EDIC RESEARCH PROPOSAL

Scalable Byzantine Fault-Tolerant Gossip

Matej Pavlovic
LPD, 1&C, EPFL

Abstract—Gossip-based protocols are a promising approach to
efficient and robust data dissemination in large-scale distributed
systems. However, their robustness is often limited to tolerating
simple (non-Byzantine) failures, which is not always sufficient.
Byzantine fault tolerance in gossip comes at the cost of sacrificing
or limiting other desirable properties of gossip, like scalability,
decentralized operation or performance. In this proposal, we
identify weaknesses of several approaches to Byzantine fault
tolerant gossip. We propose Robocop, a computation framework
addressing these weaknesses by combining the principles of gossip
and state machine replication.

Index Terms—gossip, Byzantine fault tolerance, scalability,
dynamic membership

I. INTRODUCTION

LOBAL services provided over the Internet have become

very popular in recent years. They are being used by
billions of users distributed all across the planet. Examples
of such services include social networks (like Facebook or
Twitter), web indexes and search engines (Google, Bing),
content sharing and distribution services (YouTube, Dropbox,
Netflix, BitTorrent), communication platforms (Skype), or vir-
tual currencies (BitCoin). All these services are implemented
using distributed systems. Given the amount of users and
their requirements on service availability and performance, the

Proposal submitted to committee: June 13th, 2009; Candi-
dacy exam date: June 20th, 2009; Candidacy exam committee:
Exam president, thesis director, co-examiner.

This research plan has been approved:

Date:

Doctoral candidate:

(name and signature)

Thesis director:

(name and signature)

Thesis co-director:

(if applicable) (name and signature)

Doct. prog. director:

(B. Falsafi) (signature)

EDIC-1u/05.05.2009

distributed systems must be scalable and robust against internal
failures or even malicious attacks.

In order to build such distributed systems, a core problem
that needs to be solved is efficient data dissemination. For
dynamic' systems consisting of millions of nodes, a significant
fraction of which may be controlled by a malicious adversary,
this problem becomes non-trivial.

In [1], Malkhi et al. introduce the diffusion problem, where
an update (i.e. a message) that is initially known by a small
number of source nodes must be disseminated to and accepted
by all correct nodes.

In a naive approach to the diffusion problem, source nodes
could directly send the update to all other nodes. Obviously,
this approach is impractical for large-scale systems, because
the load on the source nodes grows linearly with system size.

To distribute the load more evenly, a structured overlay
network in form of a tree may be used. A source node, being
at the root of the tree, only sends updates to its children in
the tree. The children forward updates to their children and
so on, until the updates reach the leaf nodes. This approach
(usually referred to as broadcast trees or multicast trees)
uses network bandwidth very efficiently, because every node
receives each update only once. However, even simple node
or link failures may prevent a big fraction of the system from
receiving updates.

A promising approach to scalable and robust diffusion
of updates in dynamic systems are gossip algorithms (also
called epidemic algorithms). As the name suggests, updates
in a gossip-based distributed system spread like rumors in a
group of gossiping people (or like infectious diseases in a
population).

With gossip, each node periodically exchanges updates
with a randomly chosen gossip partner. It can be shown that
every update eventually reaches every node with probability
1. Assuming benign faults, the expected number of gossip
rounds necessary to disseminate an update is logarithmic in
the number of nodes. Thanks to the random communication
pattern, gossip algorithms easily cope with crashed nodes and
failed links. The absence of a structured overlay also makes it
easy to handle churn (nodes joining and leaving at run-time).

Gossip was first used by Demers et al. to disseminate up-
dates in replicated databases [2]. Today, the use of gossip is by
no means restricted to simple message dissemination. Gossip-
based algorithms can also be employed for constructing and
maintaining overlay networks [3], multimedia streaming [4]
[5], or distributed peer sampling [6].

Numerous flavors of gossip algorithms exist, differing in
the way gossip partners are selected, the choice of updates

' Dynamicity here means that the set of nodes a system consists of changes
over time.

EDIC RESEARCH PROPOSAL

to propagate, the protocol termination conditions or the as-
sumptions on the underlying system. A general framework for
gossip-based algorithms was described by Kermarrec and van
Steen [7].

Some approaches combine gossip with other strategies, such
as broadcast trees, to achieve efficient steady-state behavior
while maintaining gossip’s tolerance to churn and node/link
failures. One of the first works to combine tree-based multicast
with gossip was Bimodal multicast [8]. Bimodal multicast
works in two phases: in the first phase, an efficient but
unreliable protocol like IP multicast is used. The second phase
uses gossip to mask omissions that might have occurred in the
first phase. Leitdo et al. use gossip to dynamically construct
self-repairing broadcast trees [9].

