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Abstract—In attempts to improve on the existing technologies
for estimating human pose we review two different approaches
on estimation and one approach for representation of the human
pose. We are showing the complexity of the problem and sug-
gesting a research direction for non-invasive estimation of human
posture by developing a generative model which is constrained
with the time and tracking information of individual body parts
which are available.

Index Terms—3D pose, estimation, pedestrians, kinect, SCAPE,
silhouette

I. INTRODUCTION

HUMAN pose estimation has seen a lot of improvement
over the years, but can not be considered nowhere

near solved. The problem has several down-sides. The human
body is typically modeled as a 55D system[1], by taking
into consideration the major joints of the body. This alone
gives us a huge number of poses. Many attempts were made
into narrowing down the scope of the poses, either by tak-
ing into consideration the context of the action (examining
only a specific range of motions)[2] or by trying to give
a physical-world meaning of pose [3]. Other problem taken
from the setup is that the human body is occluded not only
by obstacles in the scene but by clothes and other apparel.
For solving this input problem a number of motion-capturing

Proposal submitted to committee: July 4th, 2011; Candidacy
exam date: July 12th, 2011; Candidacy exam committee: Mark
Pauly PhD, Pascal Fua PhD, Ronan Boulic PhD.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(R. Urbanke) (signature)

EDIC-ru/05.05.2009

systems have been developed and used, but these systems are
typically complicated to set up, can only work in a controlled
environments and reduce the mobility of the human user.
The price of this capture is high and thus not applicable
for real-life situations. Other specialized input devices as the
Microsoft Kinect gives us a new set of input values which
greatly improve the precision of the input, but are limited by
the environmental factors.

On the other hand development of the cheap recording
devices which are manufactured the distributed with everyday
electronic devices gives us a large number of input sources for
ad-hoc recording and using. This comes, of course, at a price
of very low quality and no calibration.

As a reference for our goals we are considering a single non-
invasive method which is based on regression and is based on
small number of cues for the estimation[1], and yet still gives
decent results. We consider the kinect-related paper[4] on pose
estimation to give an example on how the novel inputs can
significantly improve the state of the art. Last paper represents
an attempt at giving a better visualization and reconstruction
of the 3D pose[5], as an example of modeling the small
deformations which make the movement believable.

The immediate challenge of the task set forth is to estimate
the pose in a non-invasive way. To make the technology ap-
plicable, we’re going to focus on the minimal number of input
cues. Starting from the existing multi-camera system[6] we’ll
try to extend the functionality to include the pose estimation.
When the favorable results are reached, the next steps will
work on reducing the complexity of the setup by switching
to a single-camera input and excluding the calibration data.
Ideally, the goal is to reach a monocular, portable system for
estimating 3D human pose.

II. 3D HUMAN POSE FROM SILHOUETTES BY RELEVANCE
VECTOR REGRESSION

As said before, the variations of human pose represent a
huge space, given that it doesn’t only vary in joint angles,
but also in dimensions of the subjects, colors and shape of
clothing which can completely change our perception of the
pose, and can easily confuse even the human eye. In search
of a useful features to accurately estimate the pose, the work
of A. Agarwal and B. Triggs[1] is being based on silhouettes
as the input data.

The algorithm implies that we can confidently extract the
silhouettes of the persons in the training and testing phases.
The training phase consistency is assured by using high-
contrast between the person and the background in a shad-
owless environment.
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(a) (b) (c) (d) (e) (f)

Fig. 1. Overview of the pose silhouettes method. (a) original silhouette (b) sampling points along the edge (c) log-polar bins for the classification of a single
point (d) shape context distribution (e) codebook voting for 100D final distribution vector (f) final reconstruction of the pose

A. Description of the features and regression method

The useful information from the silhouette is being con-
verted into a shape context space. The initial information is
meant to robustly encode the local histogram information. The
localization is achieved by encoding the information received
from regularly spaced points along the edge into log-polar
bins. The log-polar bins encode the local shape information
into a 60-D distribution (by using the 12 angular and 5
radial bins) as seen on Fig 1c. The information is retrieved
from 400-500 points, which is equivalent to a single pixel
spacing in a silhouette of 64x128 pixels. The similarity of the
silhouettes then becomes a problem of matching shape context
distributions. To do this efficiently we construct a codebook
based on 100 centers space by running the k-means algorithm
over all the points in all the training silhouettes (Fig 1d).
Each point’s 60-D distribution votes to a few nearest codebook
centers with Gaussian weights (Fig 1e). The distributions are
then reduced to comparison of 100-D histograms.

