
EDIC RESEARCH PROPOSAL 1

Novel Primitives for Logic Synthesis
Winston Haaswijk

LSI, I&C, EPFL

Abstract—In this report we examine the use of novel logic
primitives in the context of Logic Synthesis. We look at both
practical and theoretical arguments for doing so. On the practical
side, the use of the majority primitive has recently been shown to
offer significant improvements over the state of the art in synthe-
sis and optimization. Moreover, emerging nanotechnologies often
natively support unconventional primitives. On the theoretical
side, we will see how certain primitives can be shown to be less
expressive than others. Based on these arguments we propose a
research project that explores novel logic primitives and applies
them to Logic Synthesis. The short-term goal of this project is
to apply novel primitives to technology mapping.

Index Terms—thesis proposal, candidacy exam write-up,
EDIC, EPFL, Logic Synthesis, majority logic, MIG

I. INTRODUCTION

IT is well known that in recent years the progress of
Moore’s law has been facing challenges. The continuous

shrinking of transistors is pushing the limits of modern CMOS
technology. Both performance and energy consumption are
of increasing concern. The end of downward power density
scaling has led to what some call the Post-Dennard era [1].
Several solutions have been proposed to reverse this trend. One
approach has been to emphasize parallelism in both hardware

Proposal submitted to committee: July 27th, 2015; Can-
didacy exam date: September 29th, 2015; Candidacy exam
committee: Viktor Kuncak, Giovanni De Micheli, Pierre-
Emmanuel, Paolo Ienne.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(B. Falsafi) (signature)

EDIC-ru/05.05.2009

and software architectures. Another has been in the area of
emerging nanotechnologies [2], [3]. Yet other approaches have
focused on the flexible integration of configurable hardware
(such as FPGAs) with software components [4].

The research area of Electronic Design Automation (EDA) is
noticeably affected by the recent changes in digital technology,
as it has to adapt to new technologies when they are discov-
ered. Within EDA, it is the goal of Logic Synthesis to develop
efficient methods for the representation and optimization of
Boolean functions. Note that we use the term Boolean function
in this write-up to refer to general Boolean functions. Such
functions are mappings between Boolean spaces of the form
f : Bm → Bn. They are also referred to as multiple output
Boolean functions. Multiple output Boolean functions are used
as an abstract model for digital circuits.

The inputs for a Logic Synthesis system are specifications
of Boolean functions. The task of such a system is to pro-
vide representations for the functions that can be efficiently
optimized, such that a near-optimal (physical) circuits can be
synthesized in an automated way. Optimality of a circuit can
be viewed in terms of its size, delay, and power consumption.
This optimality has always been of prime concern to logic
synthesis, and any method that can improve it is of interest
to the EDA community. However, traditional methods are not
always optimal in the context of new problems that have arisen
in recent years. Therefore, the continued success of Logic
Synthesis in the design and fabrication of computer hardware
depends on our ability to improve and adapt its methods to
changing circumstances.

The goal of this report is to give a motivation for, and
examples of, the use of novel Boolean primitives for Logic
Synthesis. The advantages of using new logic primitives are
twofold. Firstly, these primitives can be used to improve
traditional Logic Synthesis flows. Secondly, several emerging
nanotechnologies, such as Resistive RAM (RRAM), Nanoelec-
tromechanical Relays (NEM Relays), and Carbon Nanotubes,
natively support non-traditional logic primitives [5], [6]. By
supporting these logic primitives we may improve upon the
state of the art and continue to use automated Logic Synthesis
for the creation of efficient circuits in the future.

We consider three papers to support the argument for novel
logic primitives. The first paper, “Majority-Inverter Graph:
A Novel Data-Structure and Algorithms for Efficient Logic
Optimization”, introduces the concept of majority logic as a
basis for Boolean function representation and optimization. We
examine the advantages that the majority primitive offers over
traditional logic representations. In the second paper, “Parity,
Circuits, and the Polynomial-Time Hierarchy” we examine
logic primitives in the context of Circuit Complexity. We

EDIC RESEARCH PROPOSAL 2

will see that traditional AND/OR/INV logic primitives cannot
compactly represent certain functions (including the parity
and majority functions). This is another argument for the use
of more expressive primitives. Finally, in the last paper we
turn to a practical application of Logic Synthesis: technology
mapping. In “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs”, we examine an algorithm for the depth-
optimal mapping of bounded Boolean circuits to FPGAs.