Although gossip protocols are generally regarded as robust,
their robustness is questioned by Alvisi et al. In their work
[10], they identify several assumptions on which the robustness
of many gossip-based protocol relies, and argue that these
assumptions might not always be valid in practice.

Another particularly interesting problem in gossip algo-
rithms is tolerance to malicious (Byzantine) node behavior. If
malicious nodes inject spurious updates or change the contents
of propagated updates, it becomes hard for correct nodes to
distinguish between “correct” and “incorrect” updates (and
accept only the “correct” ones). This is analogous to real life
gossip, where it is also hard for a person to tell whether a
rumor is true or false.

The diffusion problem in a Byzantine environment was first
studied by Malkhi et al. [1]. They proposed a class of direct
verification® protocols that solve the diffusion problem. They
proved lower bounds on the dissemination time of this class of
protocols, rendering the protocols impractical at large-scale.

Minsky et al. proposed path verification protocols [11] for
the Byzantine diffusion problem, generalizing direct verifica-
tion and circumventing the lower bounds of [1]. However, the
dissemination time of path verification protocols is linear in
the number of tolerated failures. Scalability is thus still limited
if the fraction of Byzantine nodes is constant.

In our research, we target scalability of dynamic gossip-
based systems, in which an important fraction of nodes may
behave maliciously. Our approach combines gossip with state
machine replication, leveraging the Byzantine fault-tolerance
of state machine replication and the scalability of (benign
fault-tolerant) gossip. The result is a framework for efficient
data dissemination across a dynamic large-scale distributed
system, tolerating a constant fraction of malicious nodes.

The rest of this document is structured as follows. Section
IT elaborates on path verification protocols [11] and their
performance in disseminating messages. Section III describes
FlightPath [4], a system for streaming live content using
gossip. Fireflies [3], a gossip-based membership service is
described in Section IV. Finally, in Section V, we summarize
the weaknesses of the described systems and sketch our
approach to overcoming them.

2The term “direct verification” was introduced later by Minsky et al. [11]

II. UPDATE DISSEMINATION USING PATH VERIFICATION

This section describes an approach to dissemination of
updates using path verification protocols [11]. These protocols
rely on tracking the path along which updates are relayed
from node to node. Nodes use this path information to decide
whether the update can be accepted or not.

A. Model and assumptions

1) System: We assume a system of n nodes, where each
node can communicate with any other node. The assumed
system is synchronous (i.e. computation and communication
delays are bounded), such that the protocols can be described
in terms of rounds.

2) Adversary: Correct nodes follow the specified protocol.
The system may contain up to ¢ malicious nodes that can
behave arbitrarily. They might even collude in order to harm
the system as much as possible. Since no cryptographic
primitives are used in the protocols, it is not necessary to
assume the malicious nodes to be computationally bounded.
We assume, however, that messages are not modified by the
underlying network and that a correct node can determine the
sender of each message (making it impossible for malicious
nodes to impersonate other nodes).

3) Initial state: For simplicity of description, we assume
that only a single update is being disseminated. At the start
of each instance of the protocol, there are k > t correct nodes
(source nodes) that have accepted the same initial update. The
way this is ensured is not part of the protocol.

B. Dissemination protocols

Generally, a node accepts an update if it has at least ¢t + 1
copies of that update originating at different source nodes. To
obtain these copies, it periodically (once per round) gossips
with randomly chosen nodes.

We start by describing direct verification protocols, which
are a special case of path verification protocols. Afterwards,
we present the general concept of path verification.

1) Direct verification: With direct verification, a node ac-
cepts an update when it has gossiped with ¢+ 1 different nodes
that have already accepted that update.

The drawback of this approach is that if n > k, the update
propagates slowly in the initial phase of the protocol. This is
due to the initially low probability (k/n) of gossiping with a
node that already accepted the update. Once a certain fraction
of nodes accepted the update, the remaining nodes follow very
quickly.

2) Path verification: Path verification addresses the issue of
direct verification by allowing updates to spread before they
are accepted. To this end, instead of simple updates, so-called
proposals are gossiped. A proposal consists of an update and
a path. A path is a sequence of node identifiers. Source nodes
are initialized with proposals containing the update and an
empty path. A node v that receives a proposal by gossiping
with node u appends u to the path of the received proposal.

Since u may be malicious and forge the path of the gossiped
proposal, the source node of that proposal is not known to v.