The regression process is trained on a set of training
examples {(xi, yi)|i = 1...n} from where we get a smooth re-
construction function y = r(x). Here, y ∈ Rm represents full-
body pose as a 55-dimensional vector modeling 3 joint angles
at 18 major body joints and the overall pose azimuth. x ∈ Rd
is the 100-D description of the pose in the shape context
space. The function is a weighted linear combination of form
r(x) ≡

∑
k akφk(x) where φ are given as a prespecified set

of scalar basis functions {φk(k)|k = 1...p, φk : Rd ⇒ Rm}.
The final model can be represented as

y = Af(x) + ε ≡
P∑
k=1

akφk(x) + ε (1)

ε represents the residual error vector, and A is a A ≡
(a1a2...ap) is a m × p weight matrix. The prediction error
in the y-space is measured with the Euclidian norm, which
gives us the estimation problem

A := argminA{
n∑
i=1

‖Af(xi)− yi‖2 +R(A)} (2)

The R(A) represents the regularizing element for A.
By putting all of our output poses in the m × n matrix
Y ≡ (y1y2...yn), features in the p × n matrix F ≡

(f(x1)f(x2)...f(xn)) the final estimation problem is of form

A := argminA{‖AF − Y ‖2 +R(A)} (3)

Two attempts at training the model were made with (i)
dumped least squares regression and (ii) relevance vector
regression[7].

Due to high dimensionality of the problem solving the
problem as least-squares estimation would result in over-
fitting and poor generalization. The term R(A) ≡ λ‖A‖2 is
used to penalize large coefficients in matrix A, and λ is the
regularization parameter. The final formula for damped least
squares regressor minimizes

‖AF̃ − Ỹ ‖2 := ‖AF − Y ‖2 + λ‖A‖2 (4)

in which F̃ ≡ (F λI) and Ỹ ≡ (Y 0) and the solution is
calculated by solving linear system AF̃ = Ỹ . λ parameter
needs to be large enough to prevent over-fitting, but not too
large to cause over-damping.

The relevance vector machine regression have the advantage
of producing very sparse models, which are expected to model
the connection between the joints of the pose and the basis
functions which are related. On the other hand, RVM tend to
produce a highly non-convex model with many local minima.
Authors claim that the RVMs tend to give comparable results
despite this. The training is carried out by approximation of the
νlog‖a‖ regularizer with quadratic “bridges” ν(‖a‖/ascale)2.
Two types of priors were introduced: (i) component-wise
priors R(A) = ν

∑
jk log|Ajk| and (ii) column-wise priors

R(A) = ν
∑
k log‖ak‖ where ak is the kth column of A.

The solution is regularized as the weight vectors ak ∈ Rm

are well-damped, and sparse in the sense that many of them
are zero. This indicates that the regression is only taking into
consideration the ones which are relevant for regression. The
system was tested with two types of regression bases f(x)
(i)Linear basis f(x) ≡ x, meant to simply return the input
vector so that the RVM can select relevant features (compo-
nents of x). (ii) Kernel bases f(x) = (K(x, x1)...K(x, xn))T

meant to select relevant examples.

B. Results

Given the inherent ambiguity of the input data, the method
gives good results in the situations where the self-occlusion
is limited. The mean estimation error over all joints for the
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Fig. 2. (a) Graph of error in degrees per body part per regression method

Gaussian RVM is 6◦. The results vary per body part depending
primarily on how visible was the body part during the training
phase. Comparison between different regression methods and
kernel functions can be seen on Fig. 2. The authors used the
opportunity to test the implicit feature selection, meaning to
see if the silhouette points are indeed taken as the input for the
expected joints of the body. Since the kernel methods hide this
relation the test was only reproduced for linear kernels. For
the purpose of this test a separate RVM regressor was trained
for each of the 5 body parts - torso, two arms and two legs.
While this test did show that the sampled silhouette points are
grouped locally, their position did not correspond the expected
results as seen on Fig. 3. This could mean that the training is
putting the regression method on the a wrong set of points.
Since the approximation was made only for walking motion,
it remained to be determine if the similar results would arise
from a training with a broader set of motions.