II. MAJORITY-INVERTER GRAPHS

The Majority-Inverter Graph (MIG) is a data structure for
the representation and optimization of Boolean logic. The use
of this data structure for the purpose of Logic Synthesis was
first proposed in [7]. The novelty of the MIG representation
stems from the fact that it it corresponds to a Boolean algebra
based on majority logic. Traditionally, Logic Synthesis has
made use of perhaps more familiar types of logic based on
the AND, OR, INV and MUX operations. For example, early
data structures were based on Sum of Product (SOP) forms
(disjunctions of conjunctions). SOP-like representations are
commonly referred to as two-level representations. Binary De-
cision Diagrams (BDDs) are another example of a traditional
representation. BDDs are a canonical representation based on
the MUX operator. While their canonicity is desirable, they
have the disadvantage that, for certain functions, their size
grows exponentially with the number of inputs [8].

The state of the art in Logic Synthesis is based on multilevel
logic representations [9]. Such representations are commonly
known as Logic Networks or Boolean Circuits. A Logic
Network is a Directed Acyclic Graph (DAG), in which nodes
correspond to logic operators. Edges connect the nodes to their
inputs. Typically, the operators used in Boolean networks are
the traditional AND, OR, and INV operators. The size of a
logic network is its number of nodes. In a logic network, the
depth of a node is the length of the longest path from a primary
input to that node. The depth of a primary input is zero. The
depth of a logic network is the greatest depth of any node
in the network. An example of a type logic network that has
been used for Logic Synthesis is the And-Or-Inverter Graph
(AOIG). A network is called homogeneous if all nodes have
the same number of incoming edges k (indegree), and if they
all represent the same operator. An example of such a network
is the And-Inverter Graph (AIG), in which every node is an
AND operator with k = 2. Note that we allow edges to have a
complementation attribute, which enables us to represent the
inversion operator.

An MIG is a homogeneous logic network with k = 3,
in which every node represents the M3 majority operator.
In general the n-input majority function is equal to the
value given by more than half of its inputs. For example,
M3(0, 0, 1) = 0 and M3(1, 1, 0) = 1. MIGs can be shown
to contain both AOIGs and AIGs, by biasing certain inputs of
the majority nodes [7]. (Note that if we set one of the inputs
to 0, the resulting M3 operation is an AND of the remaining
operands.) Hence, any Boolean function can be represented by
an MIG. Fig. 1 shows an example of an MIG for the function
f = abcd+ (ab+ cd).

A. A Majority Based Boolean Algebra

To use MIGs for the purposes of Logic Synthesis, we
require a method for manipulating them. In principle, it is
possible to use traditional AND/OR based techniques to do
so. However, those do not enable the full expressivity of the
majority operator. For this reason, [7] proposes the use of
a Boolean algebra that natively supports the use of majority
primitives. The axioms for this algebra can be seen in Fig. 2.
Note that we omit the 3 subscript, since we may assume that
all majority operators in an MIG have 3 inputs. The Boolean
algebra is characterized by the 5-tuple (B,M,′ , 0, 1), where ’
is the complementation operator.

Fig. 2. A Boolean algebra based on majority primitives.

In [7], it is shown that the axioms in Fig. 2 induce a
Boolean algebra. The proof is based on previous work on
median algebras and lattice theory. Any median algebra with
elements 0 and 1 that satisfies M(0, x, 1) = x is a distributive
lattice [10]. Note that this follows directly from the first
axiom. Furthermore, it is straightforward to show that under
the axioms we have a complemented distributive lattice. Every
complemented distributive lattice is a Boolean algebra [11].
Additionally, [7] proves soundness and completeness of the
axioms.

There is a one-to-one correspondence between the majority-
based Boolean algebra and the representation structure of
MIGs. This enables us to manipulate MIGs through the
operations defined in the algebra. Furthermore, the soundness
of the algebra guarantees that when we manipulate MIGs with
the rules given by the axioms, we always create logically
equivalent MIGs. Completeness guarantees that any valid MIG
optimization can in principle be achieved with the axioms.