EDIC RESEARCH PROPOSAL

Therefore, v accepts an update if it has received ¢+ 1 proposals
that:

1) contain the same update and

2) have disjoint paths.

This ensures that at least one path contains only correct nodes
and thus the update is correct.

If nodes kept all received proposals and transferred all
proposals they have each time they gossip, the number of
proposals at each node would grow exponentially. Therefore,
path verification relies on two sub-protocols:

e a sampling protocol that decides which of the received

proposals a node keeps, and

e a selection protocol that, for each host, chooses a single

proposal that is transmitted to its gossip partner.
Now we can see that direct verification is indeed a special case
of path verification. It corresponds to keeping only proposals
with paths of length one and selecting a proposal with the
accepted update and an empty path.’

Minsky et al. propose several path verification protocols,
differing in the sub-protocols used for sampling and selection:

e Direct Diffusion: A direct verification protocol as de-
scribed above.

o Youngest Diffusion: The sampling protocol keeps only
a fixed number of most recently received proposals.
The selection protocol chooses the “youngest” known
proposal, where the “age” of a proposal is the number
of rounds since the proposal originated.

o Promiscuous Youngest Diffusion: Like Youngest Diffu-
sion, but a node that has accepted an update acts like a
source node, always selecting a new proposal with age 0
and the accepted update.

e Hybrid Diffusion: Equivalent to running Youngest Diffu-
sion and Direct Diffusion in parallel. It combines the “fast
finish” of Direct Diffusion (see II-B1) with the improved
start of Youngest Diffusion.

The selection protocol of all above-mentioned protocols
allows a node to obtain only a single proposal per gossip
round (the one that was selected by the selection protocol at its
gossip partner). A sampling protocol called Bundle Sampling
maintains a whole set of proposals to be gossiped every round.
Using Bundle Sampling, faster update dissemination can be
achieved at the cost of increased memory and bandwidth
requirements.

C. Evaluation

Figure 1 shows the dissemination times of Direct, Youngest
and Hybrid Diffusion in a simulated system of n = 1000
nodes. We can clearly see that the more sophisticated path
verification protocols outperform simple Direct Diffusion. An
interesting point is that Hybrid Diffusion performs signifi-
cantly better than either of Direct and Youngest Diffusion.
This is due to the different causes of Direct and Youngest
diffusion being slow. Where one is slow the other is fast and
vice-versa, yielding a better overall performance.

3Note that the selected proposal need not necessarily be one that was
received from another node. Before accepting an update, no proposal is
selected.

n = 1000
—_ 1000 Ll I 1] 1 1 1 T T
8 900 Direct
5 800 | Youngest -----
\.‘.i 700 Hybrid —-—-- .
@ 600 4
g 500 1
= 400 -
-2 300 .
2 200 g--F]
2 100]
A 0 i A
0 1 2 3 4 5 6 7 8 9 10
t (num of failures tolerated)
Fig. 1. Comparison of dissemination times for Direct Diffusion, Youngest

Diffusion and Hybrid Diffusion, all without Bundle Sampling. Even though
the slopes of the curves are different, they all exhibit a linear dependency on
the number of tolerated failures.

45 —
40+
35 |
30 -
25
20
3 B
10 f=F

5

=

S L
.{if" hybrid, n=10000 —— -
promiscuous, n=10000 ----- |
hybrid, n=100 —-—--
promiscuous, n=100 -- -- -

1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10
t (num of failures tolerated)

Rounds

Fig. 2. Comparison of Hybrid Diffusion and Promiscuous Youngest Diffusion
with Bundle Sampling. The linear relation between the number of tolerated
failures and the diffusion time (vertical axis) is evident.

The comparison of Hybrid Diffusion to Promiscuous
Youngest Diffusion, both used with Bundle Sampling, is
shown in Figure 2. First, looking at the scale of the vertical
axis, we can see the dramatic impact of Bundle Sampling on
dissemination time. Second, Promiscuous Youngest Diffusion
slightly outperforms Hybrid Diffusion in simulation. However,
the authors of [11] state that while the worst-case behavior of
Hybrid diffusion can be easily bounded, it is not the case for
Promiscuous Youngest Diffusion.

As shown in figures 1 and 2 , the dissemination time is
linear with the number of faults tolerated. This is impractical
for large-scale systems, since the number of expected faults
usually grows linearly with system size.

III. DATA STREAMING WITH FLIGHTPATH

FlightPath [4] is a gossip-based system for streaming live
content. It is bandwidth-efficient, supports dynamic member-
ship with high churn and tolerates a fraction of Byzantine
nodes.