III. REAL-TIME HUMAN POSE RECOGNITION IN PARTS
FROM SINGLE DEPTH IMAGES

In search for the new features, technologies such as Prime-
Sense’s depth-camera made a big difference. The package was
completed by using the Shotton’s work previously applied to

(a) (b) (c)

Fig. 3. Implicit feature selection. Selected silhouette points used for: (a)
torso and neck (b) left arm (c) right arm

Fig. 4. Depth map and labeled body segments of the upper torso.

segmentation of the images[8], [9] and applying it to achieve
a real-time full body pose reconstruction with good results[4].

A. Body-part labeling and depth image features

The main contribution of the work is the substitution of the
problem, by not taking into account the skeleton pose itself,
but making a intermediate step and observing the human pose
as an labeled depth surface. The problem is divided into two
parts (i) finding the most probable configuration of the body
segments viewed by the camera (ii) voting on the skeleton
pose based on the found configuration.

Human body is divided into 31 segments which are marked
to reflect the left/right orientation, localize important body
joints or (if the body parts are not directly related to joints)
to help connect the segments into whole and give a more
probable voting material for the next step in processing. The
segments in question are: LU/RU/LW/RW head, neck, L/R
shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R
hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,
L/R ankle, L/R foot (Left, Right, Upper, loWer). Part of the
segmented depth map is shown on Fig. 4.

The depth features are based on the principles that they
have to be light in terms of computation (to accommodate the
real-time requirements of the Kinect platform). Each feature
is calculated as

fθ(I, x) = dI

(
x+

u

dI(x)

)
− dI

(
x+

v

dI(x)

)
(5)

and illustrated at Fig. 5. The randomly chosen offsets u and
v from the original point x are used to retrieve the proba-
bility Pt(c|I, x) from a random decision-tree forest, where c
represents the class of body part. The parameter dI(x) is a
normalization factor which scales the offsets depending on
how far away is the pixel located from the camera.

The decision-tree forest is (for the examples given in the
paper) formed out of 3 trees of 20 depth steps. The decision
features at each level are selected from randomly chosen fθ
and τ parameters, where τ serves as a threshold to choose the
left or right branch of the tree. Each tree is formed with the
procedure:

1) Randomly select a splitting feature φ = (ϑ, τ)
2) Split the set of training examples Q = (I, x) to the left

and right subsets

Ql(φ) = {(I, x)|fϑ(I, x) < τ}
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(a) (b)
Fig. 5. Depth image features. Yellow cross is the pixel being classified, red
circles represent the depth locations u,v being considered by the classifier fθ .

Qr(φ) = Q \Ql(φ) (6)

3) Compute the largest information gain as

φ∗ = argmaxφG(φ) (7)

G(φ) = H(Q)−
∑

s∈{l,r}

|Qs(φ)|
|Q|

H(Qs(φ)) (8)

with H(Q) being the Shannon’s entropy, computed as
the normalized histogram of body parts labels lI(x) for
all (I, x) ∈ Q.

4) If we found the large enough G(φ∗), and the depth of
the tree is below the maximum, recurse for the left and
right subsets Ql(φ∗) and Qr(φ∗).

Decision trees are particularly interesting because of their
easy implementation and parallelization properties. This com-
bined with the simple decision features gives us a fast system
with reliable outputs, which can be easily sped-up even further.
The downsides of the method lies in the vast amount of needed
training data, which will be discussed in the next sections.

