
EDIC RESEARCH PROPOSAL 1

Declarative Data-Driven Coordination
Miloš Nikolić

DATA, I&C, EPFL

Abstract—The vision of declarative-data driven coordination
(D3C) [3] enables users to communicate and coordinate through
declarative specifications. A declarative query mechanism for
D3C, named entangled queries, has been presented in [2].
Raising this notion to the level of transactions introduces many
new challenges, such as a formal characterization of additional
anomalies [6] or a choice of a concurrency control protocol
[9]. Our work [1] defines semantic and execution model for
entangled transactions and demonstrate their viability in real-
world application settings.

Index Terms—data-driven coordination, entangled query, en-
tangled transaction, portable isolation levels, serializable snap-
shot isolation

I. INTRODUCTION

W ITH the expansion of social applications more and
more users organize and coordinate their daily ac-

tivities online. In many cases, users want their activities to
be interdependent and performed in collaboration with other
users. For example, friends want to make joint travel plans,
students want to enroll in courses together and players want
to make joint strategies in online social games. Despite the
simplicity of these activities, most of them is surprisingly
difficult to perform using today’s technology. Modern database
systems are designed to execute transactions in isolation from

Proposal submitted to committee: September 7th, 2011;
Candidacy exam date: September 13th, 2011; Candidacy exam
committee: Exam president, thesis director, co-examiner.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(R. Urbanke) (signature)

EDIC-ru/05.05.2009

each other and provide no mechanism for their coordination.
Data-driven coordination requires communication between
user programs which clashes with the ACID properties of
transaction.

The authors of [3] introduced the concept of declarative
data-driven coordination (D3C) as an abstraction that extend
the classical notion of the transaction to allow some form of
information flow. The idea behind D3C is to provide a way for
users to express their individual preferences and constraints,
rather than deal with the complexity of the actual coordination.
To raise coordination to the level of primitive with formal
semantics, a declarative query mechanism for data-driven
coordination, named entangled queries, has been proposed in
[2]. Entangled queries are expressed in a SQL-like manner,
allowing the coordination constraints and the data involved in
coordination to be specified on the same level of abstraction.
At runtime, the system performs the coordination and produces
a result that respects constraints of all coordinating partners.

Still, most real-world data management applications that
involve coordination require not just queries, but a transaction-
like abstraction that covers larger units of work. Address-
ing this challenge involves a fundamental reassessment of
the classical notion of isolation. For entangled transactions,
isolation is clearly relaxed since it requires communication
between user programs. However, the need to relax isolation
is motivated by the novel semantics of D3C, not by perfor-
mance considerations as with relaxations of classical isolation.
Formalizing this intuition might have important implications
on the overall system architecture of DBMS.

In [1] we have introduced a semantic model of entangled
transactions that comes with analogues of the classical ACID
properties. The model reveals several isolation anomalies
unique to entanglement. As our future work, we plan to
utilize the graph-based approach presented in [6] to formalize
these anomalies and define corresponding isolation levels.
Furthermore, our current lock-based prototype implementation
lacks the power of efficiently handling interactive entangled
transactions. We plan to explore alternate concurrency control
protocols, based on the research [9], to enforce the correct and
more flexible execution model.

The rest of the paper is structured as follows. In Section
II, we introduce entangled queries. In Section III we describe
the implementation-independent generalization of the existing
ANSI isolation levels. Section IV deals with the problem
of serializable execution under snapshot isolation. Finally, in
Section V we briefly present our current work and future
plans.

EDIC RESEARCH PROPOSAL 2

II. ENTANGLED QUERIES

The paper [2] makes giant steps towards enabling the vision
of declarative data-driven coordination (D3C) [3] where users
are provided with novel abstractions that enable them to com-
municate and coordinate through declarative specifications.
It introduces entangled queries, a mechanism that admits
a limited form of interaction between database queries by
automatically coordinating on the choice of common values
between the queries.

