]. According to folklore, some common functions, e.g., parity, 
multiplication, and transitive closure cannot be implemented with small PLA's. 
The new lower bound establishes a basis for this belief by showing that any PLA 
implementing, these functions must be using more than a polynomial amount of 
chip area. 

Lower bounds for constant-depth circuits relate to questions about the 
relativization of the polynomial-time hierarchy. We show that an ~ ( n  p°ly(l°gn)) 
lower bound on the size of constant-depth circuits computing parity would imply 
the existence of an oracle A that separates u iY.f ,A from PSPACE A. Readers not 
interested in this connection may wish to skip Section 2 and proceed directly to 
Section 3 where the circuit lower bound is proved. 

2. The Polynomial-Time Hierarchy 

The Meyer-Stockmeyer polynomial-time hierarchy is a ladder of language classes 
lying between P and PSPACE, as depicted in Figure 1 [15, 20]. 

A language L is in the class Z f  if and only if the strings y in L can be 
characterized as satisfying a sentence 

"q P x I ~  P x 2  . . . Qf xiR ( y, Xl ..... xi ), 

in which 
(i) 3 Pxj quantify over strings of length polynomial in l Y[, 

(ii) Qf is y P, or 3 P as i is even or odd, and 
(iii) R is a deterministic polynomial-time predicate. 

PSPACE 

nf 

IXI 
n f  

\ /  
_ -  e = Fig. 1. The Polynomial-Time Hierarchy 
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P _  P The class II~ is defmed to be co-Y.i e. Thus, P = ~ 0 -  II0, NP = ~g~, and 
co NP = II~. 

Aside from the obvious trivial inclusions, nothing is known about the 
relationships among these classes. Separating y./e from Y~7, for some i, j with 
0 < i < j, would separate P, NP,  and PSPACE. Baker, Gill and Solovay [3] posed 
the following question for language classes in the polynomial hierarchy relativized 
to oracles; does there exist an oracle X such that, for some values of i, 
~e, x~--~+s~;e' x9. The strongest separation theorem known gives an oracle B such 

IIe' B which implies e, B e, n that, Y.~'n ÷ 2 , ~2 C ~'3 [4]. The technique used to obtain 
this result is not strong enough to separate any higher levels. 

Parity and the Relativized Polynomial Hierarchy 

There is more than one notion of relativized space bounded computation [12]. 
Permitting machines to make exponentially long oracle queries--by not account- 
ing for the space used on the query tape--makes it quite easy to construct an A 
that separates U iE~ e' A and PSPACE A. The separation problem becomes interest- 
ing only if oracle queries must fit within the polynomial-space bound and we 
adopt this convention. 

Definition. The polynomial hierarchy relativized by an oracle A is PH A= 
u ;y.f'". 

In what follows we prove that if parity of n inputs cannot, for any k, be 
computed by constant-depth, O(nl°gk")-size circuits, then there exists an oracle A 
that separates PSPACE A and PH A. The proof requires several lemmas. 

First, consider the oracle property, 

L A = {1"1 the number of strings of length n in A is odd}, (1) 

as defined by Angluin [1]. It is certainly in PSPACE A. Can it be in y./e,A, for some 
fixed i? 

Lenuna 2.1. Let 

o ( y )  = 3exlVex2 . . .  Qfx ,  RA(x l  . . . .  ,x~, y )  

be a sentence in E~. A. There is an equivalent sentence 

6 ( y )  = :]PxlVPX2 P ~-A • ..Qi+2xi+2R (x l  . . . . .  xi+2, Y)  

P,A in Ei+ 2 , where RA(x  I . . . . .  xi+ 2, y )  is a predicate that can be computed by a machine 
that makes at most one oracle query and runs for a polynomial amount of time. 