B. Joint position

After the image has being processed by the decision forest,
it gives us a probability of which body part each pixel in the
image represents. To actually get the 3D pose of the skeleton,
these conclusions need to be processed to check the join
position and combine those into a proper 3D pose. Since the
probabilities are calculated on per-pixel bases, the output of the
previous step potentially contains a large number of outliers.
This is corrected by using a local mode-finding approach. This
is based on mean shift algorithm [10] with a Gaussian kernel.
The density estimator per body part is defined as

fc(x̂) ∝
N∑
i=1

wicexp(−||
x̂− x̂i
bc
||2) (9)

where x̂ is a coordinate in 3D space, N the number of image
pixels, wic pixel weighting, x̂i the re-projection of the image
pixel xi into world space given depth dI(xi) and bc is a learned
per-part bandwidth. The wic considers the inferred body part
probability at the pixel and the world surface area of the pixel
as

wic = P (c|I, xi) · dI(xi)2 (10)

Mean shift finds modes in this density, and all pixels with
learned probability threshold above λc are used as starting

points for part c. The final confidence estimate is given as a
sum of pixel weights reaching each mode. At this point we
have an accurate estimate of the surface of the human body
parts. To get the 3D position of the joint, the mode of each
labeled surface is pushed back into the scene by a learned
offset ζc.

C. Training and results evaluation

The downside of the method is the large quantity of training
needed to properly prepare the decision trees for all the
variations of the human shape, due to large number of poses,
shapes, clothing etc. The problem was solved by applying
the limited number of motion captures to a large number of
generated models. The virtual mannequins have the advantage
of easily being partitioned in the segmented parts, and also
that they can be easily augmented to different proportions,
clothes etc. The training set consisted of 5000 depth images
with ground truth body parts labels and joint positions.

The training is limited in sense that there is an assumption
about the context of usage. The user is directed towards the
camera ±120◦ and the range of actions is typical for usage
with the gaming console (menu choosing, driving, shooting,
hitting etc.).

The second thing that was analyzed is the sensitivity of
the algorithm to different training parameters as shown on
Fig. 6. Depending on the number of training images Fig. 6a
we see an approximately logarithmic growth until 100k images
which could be due to the depth of the decision trees. This is
assumed to be the most important parameter and is evaluated
on Fig. 6b,c. Depending on the number of used training
images the, we reach a quicker over-fitting of the trees (at
about 17 levels of depth) with the smaller number of training
images. The graph indicates that even greater precision could
be reached with over 20 levels of depth, with the greater cost
in memory and processing time. Maximum probe offset (how
far away can the feature probes be distant from the pixel being
classified) showed that it makes little difference over 129 pixel
meters, meaning that the context size for classifying each pixel
has it’s limit and we need not take into account the entire
image for a certain body part.

IV. SCAPE: SHAPE COMPLETION AND ANIMATION FOR
PEOPLE

Among typical representations of the reconstructed human
skeleton as a stick-figure, SCAPE model introduced an attempt
of more complete and realistic visualization of the human
models. Relying on precise information about the surface of
the human body acquired by laser scans, SCAPE is trying to
model the surface deformations based on the joint position.

A. Data acquisition and representation

The model is focused on modeling the deformations of
the surface of human body. Input is based on data acquired
by 3D body-scans and tries to compensate the difficulties
and problems which the procedure introduces. The idea is to
reproduce a human shape or body movement on the minimal
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(a) (b) (c) (d)
Fig. 6. Classification dependency on different training parameters. (a) Number of training images (log scale) (b),(c) Depth of trees on synthetic and real test
set (d) Maximum probe offset

number of inputs by reusing generic surface deformation
model which can be adjusted based on known parts of the
body scanned.

The training data is a full body scans of several subjects
in different positions (Fig 7). Having the same subject in
several positions allows us to observe the changes of the
surface dependent on the pose of the subject. This gives
us one scan which is referred as template mash which is
aimed to be as complete as possible by means of hole-
filling algorithms[11]. The rest of the poses are referred to
as instance mashes and are brought to a correspondence with
the template mash. This is done by manually placing a number
of markers and then replicating them over the surface with a
correlated correspondence algorithm[5]. The skeleton of the
pose is automatically recovered as a 16 part structure by the
algorithm[12].

The preprocessing steps play important role in producing
surface mashes with a constant number of triangles and
vertices. The data is organized as the instance mash X =
{Vx, Px}, where Vx = {x1, ..., xM} is the set of vertices
and Px = {p1, ..., pP } is the set of triangles. The scans are
grouped in two ways: (i) same person in different poses and
(ii) different persons in a similar pose. Y i = {yi1, ..., yiM}
represents the instance mesh points.

