
Math. Systems Theory 17, 13-27 (1984) Mathematical
Systems Theory
©1984 ,Springer-Verlag New York Inc.

Parity, Circuits, and the Polynomial-Time Hierarchy*

Merrick Furst, 1 James B. Saxe, 2 and Michael Sipser 3

1Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa., 15213

2Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa., 15213

3 Department of Mathematics, Massachusetts Institute of Technology, Boston, Mass., 02139

Abstract. A super-polynomial lower bound is given for the size of circuits of
fixed depth computing the parity function. Introducing the notion of poly-
nomial-size, constant-depth reduction, similar results are shown for the
majority, multiplication, and transitive closure functions. Connections are
given to the theory of programmable logic arrays and to the relativization of
the polynomial-time hierarchy.

1. Introduction

It is of both practical and theoretical interest to know the size of boolean circuits
necessary to compute common boolean functions. Despite considerable effort, the
techniques for proving combinatorial lower bounds on circuit size remain primi-
tive. To date, even for circuits restricted to be monotone, linear lower bounds are
the best that can be shown for naturally arising functions [14, 2, 16].

Lupanov studied bounded depth circuits in 1961 and showed that parity
circuits of depth 2 must have an exponential number of gates [11]. Krapchenko,
investigating the complexity of the parity function, proved an n 2 lower bound on
the size of parity formulas [9, 10]. Considering a different restriction of the circuit
model we prove a superpolynomial lower bound: constant-depth circuits of
q-gates and arbitrary fan-in A and V-gates must use more than a polynomial
number of gates to compute parity, majority, multiplication, or transitive closure.

*Research partially funded by NSF Grant MCS-81-05555 and ONR Grant N00014-76-C-0370.

14 M. Furst, J. B. Saxe, and M. Sipser

Constant-depth circuits elegantly model programmable logic arrays (PLA's),
a type of integrated circuit used inside microprocessors to compactly represent
many functions [14]. According to folklore, some common functions, e.g., parity,
multiplication, and transitive closure cannot be implemented with small PLA's.
The new lower bound establishes a basis for this belief by showing that any PLA
implementing, these functions must be using more than a polynomial amount of
chip area.

Lower bounds for constant-depth circuits relate to questions about the
relativization of the polynomial-time hierarchy. We show that an ~ (n p°ly(l°gn))
lower bound on the size of constant-depth circuits computing parity would imply
the existence of an oracle A that separates u iY.f ,A from PSPACE A. Readers not
interested in this connection may wish to skip Section 2 and proceed directly to
Section 3 where the circuit lower bound is proved.

2. The Polynomial-Time Hierarchy

The Meyer-Stockmeyer polynomial-time hierarchy is a ladder of language classes
lying between P and PSPACE, as depicted in Figure 1 [15, 20].

A language L is in the class Z f if and only if the strings y in L can be
characterized as satisfying a sentence

"q P x I ~ P x 2 . . . Qf xiR (y, Xl xi),

in which
(i) 3 Pxj quantify over strings of length polynomial in l Y[,

(ii) Qf is y P, or 3 P as i is even or odd, and
(iii) R is a deterministic polynomial-time predicate.

PSPACE

nf

IXI
n f

\ /
_ - e = Fig. 1. The Polynomial-Time Hierarchy

Parity, Circuits, and the Polynomial-Time Hierarchy 15

P _ P The class II~ is defmed to be co-Y.i e. Thus, P = ~ 0 - II0, NP = ~g~, and
co NP = II~.

Aside from the obvious trivial inclusions, nothing is known about the
relationships among these classes. Separating y./e from Y~7, for some i, j with
0 < i < j, would separate P, NP, and PSPACE. Baker, Gill and Solovay [3] posed
the following question for language classes in the polynomial hierarchy relativized
to oracles; does there exist an oracle X such that, for some values of i,
~e, x~--~+s~;e' x9. The strongest separation theorem known gives an oracle B such

IIe' B which implies e, B e, n that, Y.~'n ÷ 2 , ~2 C ~'3 [4]. The technique used to obtain
this result is not strong enough to separate any higher levels.