Proof We show how RA(xl  . . . . .  xi, y) can be expressed as 

2:] P r V P s R A (  x1 . . . . .  Xi,  r, s, y ), 

where RA(x  I . . . . .  xi, r, s, y)  can be computed by a machine that makes only one 
oracle query and runs for a polynomial amount of time. Then, substituting this 
two quantifier sentence for R A in o we obtain 6. 
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Let M ~ ( x l , . . . , x i ,  y) be a polynomial-time machine that computes the predi- 
cate RA(x l , . . . , x i ,  y) .  If specific values of xl,. . .  ,xi, and y are given, M runs for a 
polynomial number of steps, makes some oracle query qj, receives a response §. 
("qjj ~ A", or "qjj ~ A"), branches one of two ways based on the outcome, and 
iterates this process a polynomial number of times before finally accepting or 
rejecting. This computation (whose value is really a function of the oracle A) may 
be viewed as a binary tree T with internal nodes labeled with oracle queries qj, 
edges labeled "qj c A " ,  or "qj ~ A", and leaves labeled either "accept" or 
"reject". The sentence 

3 erVesRA(xl  . . . .  ,xi,  r, s, y )  

must characterize those oracles A that lead M to accept. Informally, the sentence 
should say: "there is an accepting path in T along which every query response is 
consistent with A." More formally, let r range over all possible polynomially long 
sequences of (query qi, response ri) pairs, and let s range over all possible queries 
qs. Let R-A( xx . . . . .  xi, r, s, y )  be thee predicate 

"r = (qi~' i)~). "'(qJl' 1)1) is an accepting branch in T 
and 

if qs appears as query q j, along branch r then 
ri, is the correct answer to the question qj. ~ ~ " .  

The first part of this predicate can be computed in polynomial time by simply 
simulating M. The second part can be determined by making at most one oracle 
query. [] 

Actually, a technically stronger result can be shown. 

Corollary 2.2. Let 

o ( y )  = 3exlVex2.. .Q~ex,RA(x 1 . . . . .  xi, y )  

be a sentence in y~.e, A. There is an equivalent sentence 

~ ( y )  e e e ~A 
= =! XlV x2...Qi+lXi+l R (x 1 .. . . .  Xi+l ' y) ,  

in e.A Y~i+l, where/~A(x x .... ,xi+ 1, y )  can be computed by a machine that makes at 
most one oracle query and runs for a polynomial amount of time. 

Proof In the proof of Lemma 2.1, the two quantifier sentence equivalent to R 
could just as easily have been constructed to be a V3 sentence whose polynomial- 
time predicate requires only one oracle query to evaluate. If quantifier Q~ had 
been existential (universal), the first quantifier of the two quantifier sentence used 
to replace R could have been chosen to be existential (universal). This could have 

~P,A allowed a merging of two adjacent levels of like quantifiers, giving a i+1 
sentence ~. [] 

Lenuna 2.3. I f  the oracle property L A, defined by (1) is in y.p,A then, for some 
fixed k, there exists a depth i+1 ,  O(nl°Sk")-size circuit to compute parity of n 
variables. 
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Proof. Suppose 1" is in L A if and only if 3exlYex2. . .QiexiRa(xl , . . . , x i , l" ) .  Let 
• be as in Corollary 2.2. We can think of the sentence 

P ~'A 1 n e ( l " )  = 3eXlVeX2...Q,+lX,+l R (x 1 . . . . .  x,+ 1, ) 

as describing a height i + 1 tree with root labeled "3", internal nodes labeled "3"  
or "Y", and leaves labeled ,,~a (Xl . . . . .  xi+ 1,1")", for specific values of x l , . . . ,  xi+ 1. 
Each internal node has 2 ("0 sons, one for each possible value of an x i. The 
predicate RA(x  I . . . . .  X,+l,l"), for fixed values of xx,...,x~+ 1, is determined by at 
most one oracle query ~2" Thinking of the 2" length-n oracle queries as variables 
ql . . . . .  q2", we see that R'A(xl . . . .  ,x,+l,l" ) is equivalent to either the literal qj, or 
the literal qy, for somej. Replacing Y-nodes by ^ -gates, 3-nodes by v -gates, and 
the/~A(x 1 . . . . .  Xi+l,l") leaves by qj or ¢, as appropriate, we obtain, for some c, a 

. k  . . . .  d . 

depth i + 1, c ( )-size ctrcmt computmg panty of the 2" vanables qj. Noticing that 
c ('*) is 0((2" )1°~*(2") ), the result follows. [] 

Theorem 2.4. I f  the parity function on n variables cannot be computed by 
constant-depth, O(n]°g*')-size circuits, then there exists an oracle A such that 
PSPACE A ~ PH A. 