B. MIG Logic Optimization

We have introduced MIGs as a representation of Boolean
functions, as well as a sound and complete algebra for manip-
ulating them. In logic optimization, the goal is to transform
MIGs in order to improve some figure of merit. Typically
we are interested in decreasing the size, depth, or switching
activity of logic networks. Intuitively speaking, we can view
decreasing the size of an MIG to decreasing the area of a phys-
ical chip. Similarly, decreasing the MIG depth corresponds to
improving the delay of a chip. We estimate power consumption
via the switching activity of the MIG, which is the probability
that nodes will switch between values 0 and 1.

EDIC RESEARCH PROPOSAL 3

MAJ$

MAJ$

1$

MAJ$

MAJ$ MAJ$

MAJ$ MAJ$1$1$

1$

1a b$ 1c d$

f$=$abcd$+$(ab$+$cd)$

a$ b$

MAJ$

1c d$

MAJ$

1$1$ 1$

f$

Ω.D$

Ω.M$

MAJ$

MAJ$

1a b$

MAJ$

1c d$

1$

f$

Fig. 1. A MIG for the function f = abcd + (ab + cd). Note that complemented edges are indicated by a “bubble”. To optimize the size of the MIG we
can apply the distributive Ω.D rule from right to left in order to eliminate a node. The majority rule Ω.M can then be applied on the resulting network to
eliminate yet another node.

In order to improve the speed of optimization [7] introduces
a number of transformations that are derived from the axioms.
We can view these compound transformations as sequences of
the primitive transformations. The validity of these transfor-
mations is guaranteed by the soundness of the axioms.

Optimizing the size of an MIG can be viewed as eliminating
nodes from the MIG while preserving its functionality. This
is done by finding patterns in the graph that correspond to the
transformation rules. Suppose that one of the patterns matching
axiom Ω.M is found. By evaluating this rule from left to right
we can eliminate a node from the graph. For example, the node
M(x, x, y) can be replaced by x. This creates an equivalent
MIG that is smaller than the original one. In a similar way
we can evaluate the distributive rule Ω.D from right to left in
order to eliminate a node. See Fig. 1 for an example of this.

Given an MIG, we can reduce its size by applying the
rules described above. When no more rules apply, we have
either found the optimal size, or we have reached a local
minimum. In order to avoid local minima, reshape operations
can be applied to the MIG. Reshaping the MIG may lead to
new elimination opportunities. The size optimization algorithm
works as follows. For a given number of iterations (also called
effort) it applies the elimination rules, followed by reshaping
operations to avoid local minima. The depth and switching
activity optimization algorithms are defined analogously.

The quality of a Logic Synthesis method can be measured in

terms of how well it optimizes the size, depth, and switching
activity of logic networks. In order to evaluate the quality
of MIG based optimization and synthesis, [7] presents two
experiments:

1) The first experiment compares three methods of logic
optimization for a number of large benchmarks from the
MCNC benchmark suite. It contrasts MIG optimization
with BDD and AIG methods. The average depth of
MIGs is 18.6% smaller than AIGs and 23.7% smaller
than BDDs. The MIGs are 0.9% bigger than the AIGs
on average, but still 2.1% smaller than the BDDs. The
average activity of MIGs is 0.3% more than in AIGs,
but 3.1% less than in BDDs.

2) The second experiment compares the results for a
optimization-mapping flow. In other words, in this ex-
periment the benchmark circuits are first optimized and
then technology mapping is applied, covering the logic
networks with cells from a standard cell library. Physical
design is not taken into account. Rather, the area, delay,
and power consumption of the synthesis-optimization
flow is estimated after technology mapping. Note that
these are estimations of physical phenomena, and there-
fore different from the size, depth, and switching activity
measured in the previous experiment. The MIG flow
is compared with an AIG flow by the state of the art
academic tool ABC and with an unnamed proprietary

EDIC RESEARCH PROPOSAL 4

synthesis tool. The results show that the MIG flow
generates circuits with a 14% decrease in area, a 22%
decrease in delay, and a 11% decrease in power.