Parity and the Relativized Polynomial Hierarchy

There is more than one notion of relativized space bounded computation [12].
Permitting machines to make exponentially long oracle queries--by not account-
ing for the space used on the query tape--makes it quite easy to construct an A
that separates U iE~ e' A and PSPACE A. The separation problem becomes interest-
ing only if oracle queries must fit within the polynomial-space bound and we
adopt this convention.

Definition. The polynomial hierarchy relativized by an oracle A is PH A=
u ;y.f'".

In what follows we prove that if parity of n inputs cannot, for any k, be
computed by constant-depth, O(nl°gk")-size circuits, then there exists an oracle A
that separates PSPACE A and PH A. The proof requires several lemmas.

First, consider the oracle property,

L A = {1"1 the number of strings of length n in A is odd}, (1)

as defined by Angluin [1]. It is certainly in PSPACE A. Can it be in y./e,A, for some
fixed i?

Lenuna 2.1. Let

o (y) = 3exlVex2 . . . Qfx , RA(x l ,x~, y)

be a sentence in E~. A. There is an equivalent sentence

6 (y) = :]PxlVPX2 P ~-A • ..Qi+2xi+2R (x l xi+2, Y)

P,A in Ei+ 2 , where RA(x I xi+ 2, y) is a predicate that can be computed by a machine
that makes at most one oracle query and runs for a polynomial amount of time.

Proof We show how RA(xl xi, y) can be expressed as

2:] P r V P s R A (x1 Xi, r, s, y),

where RA(x I xi, r, s, y) can be computed by a machine that makes only one
oracle query and runs for a polynomial amount of time. Then, substituting this
two quantifier sentence for R A in o we obtain 6.

16 M. Furst, J. B. Saxe, and M. Sipser

Let M ~ (x l , . . . , x i , y) be a polynomial-time machine that computes the predi-
cate RA(x l , . . . , x i , y) . If specific values of xl,. . . ,xi, and y are given, M runs for a
polynomial number of steps, makes some oracle query qj, receives a response §.
("qjj ~ A", or "qjj ~ A"), branches one of two ways based on the outcome, and
iterates this process a polynomial number of times before finally accepting or
rejecting. This computation (whose value is really a function of the oracle A) may
be viewed as a binary tree T with internal nodes labeled with oracle queries qj,
edges labeled "qj c A " , or "qj ~ A", and leaves labeled either "accept" or
"reject". The sentence

3 erVesRA(xl ,xi, r, s, y)

must characterize those oracles A that lead M to accept. Informally, the sentence
should say: "there is an accepting path in T along which every query response is
consistent with A." More formally, let r range over all possible polynomially long
sequences of (query qi, response ri) pairs, and let s range over all possible queries
qs. Let R-A(xx xi, r, s, y) be thee predicate

"r = (qi~' i)~). "'(qJl' 1)1) is an accepting branch in T
and

if qs appears as query q j, along branch r then
ri, is the correct answer to the question qj. ~ ~ " .

The first part of this predicate can be computed in polynomial time by simply
simulating M. The second part can be determined by making at most one oracle
query. []

Actually, a technically stronger result can be shown.

Corollary 2.2. Let

o (y) = 3exlVex2.. .Q~ex,RA(x 1 xi, y)

be a sentence in y~.e, A. There is an equivalent sentence

~ (y) e e e ~A
= =! XlV x2...Qi+lXi+l R (x 1 Xi+l ' y) ,

in e.A Y~i+l, where/~A(x x ,xi+ 1, y) can be computed by a machine that makes at
most one oracle query and runs for a polynomial amount of time.

Proof In the proof of Lemma 2.1, the two quantifier sentence equivalent to R
could just as easily have been constructed to be a V3 sentence whose polynomial-
time predicate requires only one oracle query to evaluate. If quantifier Q~ had
been existential (universal), the first quantifier of the two quantifier sentence used
to replace R could have been chosen to be existential (universal). This could have

~P,A allowed a merging of two adjacent levels of like quantifiers, giving a i+1
sentence ~. []

Lenuna 2.3. I f the oracle property L A, defined by (1) is in y.p,A then, for some
fixed k, there exists a depth i+1 , O(nl°Sk")-size circuit to compute parity of n
variables.