Proof. Using Lemma 2.3 and the assumption that parity cannot be computed by 
constant-depth, fi(nl°gk")-size circuits, as in [4], we can diagonalize away from PH 
and construct an oracle A' such that L A" q~ PH A'. On the other hand, for any A, 
L A ~ PSPACE A since a machine need only run through all strings of length n and 
count how many are in A to determine "1" ~ 7LA ". Thus, L A' ~ PSPACE A' - PH A'. 

[] 
We conjecture that there is no k such that parity can be computed by 

constant-depth, fi(nl°P')-size circuits. 

3. The Parity Lower Bound 

We begin by defining terms. 

Definition. For each n, X, = {x 1 . . . . .  x , }  is the set of inputs, and 7,, = 
( X l ,  X1, . . . .  Xn, X, } is the set of literals. 

Definition. A O-circuit is a literal; an i-circuit is a nonempty collection of 
(i - 1)-circuits. An i-circuit is an ^ -circuit if i is even and an v -circuit if i is odd. 
There are two constant circuits, 0 and 1. The function computed by an A-circuit 
(V-circuit) C is the A (V) of the functions computed by C's members. The 
0-circuit xj(~j) computes the (negation of t he ) j t h  projection function. The 
constant circuits compute the constant functions. For each circuit C, the function 

fc:(O,1) " - )  {0,1}, 

is the function that C computes. 
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Definition. For circuits B and C, B belongs to C, if B is hereditarily a member of 
C, i.e., "belongs to" is the transitive closure of "member of". The depth of an 
i-circuit is i, the size of an /-circuit is the number of circuits belonging to it. 
Constant and 0-circuits have size 0 and depth 0. 

The circuits defined in this way are equivalent to conventional circuits except 
they are organized into levels of A's and v ' s  that connect only to adjacent levels. 
An arbitrary circuit of depth d and size s on n inputs can be converted to one of 
this form having depth d and size at most 4s + 2n. Much of this increase comes 
from the necessary introduction of trivial gates having only one input. If these are 
counted as wires, the size of the new circuit is only 2s. 

Definition. A restriction is a function p: X n ~ (0,1, * }. The natural extension of 
P to ,~, is made by assigning 

*, i f p ( x i ) =  *; 
P(x ' )  = -~p(x , ) ,  ifp(xi)--/: *. 

Restrictions fix some of the inputs of a function while leaving others, those 
assigned *, variable. For any restriction p, and function f : (O,1)  ~--, (0,1}, p 
induces a function 

fP:{O, l}  ~ ~ (0,1}, 

where k is the number of literals assigned . .  If a ~ {0,1} k, fP(a) = f(aP), where 
a p is p(x l )p(x2) . . .p (x , )  with the k * 's replaced by the k elements of a. 

In the same spirit that restrictions induce new functions, they also induce new 
circuits. A restriction p forces an A -circuit ( V -circuit) to be 0 if p forces any (all) 
of its members to be 0. Dually, p forces an A -circuit ( V -circuit) to be 1 if p forces 
all (any) of its members to be 1. Also, p forces a 0-circuit x ~ .~, to be a 0 (1) if 
p(x)  = 0 (1). A restriction p induces a circuit C p from the circuit C in the 
following sense. If p forces C to be 0 (1), then C p is the constant circuit 0 (1). If C 
is not forced by p, then C p is recursively defined to be (B°IB is an unforced 
member of C }. 

Lemma 3.1. For any circuit C, function f ,  and restriction p, if C computes f then 
C p computes fP. 

Proof. Straightforward. [] 

Definition. An n-parity function is x 1 + • • • + x ,  (mod2), or the negation of this. 
A parity circuit is any circuit that computes a parity function. 