As an example, suppose that Donald wants to travel to Paris
on the same flight as his friend Minnie. Rather than commu-
nicating out-of-band, he can simple specify his coordination
request in a SQL-like manner:

SELECT ’Donald’, fno INTO ANSWER Booking
WHERE fno IN (SELECT flightno

FROM Flight
WHERE dest="Paris")

AND (’Minnie’, fno) IN ANSWER Booking
CHOOSE 1

One can think of this entangled query as a request to learn
the number of a single flight to Paris on which Minnie also
plans to travel. Assuming Minnie also wants to coordinate with
Donald, she issues a symmetric query with the strings ’Don-
ald’ and ’Minnie’ exchanged, possibly additionally constrained
with her own preferences. The system receives these queries
for evaluation, recognizes that Donald and Minnie want to
coordinate, chooses a flight and returns the same flight number
to both friends.

A. Coordinated Query Answering

Although entangled queries are specified in an extension
of SQL, an intermediate representation which uses Datalog-
like notation is more suitable for algorithmic processing and
formal reasoning. In this representation an entangled query
is expressed using three parts: the body (B), the head (H)
and the postcondition (C). The atoms in B may only refer
to database relations, while atoms in H and C only refer to
answer relations. The above entangled query has the following
intermediate form (the relations Booking and Flight are
abbreviated as B and F):

{ B(Minnie, x) } B(Donald, x) : − F(x,Paris)

Entangled queries use special constraints on the answer
relation as a means of coordination. The idea is that the answer
to the query is returned through an answer relation that is
shared among multiple entangled queries in the system. An
individual entangled query can only be answered if the answer
relation satisfies query’s postconditions. If this is the case, the
result of query evaluation is a single row from the answer table.
A query whose constraint is not satisfied upon individual eval-
uation is not rejected, but waits for an opportunity to satisfy
the constraint, which may happen through the evaluation of
another query.

The evaluation process performed by the system involves a
set of entangled queries Q executed over a database instance
D. The goal of the evaluation is to populate the answer relation
in a way that respects all queries’ coordination constraints.

Conceptually, the answering process begins by grounding
all the queries from Q on D. The resulting grounding set G
contains all possible valuations of the queries on D. Thus,
the problem of finding the answers can be represented as a
problem of finding a subset G′ ⊆ G such that G′ contains at
most one grounding of each query and the groundings in G′

can all mutually satisfy each other’s postconditions.
In general, the complexity of entangled query evaluation

is NP-complete which follows from the complexity results
for constraint satisfaction problem (CSP). The main source
of complexity lies in discovering the coordination structure,
i.e. the way the queries match up together. The other source
of complexity is due to the fact that each query in Q has a
body that is a conjunctive query, and it is known [14] that
the combined complexity of evaluating conjunctive queries
is NP-complete. However, this type of complexity cannot be
eliminated and one usually considers this acceptable because
of the small size of queries.

B. Making Coordination Tractable

The main contribution of this paper is introduction of safety
and uniqueness properties of entangled queries - syntactic
conditions which eliminate the main source of coordination
complexity and ensure efficient evaluation in many real-world
settings.

The proposed query matching mechanism employs the
concept of logical unifiability between various head and post-
condition atoms of the queries in Q. Unification of relational
atoms defined over the same relation is possible if there is a
substitution of variables that makes these atoms equal and no
attribute value is assigned two different constants.

Unification dependencies among the queries in Q are cap-
tured using a data structure called the unifiability graph. The
unifiability graph is a multi-digraph that contains a distinct
node for every query in the system. An edge is drawn from qi
to qj for each head atom of qi that unifies with a postcondition
atom of qj . Existence of a path from qi to qj means that
groundings of qj require groundings of qi for satisfaction,
directly or transitively.