Parity, Circuits, and the Polynomial-Time Hierarchy 17

Proof. Suppose 1" is in L A if and only if 3exlYex2. . .QiexiRa(xl , . . . , x i , l") . Let
• be as in Corollary 2.2. We can think of the sentence

P ~'A 1 n e (l ") = 3eXlVeX2...Q,+lX,+l R (x 1 x,+ 1,)

as describing a height i + 1 tree with root labeled "3", internal nodes labeled "3"
or "Y", and leaves labeled ,,~a (Xl xi+ 1,1")", for specific values of x l , . . . , xi+ 1.
Each internal node has 2 ("0 sons, one for each possible value of an x i. The
predicate RA(x I X,+l,l"), for fixed values of xx,...,x~+ 1, is determined by at
most one oracle query ~2" Thinking of the 2" length-n oracle queries as variables
ql q2", we see that R'A(xl ,x,+l,l") is equivalent to either the literal qj, or
the literal qy, for somej. Replacing Y-nodes by ^ -gates, 3-nodes by v -gates, and
the/~A(x 1 Xi+l,l") leaves by qj or ¢, as appropriate, we obtain, for some c, a

. k d .

depth i + 1, c ()-size ctrcmt computmg panty of the 2" vanables qj. Noticing that
c ('*) is 0((2")1°~*(2")), the result follows. []

Theorem 2.4. I f the parity function on n variables cannot be computed by
constant-depth, O(n]°g*')-size circuits, then there exists an oracle A such that
PSPACE A ~ PH A.

Proof. Using Lemma 2.3 and the assumption that parity cannot be computed by
constant-depth, fi(nl°gk")-size circuits, as in [4], we can diagonalize away from PH
and construct an oracle A' such that L A" q~ PH A'. On the other hand, for any A,
L A ~ PSPACE A since a machine need only run through all strings of length n and
count how many are in A to determine "1" ~ 7LA ". Thus, L A' ~ PSPACE A' - PH A'.

[]
We conjecture that there is no k such that parity can be computed by

constant-depth, fi(nl°P')-size circuits.

3. The Parity Lower Bound

We begin by defining terms.

Definition. For each n, X, = {x 1 x , } is the set of inputs, and 7,, =
(X l , X1, Xn, X, } is the set of literals.

Definition. A O-circuit is a literal; an i-circuit is a nonempty collection of
(i - 1)-circuits. An i-circuit is an ^ -circuit if i is even and an v -circuit if i is odd.
There are two constant circuits, 0 and 1. The function computed by an A-circuit
(V-circuit) C is the A (V) of the functions computed by C's members. The
0-circuit xj(~j) computes the (negation of t he) j t h projection function. The
constant circuits compute the constant functions. For each circuit C, the function

fc:(O,1) " -) {0,1},

is the function that C computes.

18 M. Furst, J. B. Saxe, and M. Sipser

Definition. For circuits B and C, B belongs to C, if B is hereditarily a member of
C, i.e., "belongs to" is the transitive closure of "member of". The depth of an
i-circuit is i, the size of an /-circuit is the number of circuits belonging to it.
Constant and 0-circuits have size 0 and depth 0.

The circuits defined in this way are equivalent to conventional circuits except
they are organized into levels of A's and v ' s that connect only to adjacent levels.
An arbitrary circuit of depth d and size s on n inputs can be converted to one of
this form having depth d and size at most 4s + 2n. Much of this increase comes
from the necessary introduction of trivial gates having only one input. If these are
counted as wires, the size of the new circuit is only 2s.

Definition. A restriction is a function p: X n ~ (0,1, * }. The natural extension of
P to ,~, is made by assigning

*, i f p (x i) = *;
P(x ') = -~p(x ,) , ifp(xi)--/: *.

Restrictions fix some of the inputs of a function while leaving others, those
assigned *, variable. For any restriction p, and function f : (O,1) ~--, (0,1}, p
induces a function

fP:{O, l} ~ ~ (0,1},

where k is the number of literals assigned . . If a ~ {0,1} k, fP(a) = f(aP), where
a p is p(x l)p(x2) . . .p (x ,) with the k * 's replaced by the k elements of a.