We use the BAR (Byzantine-Altruistic-Rational) model [12]
to describe the possible behavior of nodes. Altruistic nodes

EDIC RESEARCH PROPOSAL

faithfully follow the protocol. Rational nodes deviate only if
they expect a benefit (e.g. better stream quality, lower network
utilization, etc.) from doing so. Byzantine nodes may behave
arbitrarily, even maliciously.

FlightPath uses a game-theoretical model of £-Nash equilib-
ria to argue that rational nodes have little incentive to deviate
from the protocol. In contrast to previous work [5], which uses
strict Nash equilibria, FlightPath trades in a little amount of
fairness between nodes to increase the overall performance of
the system.

In this section, we first describe the basic gossip protocol
used by FlightPath. Since the performance delivered only
by the basic protocol is low, we also elaborate on several
optimizations that substantially improve FlightPath’s perfor-
mance. We continue by explaining how FlightPath handles
churn and finish by evaluating tolerance to Byzantine faults
and identifying weak points of FlightPath.

A. Basic protocol

The data stream originates at a single source node, which
is assumed to be correct. The source splits the stream into
chunks called stream updates. To ensure the authenticity of
the updates, the source also computes their digests and signs
them.*

The protocol progresses in synchronous rounds. Each round,
the source sends new updates and their signed digests to a
small number of other nodes. For further dissemination to the
remaining nodes, FlightPath uses a special gossip protocol.
Each update expires after a fixed number of rounds. When
an update expires, all nodes that possess it deliver it to the
application and stop gossiping about it.

The gossip protocol used for update dissemination relies on
three basic ideas:

1) Verifiable pseudo-random partner selection: Each round,
every node pseudo-randomly selects one gossip partner.
As the seed for the random number generator, it uses its
own signature of the current round number. It transmits
the seed together with the gossip request, such that the
gossip partner can verify the selection. If the verification
fails, the gossip partner assumes that the request is
coming from a rational or Byzantine node and ignores
the request.

2) Fair trading of updates: Two gossiping nodes first ex-
change lists (called histories) containing IDs of updates
they already have and IDs of updates they still need. They
then deterministically choose updates to exchange, under
the constraint that the number of received updates must
equal the number of sent updates. In case one of the nodes
has “nothing to offer”, the nodes cancel the trade.

3) Deferred gratification: After selecting the updates to ex-
change, the nodes send each other encrypted “briefcase”
messages containing the selected updates.

They also exchange promise messages containing signed
hashes of the briefcase contents. The purpose of the
promises is to prevent malicious nodes from sending

4Unlike the model used in path verification protocols, this requires a
computationally bounded adversary.

Client ¢ Client d
I
@
i g
—History request <
ﬂ\> check selection m
o
History response—— B
- . 3
History divulge @

T | checkhistory
i Ittt --- c
~Briefcase Briefcase~ g
o
~Promise Promise— D
m
check briefcase check briefcase 5
=g
check promise check promise g
e - <
—Keys Keys—

=
)
<
>< 3
decrypt briefcase decrypt briefcase
3
3
Q
@

v \J

Fig. 3. Basic protocol that is executed by two gossiping nodes in FlightPath.

garbage instead of updates. If a briefcase contains junk
data, the corresponding promise can be used as a proof of
misbehavior (POM), leading to the eviction of its sender
from the system. We assume that a malicious node will
not perform steps that lead to its eviction from the system.
Only after receiving a briefcase and the corresponding
promise, a node reveals the decryption key for the other
briefcase to its gossip partner. The key exchange protocol
itself is constructed in a way that provides little incentive
for a rational node to not send its key.

A graphical representation of the gossip protocol is depicted
in Figure 3.

B. Optimizations

Using only the basic protocol, FlightPath has several issues
concerning reliability of delivery, bandwidth efficiency, and
even load distribution. Therefore, FlightPath includes several
optimizations to cope with these issues. Some of the optimiza-
tions allow rational nodes to benefit from the system without
contributing their fair share to the dissemination. However, the
amount of benefit they are able to obtain is always limited. The
optimizations are as follows:

1) Reservations: Although each node gossips with two
other nodes each round on expectation®, the actual number
of gossip partners may vary. On one hand, this can lead to
nodes failing to receive all updates before expiration (if the
nodes are not lucky enough to be selected by other nodes and
therefore have fewer gossip partners). On the other hand, a
node involved in many concurrent exchanges experiences a
higher network load.

To overcome these problems, nodes reserve trades with each
other in advance. A node may send a gossip request for round r
already in round [< r. The selected gossip partner remembers
the request and rejects all subsequent gossip requests for round

SEach round, a node sends one gossip request and expects to receive one
gossip request.