The safety property of a set of queries Q guarantees that
within Q each query has a unique coordination partner. For-
mally, Q is unsafe if it contains a query q with a postcondition
atom that is unifiable with more than one head atoms found
in Q. However, enforcing only the safety condition on a
set of queries Q does not guarantee existence of the unique
coordination structure. Depending on the database, there could
be several possibilities for coordination between queries from
different subsets of Q. To guarantee uniqueness of the coor-
dination structure (UCS) each query from Q must belong to
a strongly connected subcomponent of the unifiability graph
defined for Q. On this way, for each such a set of queries Q′

we guarantee that there are no proper subsets of Q′ that may
be able to coordinate “locally” even if the entire set cannot.

When applied together these two conditions allow efficient
detection of the coordination structures. Safety property guar-
antees that within each structure there is a unique way in which
queries match. Therefore, it is possible to combine the queries

EDIC RESEARCH PROPOSAL 3

from a coordination structure into a bigger query that expresses
the desired joint outcome.

C. The Evaluation Algorithm

The goal of the evaluation algorithm is to compute the unifi-
ability graph for Q, partition this graph into strongly connected
components, and for each component generate a single SQL
query that computes the answers between the queries in this
component. This approach is based on the fact that queries
from two different components do not require coordination
and, thus, each component can be handled independently and
in parallel.

During the graph construction, the algorithm iteratively
removes unanswerable queries, i.e. those that have no chance
to participate in a coordinating set. Each node in the graph
stores unification information about currently known con-
straints on valuations of variables that must hold for this
query to be answerable. As part of this step, the algorithm
iteratively propagates unification constraints to other nodes
using the structure of the unifiability graph until a fixed point
is reached. For a successful coordination, constraints of all
involved queries must hold.

If the coordination structure is found, the evaluation al-
gorithm creates a postcondition-free combined query taking
into account bodies of all the original queries and unification
constraints. Such a combined query is sent to the database
for evaluation; the answers to the combined query are used to
generate answers for individual queries.

D. Results and Discussion

The whole approach has been implemented as a middleware
layer on top of a standard DBMS and evaluated through exper-
iments that shown namely the scalability of the coordination
algorithm. The experiments were performed using realistic
workloads in an increasingly complex set of scenarios. The
results have also shown that the proposed algorithm introduces
a negligible overhead due to coordination evaluation. Further-
more, the algorithm is efficient in removing unanswerable and
unsafe queries.

In the presented approach the choice of coordination part-
ners is given by the unifiability between query postconditions
and heads. In principle this allows users to coordinate with
unknown coordination partners, but the safety and uniqueness
properties can limit this coordination in many case by placing
too strict requirements that might prevent a query from being
answerable. This may limit the applicability of the approach
in certain scenarios (e.g. MMO games).

III. GENERALIZED ISOLATION LEVELS

Isolation levels are provided by all commercial database
systems to allow programmers to trade off consistency for a
potential gain in performance. The current ANSI SQL standard
[4] defines isolation levels in terms of phenomena that a trans-
action is forbidden to experience at each isolation level. These
phenomena (“DIRTY READ“, “NON-REPEATABLE READ“ and
“PHANTOM“) have not been stated in terms of any particular

concurrency control scheme. An important goal of the ANSI
SQL standard was to provide flexible definitions that permit
a variety of concurrency control mechanisms. The standard
defines four successively more restrictive isolation levels:
READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ and SERIALIZABLE.

A. Problem Statement

A subsequent paper [5] showed that the definitions provided
in [4] are ambiguous and incorrect. Even their broadest inter-
pretations do not exclude some anomalous behaviors. To tackle
these problems the authors of [5] proposed refined definitions
and introduced an additional phenomenon (”DIRTY WRITES”)
to properly characterize the standard locking implementation
of the isolation levels.

However, the proposed new specifications have been overly
restrictive since they disallow all histories that would not occur
in a lock-based implementation. The problem is that the notion
of a conflict that underlies the locking rules does not carry
over directly to other concurrency control protocols, such as
multi-versioning or optimism. To this end, some commercial
systems have introduced additional isolation levels that assume
a multiversion concurrency control algorithm and specify a
controlled relaxation from multiversion serializability (e.g.
Snapshot Isolation, Read Consistency...).