Lenuna 3.2. For any parity function f and restriction p, fo is a parity function. 
The following is the main theorem. Its proof occupies most of the rest of this 

section. 

Theorem 3.3. Parity cannot be computed by constant-depth, polynomial-size cir- 
cuits. 



Parity, Circuits, and the Polynomial-Time Hierarchy 19 

Proof. (By contradiction) Let d be the smallest depth admitting polynomial size 
parity d-circuits. Lupanov proves that parity 2-circuits are exponentially large 
[12], therefore, d must be at least 3. We proceed in three steps. First we construct, 
using suitably chosen restrictions of the polynomial-size parity d-circuits, poly- 
nomial-size parity d-circuits all of whose 1-circuits are of constant size. Then we 
apply a second set of restrictions to these circuits obtaining polynomial-size parity 
d-circuits all of whose 2-circuits are of constant size. Finally, we modify these 
circuits to get polynomial-size parity ( d -  1)-circuits, thereby contradicting the 
minimality of d. 

Step 1. Let C1,C2,... be parity d-circuits, where C, computes an n-parity 
function and has size ~< n ~. We show that, for each sufficiently large n, a 
restriction p chosen at random from a suitable distribution has a non-zero 
probability of inducing from C~ a circuit C, p such that, 

(i) C2 computes an m-parity function, for some m >i fn-/2, and 
(ii) all the 1-circuits of C, p are bounded in size, independently of n. 
The random restriction p: X" ~ (0,1, * ) is chosen from a distribution that 

independently assigns, for each i, the probabilities: 

Pr[p(xi)  isa *] = l /On ,  

Pr[p(xi) isa  1] = Pr[p(xi) isa0] 
1-1 /~ fn  

2 

Fixing a constant c, whose value we exhibit later, p fails if either C, p contains 
a 1-circuit of size > c or p assigns * to fewer than ~/~/2 inputs. Since C, has at 
most n * 1-circuits, 

Pr[p fails] ~< Pr[ p assigns < f n / 2  * 's] 

+ n k .  Pr[ a given induced 1-circuit in C, p has size > c]. (2) 

Chebyshev's inequality shows that the first term of (2) is bounded above by 
0(n-1/2). (Note that all our inequalities hold for sufficiently large n.) To bound 
the second term of (2), consider a 1-circuit B and the probability that B p has size 
> c. Either B is wide, i.e, has size >/cln n, or B is narrow, i.e., has size < cln n. 

Case 1. B is wide. 

Pr[ B is not forced] ~< Pr[no member of B is assigned 1] 

~< (3/4)ctn,, (for n >1 4) 

n cba(3/4) 

= o ( n  - c / 4 ) .  
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Case 2. B is narrow. 

Pr[size o f B  ~ > c] ~< Pr[B contains >/c* 'ed inputs] 

<~ ( c l n n )  

< ( c lnn )~n  -~/2 

= o ( n - C / 4 ) .  

If c = 8k, then 

Pr[ Cff contains a 1-circuit of size > c] <~ n k. o( n -~/4 ) = n k . o( n -~ ) 

- -  

Hence, 

Pr[p failsl ~< n - 1 / 2  .-{- o (  n - k  ) = o(1).  

Thus, for every sufficiently large n, there exists a restriction p such that, 
(i) C~ computes an m-parity function, for some m >/vrff/2, 

(ii) the size of C~ ~< n k is polynomial in m, and 
(iii) C~ contains no 1-circuits of size greater than c. 
From these induced circuits it is easy to obtain a sequence D1, D 2 . . . .  of 

polynomial-size parity d-circuits in which every 1-circuit has size ~< c. 