In the same spirit that restrictions induce new functions, they also induce new
circuits. A restriction p forces an A -circuit (V -circuit) to be 0 if p forces any (all)
of its members to be 0. Dually, p forces an A -circuit (V -circuit) to be 1 if p forces
all (any) of its members to be 1. Also, p forces a 0-circuit x ~ .~, to be a 0 (1) if
p(x) = 0 (1). A restriction p induces a circuit C p from the circuit C in the
following sense. If p forces C to be 0 (1), then C p is the constant circuit 0 (1). If C
is not forced by p, then C p is recursively defined to be (B°IB is an unforced
member of C }.

Lemma 3.1. For any circuit C, function f , and restriction p, if C computes f then
C p computes fP.

Proof. Straightforward. []

Definition. An n-parity function is x 1 + • • • + x , (mod2), or the negation of this.
A parity circuit is any circuit that computes a parity function.

Lenuna 3.2. For any parity function f and restriction p, fo is a parity function.
The following is the main theorem. Its proof occupies most of the rest of this

section.

Theorem 3.3. Parity cannot be computed by constant-depth, polynomial-size cir-
cuits.

Parity, Circuits, and the Polynomial-Time Hierarchy 19

Proof. (By contradiction) Let d be the smallest depth admitting polynomial size
parity d-circuits. Lupanov proves that parity 2-circuits are exponentially large
[12], therefore, d must be at least 3. We proceed in three steps. First we construct,
using suitably chosen restrictions of the polynomial-size parity d-circuits, poly-
nomial-size parity d-circuits all of whose 1-circuits are of constant size. Then we
apply a second set of restrictions to these circuits obtaining polynomial-size parity
d-circuits all of whose 2-circuits are of constant size. Finally, we modify these
circuits to get polynomial-size parity (d - 1)-circuits, thereby contradicting the
minimality of d.

Step 1. Let C1,C2,... be parity d-circuits, where C, computes an n-parity
function and has size ~< n ~. We show that, for each sufficiently large n, a
restriction p chosen at random from a suitable distribution has a non-zero
probability of inducing from C~ a circuit C, p such that,

(i) C2 computes an m-parity function, for some m >i fn-/2, and
(ii) all the 1-circuits of C, p are bounded in size, independently of n.
The random restriction p: X" ~ (0,1, *) is chosen from a distribution that

independently assigns, for each i, the probabilities:

Pr[p(xi) isa *] = l /On ,

Pr[p(xi) isa 1] = Pr[p(xi) isa0]
1-1 /~ fn

2

Fixing a constant c, whose value we exhibit later, p fails if either C, p contains
a 1-circuit of size > c or p assigns * to fewer than ~/~/2 inputs. Since C, has at
most n * 1-circuits,

Pr[p fails] ~< Pr[p assigns < f n / 2 * 's]

+ n k . Pr[a given induced 1-circuit in C, p has size > c]. (2)

Chebyshev's inequality shows that the first term of (2) is bounded above by
0(n-1/2). (Note that all our inequalities hold for sufficiently large n.) To bound
the second term of (2), consider a 1-circuit B and the probability that B p has size
> c. Either B is wide, i.e, has size >/cln n, or B is narrow, i.e., has size < cln n.

Case 1. B is wide.

Pr[B is not forced] ~< Pr[no member of B is assigned 1]

~< (3/4)ctn,, (for n >1 4)

n cba(3/4)

= o (n - c / 4) .

20. M. Furst, J. B. Saxe, and M. Sipser

Case 2. B is narrow.

Pr[size o f B ~ > c] ~< Pr[B contains >/c* 'ed inputs]

<~ (c l n n)

< (c lnn)~n -~/2

= o (n - C / 4) .

If c = 8k, then

Pr[Cff contains a 1-circuit of size > c] <~ n k. o(n -~/4) = n k . o(n -~)

- -

Hence,

Pr[p failsl ~< n - 1 / 2 .-{- o (n - k) = o(1).

Thus, for every sufficiently large n, there exists a restriction p such that,
(i) C~ computes an m-parity function, for some m >/vrff/2,

(ii) the size of C~ ~< n k is polynomial in m, and
(iii) C~ contains no 1-circuits of size greater than c.
From these induced circuits it is easy to obtain a sequence D1, D 2 of

polynomial-size parity d-circuits in which every 1-circuit has size ~< c.