EDIC RESEARCH PROPOSAL

r. A node whose gossip request has been rejected tries to
reserve a trade with another partner.

The basic partner selection mechanism (see III-A1) must
be also modified to allow “rejected” nodes to try other gossip
partners. In the modified protocol, the verifiable pseudo-
random selection maps to several nodes instead of just one.
Each of those nodes must accept a gossip request if it has not
already reserved a trade for the corresponding round.

2) Splitting need: A node involved in several concurrent
trades is likely to receive duplicate updates, effectively wast-
ing bandwidth. The “splitting need” optimization limits the
number of updates exchanged in a single trade. Although this
reduces the number of duplicate updates, it also increases the
chance that a node will not receive all the updates it needs.
This problem is addressed by using erasure codes.

3) Erasure codes: Instead of simply cutting the data stream
into k updates, the source encodes each round’s stream data
into m > k updates, only %k of which are needed to reconstruct
the stream. After a node has collected k& updates for a round,
it stops requesting more updates for that round.

4) Tail inversion: In general, it is preferable for nodes
to exchange new updates when possible. New updates are
generally more valuable because it is more likely that they
can be used for trading in the future. However, a node that
misses some old updates may have trouble receiving those if its
gossip partners have many new updates. As a countermeasure,
a node may explicitly request updates from the two oldest
rounds before expiration.

5) Imbalance ratio: With this optimization enabled, nodes
track the number of sent and received updates for each gossip
partner. Individual trades are allowed to be imbalanced (i.e.
one node sends more updates than it receives), as long as the
overall ratio of sent and received updates does not exceed a
certain threshold.

6) Trouble detector: 1If a node is “in trouble”, i.e. it misses
too many updates, it may initiate more than one trade per
round. Note that this is possible due to the modified partner
selection mechanism introduced for reservations (see III-B1).
The price to pay is increased network load.

C. Dynamic membership

FlightPath relies on a centralized tracker (which is assumed
to be always correct and available) that maintains an up-
to-date membership list. It monitors the nodes using a ping
protocol and removes crashed ones from the list. New nodes
have to contact the tracker before joining the system. The
tracker periodically updates the membership list to reflect the
membership changes.

Nodes have their clocks synchronized with the tracker. Time
is sliced into epochs and each epoch has a corresponding
membership list. The tracker periodically sends new mem-
bership lists to the source node, which disseminates them the
same way as it does the data stream. The source node starts
disseminating new membership list early enough, such that a
node always has received the membership list at the start of
the corresponding epoch.

With the approach just described, a new node cannot start
participating in the stream immediately. It has to wait until it

4 r Attack start

% of peers jittered

Byzantine = 16%——>

Byzantine = 14% \ i
1k Byzantine=12%\ i

0 50 100 150 200
Rounds

Fig. 4. Stream quality during a Byzantine attack of 12, 14 and 16 percent of
nodes. The vertical axis shows the percentage of jittered nodes in each round.
A node is considered jittered in a round if it does not receive all updates for
that round.

is included in the current epoch’s membership list. To avoid
this problem, the authors of FlightPath developed an extension
to the protocol that allows nodes to verify partner selections
even without global knowledge of the system.

D. Evaluation

FlightPath was evaluated using a 200 Kbps data stream in
a system consisting of several hundreds of machines. In a
scenario with no Byzantine failures, it was able to deliver the
complete stream to all nodes, using 250 Kbps of bandwidth
on average.

During a simulated attack of Byzantine nodes, the average
network bandwidth grew by up to 100 Kbps. The stream
quality during the attack is depicted in Figure 4.

The results demonstrate that FlightPath is suitable for
streaming live content with reasonable overhead, even in
presence of over 10% Byzantine nodes.

A drawback of FlightPath is its reliance on a centralized
tracker for membership management. The tracker may be-
come a scalability bottleneck for large systems. This might
especially be the case if it is replicated for reliability using
standard state machine replication techniques like [13] or [14]
(as suggested by the authors of FlightPath).

Another scalability limit of FlightPath may be the dissem-
ination of complete membership lists to all nodes, since the
length of those lists grows linearly with system size.

A fully distributed and Byzantine-tolerant membership ser-
vice is described in the next section.

IV. MEMBERSHIP MANAGEMENT WITH FIREFLIES

Fireflies [3] is a protocol for maintaining Byzantine-tolerant
network overlays. It provides each member node with the
complete view of all other members, and can thus also be
seen as a distributed membership service. It provides a pseudo-
random mesh for efficient gossip-based communication, which
it also uses to disseminate protocol-internal messages.