Thus, we have a serious problem: on one side, we have
a standard intended to be implementation independent, but
without a precise definition, and on the other side, commercial
database systems that “conform“ the standard, sometimes even
not providing serializability guarantees at the highest isolation
level. All this makes it more important to find a standard
that is correct and yet flexible enough to allow a variety of
concurrency control techniques.

B. Implementation-Independent Isolation Levels

The paper [6] presents new levels for transactional isolation
that capture the intent of the specifications in [4], [5]. For
each ANSI SQL level, a corresponding portable isolation level
is provided that is precise, correct (disallows all anomalous
behaviors) and implementation-independent. These new levels
are called PL-1, PL-2, PL-2.99 and PL-3, where PL-3 guar-
antees conflict-serializability [8].

The new definitions are based on the principle that trans-
actions are not allowed to observe violations of multi-object
constraints; these are invariants of the type x + y = 10, that
involve multiple objects. These constraints are captured by
taking into account all objects that are accessed by the commit-
ting transaction. In contrast to this, the approach suggested in
[5] avoids this difficulty by disallowing conflicting operations
to run concurrently on individual objects, i.e. the conditions
are specified in terms of single-object histories. As mentioned
before, such approach is overly restrictive since it proscribes
many valid histories produced by non-locking schemes that
allow conflicting operations to execute simultaneously and still
correctly preserve multi-object constraints.

The goal of creating portable isolation definitions is
achieved using a combination of constraints on transaction

EDIC RESEARCH PROPOSAL 4

histories and serialization graphs [8]. These graphs provide
a simple way of capturing multi-object constraints. Portable
isolation levels are specified in terms of the different types of
cycles that must be disallowed in these graphs, e.g. serializabil-
ity disallows all types of cycles whereas the lowest isolation
level disallows only cycles involving updates (and not reads).

Database Model. The database model is represented as
a multi-version model [8] extended with the semantics of
predicate-based operations. An interleaved execution of trans-
actions is captured by a history along with the version order
that specifies a total order on versions of each object created
by committed transactions.

Predicates. The important contribution of [6] is the
definition of predicate-based operations in a correct and
implementation-independent manner. These definitions pro-
vide a variety of guarantees for predicate-based operations
at all isolation levels. Earlier definitions for these operations
were either incomplete, ambiguous, lock-centric or specified
in terms of a particular database language such as SQL.

Predicate-based operations are executed against a set of
versions of relevant tuple chosen by the system. Predicate-
reads are modeled as (quasi) readings of all selected versions,
followed by the decision which tuples match the predicate. If
the system reads the matched versions as part of the query,
these reads show up as separate events in the history. A
predicate-based modification is modeled as a predicate-read
followed by write operations on the matching tuples. A slightly
different model that provides stronger guarantees (than the
model described above) to predicate-based modifications at
lower isolation levels is presented in [7].

Dependencies. There are three kinds of direct dependencies
that capture direct interactions among committed transactions,
i.e. conflicts of two transactions on the same object version.
Note that since we assume the existence of a version order for
objects, it is always clear what transactions overwrote versions
of what other transactions.

1) Read dependencies capture write-read conflicts; Tj read-
depends on Ti if it reads a version produced by Ti.

2) Anti-dependencies capture read-write conflicts; Tj anti-
depends on Ti if it overwrites a version that Ti has read.

3) Write-dependencies capture write-write conflicts; Tj

write-depends on Ti if it overwrites a version produced
by Ti.

Predicate-based read/anti dependencies are established be-
tween a transaction that reads a predicate P and every other
transaction that writes the next version of some object causing
it to change the set of matching tuples for the predicate P .