Fig. 7. Different stages of model acquisition

B. Pose deformation

The important idea in pose deformation is that the model is
separating the rigid and non-rigid deformations of the surface
and is trying to model the non-rigid deformations as a function
of the angles of two nearest joints. This gives us a realistic
and generic method for modeling the surface deformations.

Each triangle edge is modeled as vector relative to the first
triangle point ν̂ = xk,j−xk,1, j = 2, 3, where k is the triangle
number. The non-rigid deformation of each triangle k in the
pose i is modeled with a 3×3 matrix Qik. The rigid part of the
deformation is common to all triangles which are connected
to the certain body part l[k] and is represented as the matrix
Ril which gives us the formula

νik,j = Ril[k]Q
i
kν̂k,j , j = 2, 3 (11)

To estimate the deformations needed to transform the template
mesh to an instance mesh, we try to minimize the function

argminy1,...,yM
∑
k

∑
j=2,3

||Ril[k]Q
i
kν̂k,j−(yj,k−y1,k)||2 (12)

This formulation is still under-constrained, so to predict the Q
values we add a smoothness parameter between neighboring
triangles

argminy1,...,yM
∑
k

∑
j=2,3

||Ril[k]Q
i
kν̂k,j − νik,j ||2 +

ws
∑

k1,k2adj

I(lk1 = lk2)||Qik1 −Q
i
k2 ||

2 (13)

Where I() is the indicator function, ws = 0.001ρ and ρ is the
resolution of model mesh X .

The representation of the joint rotations, if the joints rotation
matrices are Rl1 and Rl2 we can represent the relative joint
rotation as RTl1Rl2 and convert it to a twist angle as

t =
||θ||

2 sin ||θ||

 m32 −m23

m13 −m31

m21 −m12


with θ = cos

(
tr(M)− 1

2

)−1
(14)

The twist vector represents the axis of rotation with it’s
direction and the intensity of vector represents the amount
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Fig. 8. First four principle components of the body-shape space.

of rotation. We use this representation of rotation matrices to
model the rotations of two neighboring joints of each triangle
∆ril[k] = (∆ril[k],1,∆r

i
l[k],2). To model the dependency of each

element qik,lm of the matrix Qik to the two twist vectors, we
can represent it as

qik,lm = aTk,lm

[
∆ril[k]

1

]
l,m = 1, 2, 3 (15)

which gives us a 9×7 matrix of ak elements to fit for each tri-
angle of the mesh, which is represented as Qik = Qak(∆ril[k]).
Given the joint angles from our input model, and deformation
matrices Qik which were constructed from the equation (13),
we can find the ak values by minimizing

argminak,lm

∑
i

(
[∆ri1]ak,lm − qik,lm

)2
(16)

It is possible to prune the model by modeling some joints
with less then 3 degrees of freedom. The classification which
dimension to reduce is based on the size of eigenvalues. This
principle ended up reducing the model by one third of the
parameters.

C. Body-shape deformation

To model the shape differences between different subjects,
the model introduces another set of matrices Si = {Sik : k =
1...P} in which the i parameter indicates the different person,
while the k is still representing the triangle of the surface.
The new formula for deforming a triangle from the original
template into a triangle of an instance model, we get

νik,j = Ril[k]S
i
kQ

i
kν̂k,j , j = 2, 3 (17)

The Si parameters are modeled with the idea that their origin
is in the linear subspace, and thus can be modeled by the PCA

Si = SU,µ(βi) = Uβ + µ (18)

For a given set of Sik we can estimate the PCA parameters U, µ
and mesh-specific coefficient βi. To get the Sik we estimate

them by solving

argminSi

∑
k

∑
j=2,3

||RikSikQikν̂k,j − νik,j ||2

+ws
∑

k1,k2adj

||Sik1 − S
i
k2 ||

2 (19)

The Ri joint rotations are given by the preprocessing, from
which we can calculate the Qik = Qak(∆ril[k]) based on
the description from the previous section. This lives us with
the unknown Sik to be estimated. ws

∑
k1,k2adj

||Sik1 − S
i
k2
||2

part of the equation enforces smoothness of the adjected
deformations.