This section gives an overview of the membership protocol
of Fireflies, describes how gossip is used to support the
membership protocol, evaluates Fireflies’ performance and
identifies its weaknesses.

EDIC RESEARCH PROPOSAL

Q*A/_B\\\ C
///’/ A

Fig. 5. An example system with 7 nodes and 3 rings. Solid arrows represent
valid accusations, dashed arrows represent invalid ones.

A. Membership protocol

The membership protocol provides each member node with
a weakly consistent view of the whole system. It relies on a
broadcast channel through which nodes broadcast two types
of messages:

o Notes, used to announce a node’s presence, making other
nodes insert that node in their view. Notes are also used
for canceling false accusations (see below).

e Accusations, used to remove faulty nodes from the view
of correct nodes.

All broadcast messages are signed and contain a public key
certificate issued by a trusted authority. The broadcast channel
itself is implemented using gossip (see Section IV-B).

The basic idea of the membership protocol is that nodes
monitor each other via pings and broadcast accusations of
failed nodes. An accused node is not directly removed from
the views of other nodes. To countermand false accusations,
the accused node is given a chance to broadcast a note proving
its presence and canceling the accusation. A correct node only
removes an accused node from its view if the accused node
does not announce its presence within a certain time after
being accused.

To limit the number of accusations and notes in the system,
the nodes are organized in 2¢+ 1 rings. Each ring corresponds
to a pseudo-random permutation of nodes. ¢ is a system pa-
rameter expressing a measure of Byzantine fault tolerance. The
system can tolerate ¢ Byzantine nodes deterministically. More
than ¢ Byzantine nodes are tolerated with high probability as
long as the overall fraction of Byzantine nodes remains small.

Node a can accuse node v only if, on some ring,

¢ a is the immediate predecessor of v, or

« all v’s predecessors between v and a are accused.
Accusations not satisfying these conditions are discarded by
correct nodes. Figure 5 depicts accusations in an example
system with 7 nodes organized in 3 rings. Note that A’s
accusation of C on the outer ring is valid, because B is accused
by D on the middle ring.

A correct node receiving a valid accusation of another node
starts a timer. A node receiving an accusation of itself broad-

casts a note to inform the other members about its presence,
making them stop the timer and cancel the accusation.

In order to prevent a ping-pong of repeated accusation —
note broadcasts due to Byzantine nodes, the note contains a
bitmap of 2t + 1 bits, one for each ring. A node may disable a
ring by broadcasting a note with the corresponding bit cleared.
Accusations on rings disabled by the accused node are ignored.
To prevent Byzantine nodes from becoming “immortal” by
disabling too many rings, a node is allowed to disable at most
t rings at a time.

B. Gossip

The broadcast channel used by nodes to disseminate notes
and accusations is based on gossip over a pseudo-random
mesh. Gossiped messages are signed and since the nodes have
a global view of the system, they can verify the authenticity of
each message. The impact of Byzantine nodes on broadcast is
thus limited to decreasing performance. They can do so by not
relaying gossiped messages and by initiating as many gossips
as possible, wasting the bandwidth of correct nodes.

In order to reduce the impact of Byzantine nodes on the
gossip protocol, Fireflies limits the choice of possible gossip
partners for each node. The basic principle is similar to the
one used in FlightPath [4]: using verifiable pseudo-random
selection. A node only accepts connections from those nodes
that are allowed to contact it.

Since a pseudo-random structure used for reasoning about
valid accusations is already present, Fireflies reuses this struc-
ture for gossip. Node v can only gossip with node u if u is
the successor of v on some ring.

Due to churn, it might happen that v believes u to be its
successor, but u does not see v as its predecessor any more.
In this case, if v tries to gossip with u, u informs v about v’s
proper gossip partner.

C. Evaluation

Fireflies was evaluated in simulation and on the PlanetLab
platform.

Simulation was used to measure the message dissemination
time needed by the broadcast channel in presence of various
fractions of Byzantine nodes (Figure 6). We can see that
even for large systems (10000 nodes) and large fractions of
Byzantine nodes (25%), the dissemination time stays in the
order of tens of rounds. Fireflies thus proves to be suitable for
efficient data dissemination in a Byzantine environment.

The experiment on PlanetLab evaluates the behavior of
Fireflies with 270 nodes when an important fraction of nodes
(80) suddenly leave the system. The results (not shown here)
suggest that Fireflies is robust against sudden node departures
and can handle them with reasonable bandwidth overhead.