C. Contributions

The first experiment indicates that MIGs are more effective
than BDDs for optimization purposes. Compared to AIGs, the
main advantage is in the depth of the optimized networks. Area
and activity results are comparable between MIGs and AIGs.
Thus, the main advantage in optimization is in the depth of
logic networks. Recall that this roughly corresponds to delay.

In the second experiment, MIGs perform better than AIGs
and the commercial tool on all metrics. Note, however, that
the experiment assumes that the standard cell library contains
majority and minority gates. This is not an unreasonable
assumption for standard cell libraries that are, for example,
based on emerging nanotechnologies. If the library does not
contain these gates, applying MIG based synthesis may be less
advantageous. However, synthesis based on less expressive
primitives (such as AIGs), cannot take advantage of more
powerful standard cell libraries in any case.

In summary, this paper introduced the concepts of MIGs
and a corresponding Boolean algebra. Its primary contribution
is to show that using alternative logic primitives can lead to
significant improvements over the state of the art in Logic
Synthesis. The expressivity of majority logic allows us to
synthesize circuits that are smaller in area, have less delay,
and consume less power. This is a clear argument for the
application and exploration of alternative logic primitives.

III. LIMITATIONS OF TRADITIONAL PRIMITIVES

The second paper looks into the limitations of fixed depth
circuits. This is related to an area known as Circuit Complexity
(also known as Boolean Function Complexity) [12]. Circuit
complexity is a research area concerned with finding (strong)
upper- and lower bounds on the size or depth of logic
networks. In other words, given a Boolean function, circuit
complexity is concerned with bounds on the size or depth of
the logic networks that implement it. In general, this is a hard
problem, and no strong techniques for solving questions of
this nature have been discovered [12].

In [13], a superpolynomial lower bound is proved for
circuits that implement the parity function. More specifically,
it is shown that constant-depth circuits consisting of INV
gates and AND/OR gates with unbounded indegree require
a more than polynomial number of gates to compute the
Boolean parity function. Additionally, this result for constant-
depth circuits is extended to the majority, multiplication, and
transitive closure functions. A connection to the polynomial-
time hierarchy is also made, although that is of less immediate
practical concern to the area of Logic Synthesis.

The restriction to constant-depth circuits may seem to
weaken the result. Note, however, that in practice many types
of circuits can be modeled by constant-depth logic networks.
Programmable logic arrays (PLAs) are an example of such
a class of integrated circuit. Moreover, physical limitations
bound the depths of circuits. Finally, there are even limitations

for polynomial-size variable-depth circuits. The result in [13]
proves that certain functions cannot be efficiently implemented
in such circuits. In doing so, it shows the limitations of the tra-
ditional INV/AND/OR logic primitives and it makes the notion
that certain Boolean functions have greater “expressiveness”
than others more tangible.

A. Lower Bound For The Parity Function

In this report we will not repeat the entire proof of the parity
lower bound, since the interested reader can simply refer to
[13]. However, we will give a high-level overview of the proof
in order to understand the techniques that are used.

The proof begins with a list of definitions about the notion
of Boolean circuits. These definitions are essentially equiva-
lent to the logic networks described in the previous section.
One notable difference is that the circuits described in [13]
consist of alternating levels of AND/OR gates. However,
any AND/OR/INV network can be converted into such an
alternating circuit of the same depth with only a linear size
increase.

An important technique used in the proof is the concept
of a restriction. Intuitively, one may think of a restriction as
a function that fixes certain inputs of a logic network while
leaving others untouched. More formally, a restriction is a
function

ρ : Xn → {0, 1, ∗}

where Xn corresponds to the network’s input literals and the
∗ symbol is used to denote variables that remain unassigned.
We write the restriction of a circuit A under a restriction ρ as
Aρ. Every Boolean circuit naturally corresponds to a Boolean
function f : Bn → B. Given such a function we write the
restriction of f under ρ as fρ.

It is clear that applying a restriction to a circuit changes
the function that it computes. However, the proof uses an
interesting property of parity functions. Let f be a function that
computes a parity function. Let ρ be an arbitrary restriction.
Note that fρ is still a parity function. We are now ready to
state the main theorem and its proof.

Theorem. Parity cannot be computed by constant-depth,
polynomial-size circuits.