Step 2. Let D 1, D 2 be d-circuits, such that, for each n, D n computes an
n-parity function, has at most n k gates, and contains no 1-circuits of size greater
than c. We show that, for each sufficiently large n, a restriction p chosen from the
distribution used in Step 1 has a non-zero probability of inducing from Dn a
circuit equivalent to one which

(i) computes an m-parity function, for some m >/v/-n-/2, and
(ii) C~ has 2-circuits bounded in size independently of n.
Fixing a constant be, p fails if either
(i) # assigns fewer than vrff /2. 's , or

(ii) if some 2-circuit of D~ depends upon >1 b~ inputs.
As in Step 1, the probability that p assigns too few * 's is very small. To show

that there is some bc for which the second condition is also unlikely we make the
following claim.

Claim. For every c, there is a constant bc, such that, for any 2-circuit A all of
whose 1-circuits are of size at most c, Pr[AP depends upon > bc inputs] = o(n -k) .
The claim is proved by induction on c.

Basis. (c = 1) The 2-circuit A computes the A function and hence by an
argument dual to that used in Step 1, we see that b 1 exists.

Induction. (Show b c exists given be_ t.) Let b --- k-4 c and consider two cases, one
in which A is wide, i.e, has >1 bin n disjoint 1-circuits (no common inputs), and
the other in which A is narrow.

Parity, Circuits, and the Polynomial-Time Hierarchy 21

Case 1. A is wide.

Pr[A is not forced] < Pr[no member of A is forced to 0]

~< Pr[a 1-circuit of size ~< c is not forced to 0] bin"

~< (1 - 4 - *) bt~"

__.~ ?/bin(I-4 -c)

/1 -b4 -c .

For b = k .4 c this is o(n-k) .

Case 2. A is narrow. Choose a maximal collection of disjoint 1-circuits in A and
let H be the set of inputs appearing in this collection. Since A is narrow
IH[~< bclog n, and H hits (contains at least one input appearing in) each of A's
1-circuits. Let h be the number of * 'd inputs in H, and let l =.2 h. Let 01, 02 Pt
be the 2 h restrictions obtained by setting these * 's to 0 or 1 in all possible ways.
The value computed by A p can be determined from the values of AP,,... ,A p, and
the h * 'd inputs. Furthermore, since H hits every 1-circuit, the 1-circuits in each
A p, are of size at most c - 1. Thus, by the induction hypothesis, Pr[A p, depends
upon > bc_ 1 inputs] = o(n-k) . By an argument similar to that in Step 1, Case 2,
Pr[h>4k]<~o(n-k). If A p depends upon > 4 k + l . b , _ 1 inputs, then either
h > 4 k or one of the A p, depends upon more than bc_~ inputs. Since l < 24k
whenever h ~< 4k, letting b c = 4k +24k'bc_l, we have

Pr[A ' depends upon > b c inputs] <~ o(n -k) + 24k. o(n -k)

_ - o(n-k).

Claim proved. Hence, for the value of b c given by the claim, a non-failing p
exists. Since any 2-circuit which depends upon only b c inputs is equivalent to a
2-circuit of size at most be-2 be, we can construct from D~ an equivalent d-circuit
that,

(i) computes an m-parity function, for some m > v/h-/2, and
(ii) has 2-circuits that are of size at most b,. 2 be.
We thus obtain a sequence E 1, E 2 of polynomial-size parity d-circuits all

of whose 2-circuits are of constant size.

Step 3. The parity d-circuits E i can be converted to parity (d-1) -c i rcu i t s by
rewriting their 2-circuits of size a, using the distributive law, as v - ^-circuits of
size at most a. 2 a. Replacing all 2-circuits in the E i by these, merging the two now
adjacent levels of V's (recall that d >/3), and then applying DeMorgan's laws to
exchange v ' s and A 's, we obtain parity (d - 1)-circuits at most a constant factor
larger.