The drawbacks of Fireflies lie in its limited scalability.
Every node having a full view of the whole system causes
memory requirements to grow linearly with system size. Even
if memory was not the problem (nowadays, memory is cheap),
the rate of notes and accusations can be expected to grow
linearly with system size. This is a more serious problem, since

EDIC RESEARCH PROPOSAL

100 PI 25' URRRAY T
b = —_—t
P22 20
80 Poyz = .
Ebyz =
3 60 byz =
c
S
S
#+ 40 |
20 -
0 il T Ll
10 100 1000 10000
members
Fig. 6. Number of gossip rounds it takes to disseminate a message using

Fireflies’ gossip-based broadcast channel, for various fractions of Byzantine
nodes.

every node has to receive and process notes and accusations
from all other nodes.

By relying on a globally trusted certificate authority, Fire-
flies is also not fully decentralized. This issue could be
circumvented by each node storing the public key of every
other node as part of the node’s identity. However, the price to
pay would be increased bandwidth and memory requirements
for saving and disseminating the public keys.

V. RESEARCH PROPOSAL

In this section we summarize the strong and weak points of
gossip-based systems in the context of the work just presented.
We also give a sketch of Robocop, a system to address the
identified weak points.

A. Summary of current issues

Gossip is inherently robust to simple crash failures of both
nodes and links. Gossiped messages are automatically routed
around failures thanks to gossip’s randomized communication
pattern. Gossip algorithms are fully decentralized, fast and
efficient, scale well and easily cope with churn.

However, keeping all those properties in presence of Byzan-
tine faults is not trivial. The presented gossip-based systems
all achieve Byzantine fault tolerance, but none of them is able
to maintain all the other desirable properties of gossip.

Path verification protocols remain fully decentralized and
(although not explicitly stated by their authors) seem to be
easily extensible to handle churn. They do not rely on crypto-
graphic primitives and scale well if the number of Byzantine
nodes remains low.

In practice, however, the number of Byzantine failures is
usually proportional to the system size. The performance of
path verification protocols degrades linearly with the absolute
number of tolerated Byzantine failures. Thus, in practice,
if a constant fraction of Byzantine nodes is assumed, the
performance also degrades linearly with the size of the system.

FlightPath is fast, efficient, and seamlessly handles churn,
but it sacrifices decentralized operation and scalability. The
centralized tracker imposes a possible scalability bottleneck

as well as a single point of failure (although the latter can
be eliminated by replicating the tracker). Further scalability
issues may arise from disseminating the full membership list
to all nodes of the system.

Finally, Fireflies achieves high churn tolerance and fast, ef-
ficient and reliable data dissemination. By saving full member-
ship view at each node and broadcasting notes and accusations,
it sacrifices scalability. It is also not fully decentralized, since
it relies on a trusted certification authority.

B. Robocop: ROBust grOup COmPutation

Robocop is a framework for gossip-based group commu-
nication and membership. It is targeting the issues identified
above. Its aim is to provide Byzantine fault tolerance in gossip,
while minimizing impact on the desirable properties of gossip.

1) Basic concept: The basic idea behind Robocop is to
combine gossip with state machine replication. We partition
nodes of the system into small clusters, each acting as a state
machine replication group. The nodes in a cluster execute a
highly robust protocol like PBFT [13]. A cluster can then
be seen as a single reliable node of an abstract system. The
abstract system executes a gossip protocol on top of the
reliable nodes, not having to care about Byzantine failures,
since those are masked by the clusters.

2) Keeping clusters “healthy”: In order for the state ma-
chine replication groups (i.e., clusters) to function correctly,
we must bound the fraction of faulty nodes in each cluster.
A cluster corrupted by a majority of Byzantine nodes may
compromise the whole system.

We take a probabilistic approach here. If the nodes consti-
tuting a cluster are picked uniformly at random, the fraction
of faulty nodes is likely to be close to the overall fraction of
faulty nodes in the whole system. However, as Rodrigues et
al. point out [15], with many small clusters in the system, it
is still likely that at least one of them will be corrupted.

The probability of cluster corruption can be decreased by
increasing the cluster size (in terms of number of nodes per
cluster). But given that state machine replication is generally
resource-hungry and poorly scalable, it is necessary to keep
the clusters as small as possible. Fortunately, the result of
Guerraoui et al. [16] proves that logarithmic® cluster sizes are
sufficient to keep all clusters uncorrupted with high probabil-
ity.