Step 2. Let D 1, D 2 . . . .  be d-circuits, such that, for each n, D n computes an 
n-parity function, has at most n k gates, and contains no 1-circuits of size greater 
than c. We show that, for each sufficiently large n, a restriction p chosen from the 
distribution used in Step 1 has a non-zero probability of inducing from Dn a 
circuit equivalent to one which 

(i) computes an m-parity function, for some m >/v/-n-/2, and 
(ii) C~ has 2-circuits bounded in size independently of n. 
Fixing a constant be, p fails if either 
(i) # assigns fewer than vrff /2. 's ,  or 

(ii) if some 2-circuit of D~ depends upon >1 b~ inputs. 
As in Step 1, the probability that p assigns too few * 's is very small. To show 

that there is some bc for which the second condition is also unlikely we make the 
following claim. 

Claim. For every c, there is a constant bc, such that, for any 2-circuit A all of 
whose 1-circuits are of size at most c, Pr[AP depends upon > bc inputs] = o(n -k ) .  
The claim is proved by induction on c. 

Basis. ( c = 1 )  The 2-circuit A computes the A function and hence by an 
argument dual to that used in Step 1, we see that b 1 exists. 

Induction. (Show b c exists given be_ t.) Let b --- k-4 c and consider two cases, one 
in which A is wide, i.e, has >1 bin n disjoint 1-circuits (no common inputs), and 
the other in which A is narrow. 
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Case 1. A is wide. 

Pr[ A is not forced] < Pr[no member of A is forced to 0] 

~< Pr[a 1-circuit of size ~< c is not forced to 0] bin" 

~< ( 1 - 4 - * )  bt~" 

__.~ ?/bin(I-4 -c) 

/1 -b4 -c .  

For b = k .4  c this is o(n-k) .  

Case 2. A is narrow. Choose a maximal collection of disjoint 1-circuits in A and 
let H be the set of inputs appearing in this collection. Since A is narrow 
IH[ ~< bclog n, and H hits (contains at least one input appearing in) each of A's 
1-circuits. Let h be the number of * 'd inputs in H, and let l =.2 h. Let 01, 02 . . . . .  Pt 
be the 2 h restrictions obtained by setting these * 's to 0 or 1 in all possible ways. 
The value computed by A p can be determined from the values of AP,,... ,A p, and 
the h * 'd inputs. Furthermore, since H hits every 1-circuit, the 1-circuits in each 
A p, are of size at most c -  1. Thus, by the induction hypothesis, Pr[A p, depends 
upon > bc_ 1 inputs] = o(n-k) .  By an argument similar to that in Step 1, Case 2, 
Pr[h>4k]<~o(n-k).  If A p depends upon > 4 k + l . b , _  1 inputs, then either 
h > 4 k  or one of the A p, depends upon more than bc_~ inputs. Since l <  24k 
whenever h ~< 4k, letting b c = 4k +24k'bc_l, we have 

Pr[ A '  depends upon > b c inputs] <~ o(n -k)  + 24k. o(n -k)  

_ -  o(n-k). 

Claim proved. Hence, for the value of b c given by the claim, a non-failing p 
exists. Since any 2-circuit which depends upon only b c inputs is equivalent to a 
2-circuit of size at most be-2 be, we can construct from D~ an equivalent d-circuit 
that, 

(i) computes an m-parity function, for some m > v/h-/2, and 
(ii) has 2-circuits that are of size at most b,. 2 be. 
We thus obtain a sequence E 1, E 2 . . . .  of polynomial-size parity d-circuits all 

of whose 2-circuits are of constant size. 

Step 3. The parity d-circuits E i can be converted to parity (d-1) -c i rcu i t s  by 
rewriting their 2-circuits of size a, using the distributive law, as v -  ^-circuits of 
size at most a.  2 a. Replacing all 2-circuits in the E i by these, merging the two now 
adjacent levels of V's  (recall that d >/3), and then applying DeMorgan's laws to 
exchange v ' s  and A 's, we obtain parity (d  - 1)-circuits at most a constant factor 
larger. 