Given the parameters β for body shape and R for rotation
of the rigid parts, we can find vertices Y that minimize the
objective

EH [Y ] =
∑
k

∑
j=2,3

||RkSU,µ(β)Qak(∆rl[k])ν̂j,k−(yj,k−y1,k)||2

(20)
which produces a consistent mesh of a person within the
reasonable body-shape scope and pose parameters.

D. Applications

The model is applied to three tasks (i) shape completion (ii)
partial view completion (iii) motion capture animation.

Shape completion is the task of extending the previously
specified task in formula (20) with the constraints given by
already scanned points. The final formulation then becomes

EH [Y ] + wZ

L∑
l=1

||yl − zl||2 (21)

where wz represent the weight factor that balances between
the fit of the markers and consistency of the model and zl are
the given coordinates of the known points of the mesh. The
parameters of rotation R and body shape β are not known.

The nature of the equation (21) is non-linear, non-convex,
and subjected to local minima. The routine used in the paper
for effectively minimizing is to minimize each of the (R,β
and Y ) parameters separately. The optimization takes into
consideration (in that particular order) R, Y and finally β.
The iterative nature of the procedure approximates Rnew =
(I + t̂)Rold where t = (t1, t2, t3) is the twist vector and

t̂ =

 0 −t3 t2
t3 0 −t1
−t2 t1 0


Due to an observation that the Q matrices are more affected

by general R then the ∆R an added term penalizes if two
adjected joints have a large difference in rotation. The final
process is then described with steps:
• Update R while keeping the current values for β and Q.

The final equation is

argmint
∑
k

∑
j=2,3

||(I + t̂lk)RoldSQν̂j,k − (yj,k − y1,k)||2

+wT
∑

l1,l2adj

||tl1 − tl2 ||2 (22)
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Fig. 9. Partial pose scan, pose completion and comparison between the
SCAPE completion and the original pose.

after the R has been updated, we update the ∆R and Q
accordingly to the new value of R.

• Update Y while β and R are fixed, by optimizing
equation (21). By this, we get S and Q matrices.

• Update β by optimizing equation (21), R and Q are fixed.
The objective function is reduced to∑

k

∑
j=2,3

||Rk(Uβ + µ)kQν̂j,k − (yj,k − y1,k)||2 (23)

Partial view completion (Fig 9) also relies on the equation
(21). With given partial scan of the human body, the points of
correspondence with the generic model can be manually set.
Additional points are being produced with CC algorithm[12].
The generic SCAPE model recovered this way can be used to
fill in the missing parts with generic information. The model
can not recover any specifics of the person based on minor
information present on the given scan part.

Motion capture animation implies that we have an generic
initial scan of the person we with to animate. This provides
us with the body-shape parameters. The animated sequence
is archived by using these parameters with the series of
marker positions which represent body pose in each frame.
The algorithm uses the pose of the body from the previous
frame as the starting point of the optimization for the next
frame.

E. Results

The model is focused on modeling the deformations of
the surface of the human body. Although this can appear
to have limited usability in the commercial use by usage of
naked bodies only, the dependency between non-rigid and rigid
deformations is interesting in it’s application to other non-
rigid deformations e.g. clothing. Due to nature of cloth, this
isn’t a simple substitution of the model, and would require a
intermediate representation which is broad enough to model
the deformation of the surface and is also applicable to a
number of cloth styles which could be applied on top of that.

As the authors themselves notice, the model is also dis-
regarding further physical properties of the material which
the surface is modeling. E.g. the muscle deformation are not
dependent on the shape properties of the person in question,
meaning that the entire surface is always presumed to represent
muscle mass, which is seldom the case.

V. CURRENT WORK

The work until this point has been based on existing
technologies for multiple person tracking[13], [14] and facing
the challenges that lie with difficult viewing conditions.