Proof: by contradiction. Let d be the smallest depth for
which parity can be computed with constant-depth circuits.
The proof uses three steps to derive a contradiction. With
the above assumption we are able to obtain polynomial size
parity circuits of depth d−1, which contradicts the assumption
that d is the smallest depth for which this is possible. In the
following, we use n to denote the number of inputs to a circuit.

1) In this step we may assume that we have parity circuits
of depth d and polynomial size. It is shown that there is
a non-zero chance of picking a random restriction ρ that
allows us to obtain a parity circuit for which all gates on
the first level have constant size. More specifically, the
probability of failing to obtaining such a circuit is o(1).
Thus, for large enough n the probability of success is
greater than zero. Hence, the existence of the required

EDIC RESEARCH PROPOSAL 5

restriction is demonstrated. The restriction ρ is chosen
such that it that randomly assigns 0, 1, or ∗ to inputs
based on a given probability distribution.

2) The second step is similar to the first. Here it is shown
that given a circuit with constant-size gates on the first
level, we can (again through a suitable restriction ρ)
obtain a polynomial size circuit of depth d for which
the gates on the second level also have constant size.

3) The third step shows how, given the circuits obtained in
the first two steps, using the distributive and DeMorgan’s
laws we can merge the first two levels. By doing so
we obtain a parity circuit of depth d − 1. Note that
this circuit is a constant factor larger after merging, due
to the restrictions chosen in the first two steps. Hence,
we have obtained a polynomial-size depth d − 1 parity
circuit, which contradicts our initial assumption.

The authors further strengthen their result by showing the
following corollaries:

Corollary. Parity circuits of depth d must be of size
Ω(nlog

(k)n), where k = 3(d− 2).

Corollary. Polynomial-size parity circuits must have depth
Ω(log∗n).

where log(k) indicates the k-th log iterate and log∗n is re-
cursively defined as the inverse: g(0) = 1 and g(n) = 2g(n−1).

Thus, the authors establish a superpolynomial lower bound
not only on the size of constant-depth parity circuits, but also
on the depth of polynomial-size variable-depth parity circuits.

B. Extensions To Other Functions

The result that certain Boolean functions can not be ef-
ficiently computed with AND/OR/INV primitives naturally
leads to the question: are there other such functions? In
order to answer this question, the authors propose a reduction
technique that is analogous to the one used to prove NP-
hardness of decision problems.

Recall that the notion of NP-hardness of a decision problem
is that every problem in NP can be reduced to it in polynomial
time. The original proof of the NP-hardness of SAT is rather
tedious. However, using that result, in order to prove the NP-
hardness of other problems we only need to show that SAT
is reducible to them in polynomial time. Analogously, we
have seen that parity cannot be computed by constant-depth
polynomial size circuits. In order to prove the same property
for other Boolean functions, the authors introduce the notion
of a constant-depth, polynomial-size reduction.

Definition. A function f is constant-depth polynomial-size
reducible to a function g (f ≤cp g) if f can be realized with
constant-depth, polynomial-size circuits using AND/OR/INV
gates, and gates computing the function g.

Theorem. Note that f ≤cp g implies that g cannot be realized
with constant-depth polynomial-size circuits.

Proof: by contradiction. Suppose that g could be realized
with constant-depth polynomial-size circuits. Then, if f ≤cp g,

we could use these circuits to construct a constant-depth
polynomial-size circuit for f . This contradicts our initial
assumption for f .

Using this reduction technique, the authors show that the
majority, multiplication, and transitive closure functions all
cannot be realized with constant-depth polynomial-size cir-
cuits.

C. Contributions

This paper shows that there exist Boolean functions that can-
not be efficiently represented using tradition logic primitives.
More specifically, it shows that there are superpolynomial
lower bounds on both the depth and size for such circuits.
In fact, these lower bounds were later improved by Yao
and Hastad [14], [15]. It turns out that there is actually an
exponential lower bound on the size of constant-depth parity
circuits. However, the results of this paper remain important
because it formalizes the claim that certain primitives are
less powerful than others. Hence it is another argument for
the exploration of alternative primitives in Logic Synthesis:
more powerful primitives allow us to represent functions more
compactly. Notably, this is the case for the majority primitive
that is the basis for MIGs.