Thus, we conclude that there exists a sequence F 1, F 2 of polynomial size
parity (d - 1)-circuits, which is impossible. []

A more careful analysis slightly improves the lower bound. Instead of finding
an equivalent v - ^ 2-circuit at the end of Step 2, it is sufficient to proceed

22 M. Furst, J. B. Saxe, and M. Sipser

directly to Step 3 and find an equivalent v -A circuit there. Parity d-circuits of
size O(n/tn)) are converted in Step 1 to parity d-circuits of size O(n 2/tn)) whose
1-circuits are of size O(f(n)). Each repetition of Step 2 at most triply exponenti-
ates the size of the 1-circuits. Denoting the k th iterate of the log function by
log ~k), and the inverse of the function g(0) = 1, g(n) = 2 gtn-t), by log*n, we have:

Corollary 3.4. Parity d-circuits must be of size f~(nX°g~k~), where k = 3(d -2) .

Corollary 3.5. Polynomial-size parity circuits must haoe depth ~(log*n).

Corollary 3.6. The boolean function " = k (mod p)", for any k and p >1 2, cannot
be computed by constant-depth, polynomial-size circuits.

Proof. An argument exactly analogous to that in the proof of the main theorem
confirms this result. []

4. Consequences

In the previous section we showed that parity cannot be computed by constant-
depth, polynomial-size circuits. The parity function seems so simple that one
immediately wonders if other, seemingly more complicated, functions also cannot
be realized in constant depth and polynomial size. Here we prove that majority,
multiplication of binary integers, and transitive closure share this property with
parity.

Definition. A function f is constant-depth, polynomial-size reducible to a function
g (f ~< cpg) if f can be realized with constant-depth, polynomial-size circuits on
literals, made up of v-gates, A -gates, q-gates, and gates computing the function
g.

Lemma 4.1. I f Parity is <<. cp reducible to a function g, then g is not realizable in
constant depth and polynomial size.

Proof. Straightforward. []

Definition. The Majority predicate on n binary variables is defined to be 1 if
and only if more than half of the inputs are 1.

Lemma 4.2. Parity <x cp Majority.

Proof. (outline) Let x 1 x n be the variables for which we wish to construct a
constant-depth, polynomial-size circuit using A-gates, v-gates, and Majority
gates. Using a Majority gate and a constant 0-circuit (0 or 1) we can compute the
predicate P~ ="a t least k bits are on" in depth one, and polynomial size. We

Parity, Circuits, and the Polynomial-Time Hierarchy 23

compute parity as

(P0^ r l) v (e2 ^ v (P, ^

This lemma and Lemma 4.1 yield the following.

[]

Theorem 4.3. Majority cannot by realized by constant-depth, polynomial-size
circuits.

We now show that circuits performing multiplication of binary integers in
constant depth require more than a polynomial number of gates. This proves that
multiplication cannot be implemented by polynomial-size program logic arrays
(PLA's.) We point out, for contrast, that addition can be realized in constant
depth and polynomial size, and hence can be implemented by polynomial-size
PLA's.

Definit ion. Let a = (a~), b = (bi) be two n-bit binary numbers. A Multiplication
gate has 2n inputs (a,.), (b;), and 2n outputs, where the output bits are the 2n bits
of the product of a and b.

Lemma 4.5. Parity ~ cp Multiplication.

Proofi (outline) Let x 0 xn-1 be the variables for which we wish to construct
a constant-depth, polynomial-size circuit using v-gates, A -gates, and multiplica-
tion gates. Let k = [log n]. Define two kn-bit binary numbers a and b as follows:

n - - 1

a = ~., ai 2ki, and
i = 0

n - 1

b = ~ bi 2ki,
i = 0

where for all i, b~ = 1 and a i = x r The 2kn bits of these numbers can easily be
computed from the xj with a circuit of depth 1.

Consider the product

2n - 1

a b = ~_, c~2 ki,
i=O

where each c~ is a k-bit binary number. The low order bit of the number

n - 1 n - 1

Cn-1 = E a ibn- l - i = E xi
i = o i = 0

is the parity of the x~, Figure 2. Therefore, given a multiplication gate, we can
compute parity with constant-depth, polynomial-size circuits []

Theorem 4.6. Multiplication cannot be computed by constant-depth, polynomial-size
circuits.