Thus, we conclude that there exists a sequence F 1, F 2 . . . .  of polynomial size 
parity (d  - 1)-circuits, which is impossible. [] 

A more careful analysis slightly improves the lower bound. Instead of finding 
an equivalent v - ^  2-circuit at the end of Step 2, it is sufficient to proceed 
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directly to Step 3 and find an equivalent v -A  circuit there. Parity d-circuits of 
size O(n/tn)) are converted in Step 1 to parity d-circuits of size O(n 2/tn)) whose 
1-circuits are of size O(f(n)). Each repetition of Step 2 at most triply exponenti- 
ates the size of the 1-circuits. Denoting the k th iterate of the log function by 
log ~k), and the inverse of the function g(0) = 1, g(n) = 2 gtn-t), by log*n, we have: 

Corollary 3.4. Parity d-circuits must be of size f~(nX°g~k~), where k = 3(d -2 ) .  

Corollary 3.5. Polynomial-size parity circuits must haoe depth ~(log*n). 

Corollary 3.6. The boolean function " =  k (mod p)", for any k and p >1 2, cannot 
be computed by constant-depth, polynomial-size circuits. 

Proof. An argument exactly analogous to that in the proof of the main theorem 
confirms this result. [] 

4. Consequences 

In the previous section we showed that parity cannot be computed by constant- 
depth, polynomial-size circuits. The parity function seems so simple that one 
immediately wonders if other, seemingly more complicated, functions also cannot 
be realized in constant depth and polynomial size. Here we prove that majority, 
multiplication of binary integers, and transitive closure share this property with 
parity. 

Definition. A function f is constant-depth, polynomial-size reducible to a function 
g ( f  ~< cpg) if f can be realized with constant-depth, polynomial-size circuits on 
literals, made up of v-gates, A -gates, q-gates, and gates computing the function 
g. 

Lemma 4.1. I f  Parity is <<. cp reducible to a function g, then g is not realizable in 
constant depth and polynomial size. 

Proof. Straightforward. [] 

Definition. The Majority predicate on n binary variables is defined to be 1 if 
and only if more than half of the inputs are 1. 

Lemma 4.2. Parity <x cp Majority. 

Proof. (outline) Let x 1 .. . . .  x n be the variables for which we wish to construct a 
constant-depth, polynomial-size circuit using A-gates, v-gates, and Majority 
gates. Using a Majority gate and a constant 0-circuit (0 or 1) we can compute the 
predicate P~ ="a t  least k bits are on" in depth one, and polynomial size. We 
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compute parity as 

(P0^ r l )  v (e2 ^ v (P, ^ . . . .  

This lemma and Lemma 4.1 yield the following. 

[] 

Theorem 4.3. Majority cannot by realized by constant-depth, polynomial-size 
circuits. 

We now show that circuits performing multiplication of binary integers in 
constant depth require more than a polynomial number of gates. This proves that 
multiplication cannot be implemented by polynomial-size program logic arrays 
(PLA's.) We point out, for contrast, that addition can be realized in constant 
depth and polynomial size, and hence can be implemented by polynomial-size 
PLA's. 

Definit ion.  Let a = (a~), b = (bi) be two n-bit binary numbers. A Multiplication 
gate has 2n inputs (a,.), (b;), and 2n outputs, where the output bits are the 2n bits 
of the product of a and b. 

Lemma 4.5. Parity ~ cp Multiplication. 

Proofi (outline) Let x 0 ... . .  xn-1 be the variables for which we wish to construct 
a constant-depth, polynomial-size circuit using v-gates, A -gates, and multiplica- 
tion gates. Let k = [log n]. Define two kn-bit binary numbers a and b as follows: 

n - - 1  

a = ~., ai 2ki, and 
i = 0  

n - 1  

b = ~ bi 2ki, 
i = 0  

where for all i, b~ = 1 and a i = x r The 2kn bits of these numbers can easily be 
computed from the xj with a circuit of depth 1. 