IV. DEPTH-OPTIMAL TECHNOLOGY MAPPING FOR
FPGAS

Technology mapping can be viewed as the problem of
covering a logic network with a collection of primitives. It
is also referred to as cell-library binding [8]. The collection
of primitives used to cover the network is known as a stan-
dard cell library. The library represents the primitives that
are available in a particular technology. For example, some
technologies may offer a device that acts as a XOR operator,
while others offer one that acts as a M3 operator [3], [6].
Typically, technology mapping is done after technology inde-
pendent optimizations have been applied, although there are
systems that apply both technology dependent and independent
optimizations simultaneously [16].

The third paper in our examination represents a break-
through in technology mapping for FPGAs. It introduces a
polynomial time algorithm for the depth-optimal technology
mapping of k-bounded logic networks with k-bounded Lookup
Tables (LUTs). A k-bounded logic network is one where every
node in the graph has an indegree bounded by k. A k-LUT is a
lookup table with k-inputs; a logic block that can represent any
Boolean function on k variables. In other words, the FlowMap
algorithm presented in this paper shows how k-LUT primitives
can be used to cover a logic network in such a way that the
depth of the resulting k-LUT network is optimally minimized.
And it does so in polynomial time. The only caveat is that the
indegree of nodes in the network is restricted by some constant
k. This is typically not a problem, since any (finitely) bounded
logic network can be transformed into a k-bounded one.

Before the invention of the FlowMap algorithm, depth-
optimal technology mapping for FPGAs had been attempted
with the use of heuristics, but it had never been solved
optimally for arbitrary networks. Moreover, some algorithms

EDIC RESEARCH PROPOSAL 6

had other primary objectives. For example, the MIS-pga and
Chortle algorithms emphasized minimizing the number of
LUTs [17], [18]. The FlowMap algorithm has depth optimiza-
tion as its main goal and area recovery is a secondary concern.

A. The FlowMap Algorithm

FlowMap works in two phases called the labeling phase and
the mapping phase.

1) The labeling phase computes for every node the depth
of the k-LUT that implements it in an optimal map-
ping solution. This depth is expressed by a label that
is attached to each node. A side-effect of the label
computation is that every node is related to a minimum-
height k-feasible cut rooted at that node. One of the main
contributions of the paper is in fact an O(km) algorithm
for finding a minimum height k-feasible cut (where m
denotes the number of edges).

2) In the mapping phase, k-LUTs are generated from the
optimal labeling found in the first phase. This is done
with a straightforward recursive descent from the outputs
to the inputs.

In the remainder of this section we will examine the first
phase of the algorithm, as this is where the optimal solution
is computed and thus where the primary contribution of the
paper is. In the interest of space we do not discuss the proofs
of various aspects of the algorithm in detail. The interested
reader is referred to [19].

FlowMap is based on a connection between k-feasible cuts
and k-LUTs. In order to understand this connection we will
introduce some concepts and notation. In a graph G = (V,E)
with a source s and a sink t, a cut (X,X) is a partition of
V such that s ∈ X and t ∈ X . The node cut size, denoted
n(X,X), is the number of nodes in X that are adjacent to
some node in X . More formally:

n(X,X) = |{x : (x, y) ∈ E, x ∈ X ∧ y ∈ X}|

A cut is called k-feasible if n(X,X) ≤ k. The labeling phase
computes minimum-height cuts for every node by computing
their labels. We use l(t) to denote the label of a node t. The
labels of the primary inputs are 0. The height h(X,X) of a
cut is defined to be the maximum label in X:

h(X,X) = max{l(x) : x ∈ X}

Let Nt be the subgraph of G that consists of all predecessors
of t. Let LUT(t) denote the LUT that computes t in an
optimal-depth solution. Then, LUT(t) induces a cut (X,X)
where X is the set of nodes in LUT(t) and X is the rest
of the nodes in Nt. If p is the maximum label of a node in
X , then the level of LUT(t) is p+ 1 in the optimal mapping
solution. Note that in order to minimize the level of LUT(t),
we need to find the minimum-height k-feasible cut (X,X) in
Nt. Thus, the minimum label of t is given by the equation