Ensuring that the nodes in a cluster are sampled uniformly
from the whole system is a non-trivial task in presence of
churn. Byzantine nodes could develop strategies of repeatedly
joining and leaving the system until they succeed to corrupt
a cluster. Therefore, after every join or leave event, Robocop
reshuffles the nodes of the corresponding cluster. It does so
by exchanging the cluster’s nodes for nodes randomly picked
from other clusters.

3) Interconnecting clusters: Clusters are interconnected
through an overlay network that has the form of an H-graph
[17]. An H-graph is a sparse multigraph consisting of a union
of Hamiltonian cycles. It is an expander with high probability
and is thus suitable to be used for two purposes:

Logarithmic in terms of the total number of nodes in the system

EDIC RESEARCH PROPOSAL

—— Hamiltonian cycle #1
=== - Hamiltonian cycle #2

8 roce O cluster

(4 malicious Node

Fig. 7. A schematic representation of the Robocop system. Clusters of nodes
are interconnected by an overlay network that has the form of an H-graph.

o Gossip among clusters, and

o Sampling of clusters using random walks (needed for the

above-mentioned reshuffling).

Moreover, the overlay is scalable, because global knowledge
of the whole system is not required. Nodes only need to be
aware of their neighbors in the overlay. Handling churn is
fully distributed and requires no broadcast or any other actions
involving the whole system. A schematic representation of
Robocop is depicted in Figure 7.

4) Contribution and future work: Robocop is the first
system to combine state machine replication with gossip while
achieving all three of:

o Byzantine fault tolerance,

« scalability, and

« tolerance to churn.

However, in its current state, Robocop relies on several
strong assumptions, such as synchronized clocks on all nodes
or absence of failures during system initialization. In the
future, we want to modify Robocop such that we can relax
those assumptions and make Robocop practically deployable
in a wide range of environments.

REFERENCES

[1] D. Malkhi, Y. Mansour, and M. K. Reiter, “On diffusing updates in a
byzantine environment,” in SRDS, 1999, pp. 134-143.

[2] A.J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. E. Sturgis, D. C. Swinehart, and D. B. Terry, “Epidemic algorithms
for replicated database maintenance,” Operating Systems Review, vol. 22,
no. 1, 1988.

[3] H. D. Johansen, A. Allavena, and R. van Renesse, “Fireflies: scalable
support for intrusion-tolerant network overlays,” in EuroSys, Y. Berbers
and W. Zwaenepoel, Eds. ACM, 2006, pp. 3—13.

[4] H. Li, A. Clement, M. Marchetti, and M. Kapritsos, “FlightPath:
Obedience vs. Choice in Cooperative Services.” in OSDI, 2008.

[5] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “Bar gossip,” in OSDI, B. N. Bershad and J. C. Mogul, Eds.
USENIX Association, 2006, pp. 191-204.

[6] S. Voulgaris, D. Gavidia, and M. van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” J. Network
Syst. Manage., vol. 13, no. 2, 2005.

[71 A.-M. Kermarrec and M. van Steen, “Gossiping in distributed systems,”
Operating Systems Review, vol. 41, no. 5, 2007.

[8] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky, “Bimodal multicast,” ACM Trans. Comput. Syst., vol. 17,
no. 2, 1999.

[9] J. Leitdo, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” in

SRDS. IEEE Computer Society, 2007.

L. Alvisi, J. Doumen, R. Guerraoui, B. Koldehofe, H. C. Li, R. van

Renesse, and G. Trédan, “How robust are gossip-based communication

protocols?” Operating Systems Review, vol. 41, no. 5, 2007.

Y. M. Minsky and F. B. Schneider, “Tolerating malicious gossip,”

Distributed Computing, vol. 16, no. 1, 2003.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth,
“Bar fault tolerance for cooperative services,” in SOSP, A. Herbert and
K. P. Birman, Eds. ACM, 2005, pp. 45-58.

M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, vol. 20,
no. 4, Nov. 2002.

L. Lamport, “The part-time parliament,” ACM TOCS, vol. 16, no. 2,
1998.

R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee, “Large-scale byzan-
tine fault tolerance: Safe but not always live,” in Proceedings of the 3rd
Workshop on on Hot Topics in System Dependability, ser. HotDep’07.
Berkeley, CA, USA: USENIX Association, 2007.

R. Guerraoui, F. Huc, and A.-M. Kermarrec, “Highly dynamic dis-
tributed computing with byzantine failures,” in Proceedings of the 2013
ACM Symposium on Principles of Distributed Computing, ser. PODC
’13. New York, NY, USA: ACM, 2013, pp. 176-183.

C. Law and K.-Y. Siu, “Distributed construction of random expander
networks,” in INFOCOM, 2003.