Consider the product 

2n - 1  

a b =  ~_, c~2 ki, 
i=O 

where each c~ is a k-bit binary number. The low order bit of the number 

n - 1  n - 1  

Cn-1 = E a ibn- l - i  = E xi 
i = o  i = 0  

is the parity of the x~, Figure 2. Therefore, given a multiplication gate, we can 
compute parity with constant-depth, polynomial-size circuits [] 

Theorem 4.6. Multiplication cannot be computed by constant-depth, polynomial-size 
circuits. 
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Fig. 2. 
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Proof. From Lemmas 4.1 and 4.2. [6] [] 

Definition. Let A = (a~j) be the n by n adjacency matrix for a graph G. A 
Transitive Closure gate has n 2 inputs a~j and n 2 outputs a~ such that A* = (a~)  is 
the adjacency matrix for the transitive closure of G. 

Lemma 4.7• (J. Byrd) Parity <~ cp Transitive Closure. 

Proof. Let x z . . . . .  x ,  be the variables for which we want to construct a constant- 
depth, polynomial-size parity circuit using v-gates,  A-gates, and transitive 
closure gates. Let G be a graph with n + 2 vertices defined by a 0-1 assignment to 
the x i in the following way. The vertices of G are labeled 

v ~  t , vx, . . . . .  vx,, ve, d. 

There is an edge between vm~ and the first Vx,, for which x~ = 1. There is an edge 
between ve. d and the last vxj for which xj = 1. There is also an edge between vx, 
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and v x if i < j ,  and 
~) x,=l, 

( i l )  Xi+ 1 ----" Xi+ 2 . . . . .  X j _  1 = O, a n d  

(iii) xj=l .  
Thus G contains a single path linking ost m to yen a passing through the "on" 

variables from left to right, Figure 3. 
From the literalsx x, xl . . . . .  x, ,  ~ we can compute the n 2 bits of the adjacency 

matrix A = (a~j) for G with A -gates as follows. 

astart, i = X 1 A " ' "  A "~i-1 A X i ,  

ai ,en d = X i A "~i+1 A " ' "  A "~n, 

a i j  = X i A "~i+l A " ' "  A "~j-1 A X j .  

Consider the graph G 2 o n  the vertices 

VsPtaa, Vp p r • V~d X I ' "'~VXn~ 

in which there is an edge from v; to v~ if and only if there is a path of length 2 in 
G from v, to v s, Figure 3. The n 2 bits of the adjacency matrix B = (bij) for G 2 can 
be computed from the a U with v-gates and A-gates as follows, 

b,, = ( a d A a t , ) V ( a r 2 A a z , ) V  " ' "  V ( a , , A a , , ) .  

Therefore, the b U can be computed in constant depth and polynomial size from 
the x;. Take the transitive closure B* = (b~) of B with a transitive closure gate. 
The bit b*a~,~ad is a 1 if and only if the sum of x 1 .. . . .  x,  is odd. Thus Parity x< cp 
Transitive Closure. [] 

Skyum and Valiartt have shown that any function computable by 
polynomial-size formulas can be reduced by projections to transitive closure [18]. 
This is an alternative proof of Lemma 4.7. 

Theorem 4.8. Transitive Closure cannot be realized in constant depth and poly- 
nomial size• 

I 0 1 1 o I o 0 

- - . - 

Fig. 3• The graphs (7 and G 2. 
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5. Areas for Additional Research 

(1) Better lower bounds: It is straightforward to give 0(2 nAa-1)) sized parity 
d-circuits. How can the gap between upper and lower bounds be tightened? 

(2) Polynomial lower bounds: The bits of Addition can be computed by 
polynomial-size 3-circuits. Is it possible to compute them with linear size d-cir- 
cuits for sonic d? Can any size-depth trade-off be given? 

(3) Polynomial-size, constant-depth reduction: Elucidate the structure of this 
reducibility. We conjecture that the majority function does not reduce to the 
parity function. 

(4) Connections with the infinitary version: The proofs of the main theorem 
of this paper and the main theorem in [20] are structurally similar. Is there any 
formal connection between them? Is there a finitary version of the measure 
theoretic proof of the infinitary version of the theorem presented in [8]? 

(5) More powerful models: Polynomial-size, bounded-width decision dags 
can simulate polynomial-size, bounded-depth circuits, as well as compute func- 
tions such as parity and " =  0 (modk)" [7]. Can they compute the majority 
function? 
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