l(t) = min{h(X,X)}+ 1

where we quantify only over k-feasible cuts.
In the labeling phase of FlowMap, the above equation is

used to compute the minimum label for each node. This is

done by finding minimum-height k-feasible cuts efficiently.
The method used by FlowMap transforms subgraphs Nt in
such a way that minimum-height cuts can be efficiently found.
By performing collapsing and node-splitting transformations,
the problem of finding a k-feasible cut is transformed into
the problem of checking whether the maximum flow of a
subgraph is no greater than k. This problem can be solved
in polynomial time by the augmented path algorithm. Thus,
the labeling phase works by traversing the graph in topological
order from inputs to outputs and applying transformations and
the augmented path algorithm to each node it encounters.

The secondary objective of FlowMap is to minimize the
number of LUTs used after an optimal-depth solution has been
found. This is implicitly done by maximizing the volume of
cuts found in the labeling phase. After the first two phases
of the algorithm, a post-processing step attempts to further
recover area by merging k-LUTs together. This is achieved
by using depth-preserving techniques based on predecessor
packing and gate decomposition [20].

B. Contributions

FlowMap was a breakthrough because it was the first
polynomial-time algorithm to perform depth-optimal technol-
ogy mapping. Compared to the state of the art of the day,
FlowMap reduced the depth of LUT networks by up to 7% and
the size by up to 50%. It pioneered a technique for efficiently
finding minimum-height cuts that has been the basis for LUT
technology mapping ever since.

Over the years, several improvements have been made to
the FlowMap algorithm. These improvements have focused
on improving area recovery and the runtime of LUT mapping
algorithms [21], [22]. Other approaches have focused on com-
bining technology-independent optimization techniques with
technology mapping in order to improve both depth and area
results [16], [23].

V. RESEARCH PROPOSAL

In this write-up we have looked at three papers related to
logic primitives, Logic Synthesis, and optimization. We have
looked at practical aspects of logic primitives in the first paper,
where MIGs based on the novel majority primitive are shown
to outperform traditional methods. MIGs are not the only
practical example of novel primitives being applied success-
fully. Biconditional BDDs are a recently developed canonical
extension of BDDs. They have been shown to perform better
than BDDs, especially for XOR-rich circuits [24]. They have
also been shown to have advantages in emerging technologies
such as NEM Relays [25].

On the theoretical side, we have seen in the second paper
that certain functions (such as parity and majority) cannot be
expressed efficiently with traditional primitives. This gives a
mathematical basis for our intuition of the advantages of novel
primitives.

Hence, based on both practical and theoretical considera-
tions, the research proposal is the following:

EDIC RESEARCH PROPOSAL 7

It is the goal of this research project to explore
novel logic primitives and to use them in the
development of efficient representation and op-
timization techniques for Logic Synthesis.

We may view this research project on the theoretical side
as the exploration of novel primitives and the advantages they
offer. New theoretical results may be provide logic primitives
that are more expressive or better suited to optimization. They
may also offer new insight into existing primitives, including
majority.

More immediately, there is room to extend the use of novel
primitives in a practical manner. For example, there currently
exists no native technology mapping package for MIGs. This
means that technology mapping cannot take full advantage of
the compact MIG representation. Preliminary work suggests
that there is room to improve upon the state of the art here.
By applying the FlowMap algorithm directly to MIGs, the
depth of LUT networks may be decreased by up to 9% as
compared to AIGs [26]. Applying more modern technology
mapping approaches to MIGs should allow us to gain even
more ground over the state of the art.

REFERENCES

[1] C. Märtin, “Multicore Processors: Challenges, Opportunities, Emerging
Trends Christian,” in Embedded World Conference, 2014, pp. 25–27.

[2] O. Y. Loh and H. D. Espinosa, “Nanoelectromechanical contact
switches,” Nature Nanotechnology, vol. 7, no. 5, pp. 283–295, 2012.

[3] M. De Marchi, D. Sacchetto, J. Zhang, S. Frache, P.-E. Gaillardon,
Y. Leblebici, and G. De Micheli, “TopDown Fabrication of Gate-All-
Around Vertically Stacked Silicon Nanowire FETs With Controllable
Polarity,” IEEE Transactions on Nanotechnology, vol. 13, no. 6, pp.
1029–1038, 2014.