24 M. Furst, J. B. Saxe, and M. Sipser

Fig. 2.

o:-i
6--

O~
ZF~nl

O ~

O ~

i--~-£_ o
I

0 - - 2 .

o-
I

0 - -
o - -

o - -
/ Z Fig,,1

0 - -

0 - -
I In -/) r~ hi_

BITS
• OF
MUL T I PL IE,9

B/T50F~
P#ODUCT

B/I-5
,OF
MULTIPLICAND

fn -I) F~ nl

¢Z,-2) F~ ,1

Parity ~< cp Multiplication.

.--------~-P~R/rr
!
I
I
I
I

: I
I
I
I
I
I

- - I
I

I

\

Proof. From Lemmas 4.1 and 4.2. [6] []

Definition. Let A = (a~j) be the n by n adjacency matrix for a graph G. A
Transitive Closure gate has n 2 inputs a~j and n 2 outputs a~ such that A* = (a~) is
the adjacency matrix for the transitive closure of G.

Lemma 4.7• (J. Byrd) Parity <~ cp Transitive Closure.

Proof. Let x z x , be the variables for which we want to construct a constant-
depth, polynomial-size parity circuit using v-gates, A-gates, and transitive
closure gates. Let G be a graph with n + 2 vertices defined by a 0-1 assignment to
the x i in the following way. The vertices of G are labeled

v ~ t , vx, vx,, ve, d.

There is an edge between vm~ and the first Vx,, for which x~ = 1. There is an edge
between ve. d and the last vxj for which xj = 1. There is also an edge between vx,

Parity, Circuits, and the Polynomial-Time Hierarchy 25

and v x if i < j , and
~) x,=l,

(i l) Xi+ 1 ----" Xi+ 2 X j _ 1 = O, a n d

(iii) xj=l .
Thus G contains a single path linking ost m to yen a passing through the "on"

variables from left to right, Figure 3.
From the literalsx x, xl x, , ~ we can compute the n 2 bits of the adjacency

matrix A = (a~j) for G with A -gates as follows.

astart, i = X 1 A " ' " A "~i-1 A X i ,

ai ,en d = X i A "~i+1 A " ' " A "~n,

a i j = X i A "~i+l A " ' " A "~j-1 A X j .

Consider the graph G 2 o n the vertices

VsPtaa, Vp p r • V~d X I ' "'~VXn~

in which there is an edge from v; to v~ if and only if there is a path of length 2 in
G from v, to v s, Figure 3. The n 2 bits of the adjacency matrix B = (bij) for G 2 can
be computed from the a U with v-gates and A-gates as follows,

b,, = (a d A a t ,) V (a r 2 A a z ,) V " ' " V (a , , A a , ,) .

Therefore, the b U can be computed in constant depth and polynomial size from
the x;. Take the transitive closure B* = (b~) of B with a transitive closure gate.
The bit b*a~,~ad is a 1 if and only if the sum of x 1 x, is odd. Thus Parity x< cp
Transitive Closure. []

Skyum and Valiartt have shown that any function computable by
polynomial-size formulas can be reduced by projections to transitive closure [18].
This is an alternative proof of Lemma 4.7.

Theorem 4.8. Transitive Closure cannot be realized in constant depth and poly-
nomial size•

I 0 1 1 o I o 0

- - . -

Fig. 3• The graphs (7 and G 2.

26 M. Furst, J. B. Saxe, and M. Sipser

5. Areas for Additional Research

(1) Better lower bounds: It is straightforward to give 0(2 nAa-1)) sized parity
d-circuits. How can the gap between upper and lower bounds be tightened?

(2) Polynomial lower bounds: The bits of Addition can be computed by
polynomial-size 3-circuits. Is it possible to compute them with linear size d-cir-
cuits for sonic d? Can any size-depth trade-off be given?

(3) Polynomial-size, constant-depth reduction: Elucidate the structure of this
reducibility. We conjecture that the majority function does not reduce to the
parity function.

(4) Connections with the infinitary version: The proofs of the main theorem
of this paper and the main theorem in [20] are structurally similar. Is there any
formal connection between them? Is there a finitary version of the measure
theoretic proof of the infinitary version of the theorem presented in [8]?

(5) More powerful models: Polynomial-size, bounded-width decision dags
can simulate polynomial-size, bounded-depth circuits, as well as compute func-
tions such as parity and " = 0 (modk)" [7]. Can they compute the majority
function?