A. Shadow removal

The first problem which was worked on was removal of
shadows for the purpose of better tracking of pedestrians.
The problem had two major difficulties (i) low quality of
video footage (ii) dark cloths of the pedestrians in the footage
which combined with the high contrast of the video proved to
be indifferentiable from the shadows themselves. A number
of techniques based on machine learning were tried. The
idea of using SVM with a color-based feature vectors and
background information proved to give limited results. Among
tried color combinations of RGB, HSV, grayscale, with added
background color information of the same pixel, feature vector
with grayscale values of background and foreground actually
gave the best results. Further information of the entropy,
texture etc. were not useful due to the errors induced by video
compression methods.

The final solution (Fig 10) was based on the concept
that shadows are consistent in the color and direction. The
foreground pixels (after background subtraction and smoothing
preprocessing steps such as connected component size filter,
erosion and dilation) were sorted into 8 bins based on the
angle in which we had the biggest number of foreground
pixels. By specifying the directions which are expected for
the shadows, we were able to remove enough of the shadows
pixels to improve the tracking of the algorithm[14]. This
approach remains sensitive to large groups of individuals
walking together in close proximity, because this gives us
mis-classifications for certain bins. The visual results are not
always visually pleasing, but they provide enough statistical
information for the tracking algorithm.

B. Consistency of human silhouette

The problem of recognizing outlines of humans in a
crowded scene was also worked on by attempt of build-
ing a library of common outlines per person. The tracking
algorithm[14] provides us with a bounding boxes of persons
in individual views (Fig 11b). By using the overlap check
of the bounding boxes, we can determine when the person
is isolated in the video and store those outlines to our pose
library. For the problematic frames (Fig 11a), when the person
is overlapping with other persons, we can apply a generative
approach - by using the background model and poses of the
isolated persons in the library, we can try to reconstruct the
scene. The end result gives us the silhouettes of each person
(Fig 11c).

Comparison is done by simple cross-correlation between
the original image and generated image. Since the library is
limited in size, and even the best match may not have a 100%
overlap of the foreground pixels, after the best fit has been
found, we apply the region growing algorithm meaning that
the regions of assigned foreground pixels are being expanded
on account of regions of un-assigned pixels.
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(a) (b) (c) (d) (e)
Fig. 10. Removing shadows (a) Original frame (b) Dominant orientations of foreground pixels colored by different bins (c) Binary foreground before shadow
removal (d) Binary foreground after shadow removal (e) Final frame

VI. THESIS PLAN

The initial proposal of the research is to work and improve
on the existing detection techniques, and attempt to exclude
the background subtraction methods from the process, as they
prove to be unreliable when working with moving cameras
or dynamically changing backgrounds. The primary focus of
the research will be analysis of the outdoors scenes and sport
activities as they provide a broad spectrum of motions and
actions, as well as challenging situations.

The inputs, at least for the initial phase, will be based on
the multi-camera setup which is currently being used by the
CVLab[15]. This gives us a good comparison point for the
detection/tracking algorithms, as well as reliable source of
training data. The main benefits of using it as a starting point
is the possibility to determine the identity, trajectory (and from
that - orientation) of the person in the images.

For the estimation of the pose the focus of the research
will be on using the time-domain data to constrain the pose
space, which we feel was not used enough in the previous
papers. This has been a trend in the recent advances in the
pose estimation papers [16]. Combined with recent advances
in tracking algorithms [17] we hope to constrain the problem
enough to move from the multi-camera to monocular inputs
and still retain enough information to process the problems
from the natural situations. The immediate idea for the con-
straints is to detect recognizable parts of the person which such
as head, feet, hands combined with typical skeletal model of
the person.

Other approach being considered is the generative approach
in which we would be a follow-up on the work described in
the section 5b. The idea would be to replace the library of
poses with a generative model which would combine textural
properties of the person in the footage with a SCAPE-like
model in the attempt to resolve ambiguities by trying to

(a) (b) (c)

Fig. 11. Human silhouette example (a) Original problematic scene before
segmentation (b) Segmented frame with displayed bounding boxes and
pedestrian IDs (c) Color-coded regions of different pedestrians

generate what we see and explain the 3D construction of the
scene (mainly the poses, since the position of the persons in
the scene can be explained with the tracking information).

At this point we do not have a reason to limit the research
purely to model-based or learning-based methods. The ap-
proaches will be used as seen fit, but the focus will be to
remain as much in the non-controlled environment as possible.
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