[4] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. Prashanth, G. Jan,
G. Michael, H. Scott, H. Stephen, A. Hormati, J.-y. K. Sitaram, L. James,
and L. Eric, “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services - Microsoft Research,” in 41st Annual International
Symposium on Computer Architecture (ISCA), 2014.

[5] A. Prakash, D. Jana, and S. Maikap, “TaOx-based resistive switching
memories: prospective and challenges.” Nanoscale research letters,
vol. 8, no. 1, p. 418, Jan. 2013.

[6] P.-E. Gaillardon, L. Amarù, A. Siemon, E. Linn, A. Chattopadhyay,
and G. D. Micheli, “Computing Secrets on a Resistive Memory Array,”
Design Automation Conference, 2015.

[7] L. Amarú, P.-E. Gaillardon, and G. D. Micheli, “Majority-Inverter
Graph : A Novel Data-Structure and Algorithms for Efficient Logic
Optimization,” Design Automation Conference, 2014.

[8] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[9] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264–300, 1990.

[10] G. Birkhoff and S. A. Kiss, “A ternary operation in distributive lattices,”
Bulletin of the American Mathematical Society, vol. 53, no. 8, pp. 749–
753, 1947.

[11] T. Sasao, Switching Theory For Logic Synthesis. Springer, 1999.
[Online]. Available: http://doi.wiley.com/10.1002/0470841915

[12] S. Jukna, Boolean Function Complexity. Springer, 2008.
[13] M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the Polynomial-

Time Hierarchy,” Mathematical Systems Theory, vol. 17, no. 1, pp. 13–
27, 1984.

[14] A. C.-C. Yao, “Separating the Polynomial-time Hierarchy by Oracles,”
in Proc. 26th Annual Symposium on Foundations of Computer Science.
IEEE Press, 1985, pp. 1–10.

[15] J. Hastad, “Almost Optimal Lower Bounds for Small Depth Circuits,”
STOC ’86 Proceedings of the eighteenth annual ACM symposium on
Theory of computing, pp. 6–20, 1986.

[16] G. Chen and J. Cong, “Simultaneous Logic Decomposition with Tech-
nology Mapping in FPGA Designs,” in ACM/SIGDA Ninth International
Symposium on Field Programmable Gate Arrays, 2001, pp. 48–55. [On-
line]. Available: http://portal.acm.org/citation.cfm?doid=360276.360298

[17] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Logic Synthesis for Programmable Gate Ar-
rays,” in 27 ACM/IEEE Design Automation Conference, 1990, pp. 620–
625.

[18] R. J. Francis, J. Rose, and K. Chung, “Chortle: A Technology Mapping
Program for Lookup Table-Based Field Programmable Gate Arrays,”
27th ACM/IEEE Design Automation Conference, pp. 3–9, 1990.

[19] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA De-
signs,” Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 1, pp. 1–12, 1994.

[20] K.-C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG-Map:
Graph-Based FPGA Technology Mapping for Delay Optimization,” in
IEEE Design & Test of Computers, 1992, pp. 7–20.

[21] J. Cong, C. Wu, and Y. Ding, “Cut Ranking and Pruning: Anabling A
General And Efficient FPGA Mapping Solution,” in FPGA ’99, 1999,
pp. 29–35. [Online]. Available: http://dl.acm.org/citation.cfm?id=296425

[22] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in International Conference on
Computer Aided Design. IEEE, 2004, pp. 752–759.

[23] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, 2007, pp. 240–253.

[24] L. Amarú, P.-E. Gaillardon, and G. D. Micheli, “Biconditional Binary
Decision Diagrams : A Novel Canonical Logic Representation Form,”
IEEE Journal on Emerging and Selected Topics in Circuits And Systems
(JETCAS), vol. 4, no. 4, pp. 487–500, 2014.

[25] W. Haaswijk, L. Amaru, P.-E. Gaillardon, and G. De Micheli, “NEM
Relay Design with Biconditional Binary Decision Diagrams,” in
NANOARCH, 2015.

[26] W. Haaswijk, L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Private
Communications.”