6. Acknowledgments

The authors would like to thank Jim Byrd, Steven Fortune, and Charles Leiserson
for many helpful conversations. Steve Fortune first suggested that the depth 3
case might be tractable, Jim Byrd found the proof showing that parity is
constant-depth, polynomial-size reducible to transitive closure, and Charles
Leiserson pointed out the connection to PLA's. Our special thanks go to Hania
Gajewska, Dan Hoey, Martin Tompa, and the referees for carefully reading
earlier versions of this manuscript and suggesting many valuable improvements.

IBM, at Yorktown Heights and San Jose, provided two of the authors with
congenial atmospheres while this research was in progress. The authors were
partially funded by NSF grant MCS-81-05555, ONR grant N00014-76-C-0370,
and an IBM Graduate Fellowship.

References

1. D. Angluin, Counting problems and the polynomial-time hierarchy. Theoretical Computer
Science, to appear.

2. N. Blum, A 2.75n lower bound for the combinational complexity of boolean functions.
University of Saarbrucken, Technical Report.

3. T. Baker, J. Gill, and R. Solovay, Relativizations of the P =vNP question. SlAM Journal of
Computing, 4, 4, 1975.

4. T. Baker and A. Selman, A second step toward the polynomial hierarchy. Theoretical Computer
Science, 8, 2, 1979, pp. 177-187.

5. A. Chandra, D. Kozen, and L. Stockmeyer, Alternation. Journal of the ACM, 28, 1, January
1981.

6. Digital Equipment Corporation, Decsystem 10 Assembly Language Handbook. Third Edition,
1973, pp. 51-52.

7. M. Furst, Bounded width computation DAG's. In preparation, 1982.

Parity, Circuits, and the Polynomial-Time Hierarchy 27

8. M. Furst, J. B. Saxe, M. Sipser, Parity, circuits and the polynomial-time hierarchy. 22ND
Symposium on the Foundations of Computer Science, 1981, pp. 260-270.

9. M. Furst, J. B. Saxe, M. Sipser, Depth 3 circuits require ~(n cl°g~) gates to compute parity: a
geometric argument. In preparation.

10. V. Krapchenko, Complexity of the realization of a linear function in the class of II-circuits.
English translation in Math. Notes Acad. Sci., USSR, 1971, pp. 21-23; orig. in Mat. Zamet, 9, 1,
pp. 35-40.

11. V. Krapchenko, A method of obtaining lower bounds for the complexity of II-schemes. English
translation in Math. Notes Acad. Sci USSR, 1972, pp. 474-479; orig. in Mat. Zamet, 10, 1, pp.
83 -92.

12. O. Lupanov, Implementing the algebra of logic functions in terms of constant-depth formulas in
the basis +, *, - . English translation in Soy. Phys.-Dokl., 6, 2, 1961; orig. in Dokla. Akad. Nauk
SSSR, 136, 5.

13. R. Ladner and N. Lynch, Relativization of questions about log space computability. Mathemati-
cal Systems Theory, 10, 1, 1976.

14. C. Mead and L. Conway, Introduction to VLSI Systems. Addison-Wesley, Reading, Mass. 1980.
15. W. Paul, A 2.5N lower bound for the combinational complexity of boolean functions. 7th Annual

ACM Symposium on Theory of Computing, 1975, pp. 27-36.
16. J. Savage, The Complexity of Computing. John Wiley and Sons, New York, 1976, Sect. 2.4.
17. C.P. Schnorr, A 3n lower bound on the network complexity of boolean functions. Theoretical

Computer Science, 10, 1, 1980, p. 83.
18. L.J. Stoekmeyer, The polynomial-time hierarchy. Theoretical Computer Science, 3, 1, 1976, pp.

1-22.
19. S. Skyum and L. G. Valiant, A complexity theory based on boolean algebra. 22rid Symposium on

the Foundations of Computer Science, 1981, pp. 244-253.
20. M. Sipser, On polynomial vs exponential growth. In preparation.
21. L. Stockmeyer and A. Meyer, Word problems requiring exponential time, preliminary report. 5th

Annual ACM Symposium on Theory of Computing, 1973.

Received May 1982 and in revised form July 13, 1983 and August 22, 1983.