Serialization Graphs. The direct serialization graph (DSG)
captures all types of conflicts arising from a history and a
given version order. Each node in this graph corresponds to
a committed transaction and directed edges corresponds to
different types of direct conflicts. As an example, consider
the following history:
H : w1(z1) w1(x1) w1(y1) w3(x3) c1 r2(x1) w2(y2)

c2 r3(y2) w3(z3) c3 [x1 � x3, y1 � y2, z1 � z3]

Figure 1 Shows the DSG for this history. As we can see,
there is no cycle in the graph and the history is serializable.

Fig. 1. DSG for history H

Portable Level PL-1. The weakest isolation level PL-1
guarantees that updates of conflicting transactions are not
interleaved. Such a behavior is ensured by proscribing directed
cycles from a DSG that consist entirely of write-dependency
edges (G0 phenomenon). That prevents generation of unrecov-
erable schedules which are undesirable in some implemen-
tations. Another reason for proscribing this phenomenon is
that it can violate database consistency as described in [5].
However, PL-1 provides weak guarantees for predicate-based
modifications since they are modeled as queries followed by
normal writes. Alternative approach with stronger guarantees
is presented in [7].

Portable Level PL-2. This isolation level places constraints
on read operations; it prevents circular information flow be-
tween transactions by proscribing directed cycles from a DSG
that consist entirely of read/write (but not anti) dependency
edges (G1c phenomenon). Furthermore, this level guarantees
that a committed transaction has read only values that exists
(or will exist) at some instant in the committed state. That does
not mean that readings from uncommitted transactions are pro-
hibited; PL-2 only prevents readings from aborted transactions
(G1a phenomenon) and readings of non-final modifications of
other transactions (G1b phenomenon). Such conditions cannot
be defined in terms of serialization graphs; rather they are
represented as constraints on transaction histories.

Portable Level PL-2.99. This isolation level guarantees
full serializability with respect to data-item operations, but
does not prevent the phantom reads. Such a behavior is
achieved by proscribing directed cycles from a DSG that
consist of read/write and item-anti dependency edges (G2-item
phenomenon).

Portable Level PL-3. The strongest isolation level PL-3
prevents transactions from committing if they perform incon-
sistent reads or writes. In particular, it extends the guarantees
of PL-2 by precluding all cycles that consist of one or more
anti-dependency edges (G2 phenomenon).

C. Discussion

The definitions for PL-3 rule out all non-serializable his-
tories and provide conflict-serializability even in the multi-
version case. Furthermore, these new definitions are strictly
less restrictive than the the lock-based interpretation of the
existing ANSI standard, i.e. the new specification of isolation
levels admits more good histories.

Another advantage of the presented graph-based approach
is that it allows defining correctness conditions in a system in
which different transactions may commit at different isolation
levels. To that end, mixed serialization graphs are employed
to capture only dependencies relevant to a transaction’s level

EDIC RESEARCH PROPOSAL 5

or obligatory dependencies required by other transactions’
modes.

An interesting property of the proposed isolation definitions
is that they allow an application to request different isolation
guarantees for committed and running transactions. This char-
acteristic ensures that a wide range of concurrency control
mechanisms are permitted by these isolation specifications.
Correctness conditions for both types of transactions are
presented in [7]. The approach in [5] allows only concurrency
control schemes that provide the same guarantees for running
and committed transactions (a lock-based implementation does
indeed have this property).

In addition to supporting levels specified in [4], the proposed
approach can also characterize commercial levels such as
Cursor Stability, Snapshot Isolation and Oracle’s Read Con-
sistency, as well as additional levels that fall between PL-2
and PL-3 [7]. These levels are characterize by extending the
graphs used for defining the ANSI levels; different types of
nodes and edges are added to capture the constraints relevant
to each level. These definitions demonstrate that the graph-
based approach for specifying isolation levels is flexible.

IV. SERIALIZABLE SNAPSHOT ISOLATION

Snapshot isolation (SI) [5] is a concurrency control ap-
proach that uses multiple versions of data to provide non-
blocking read operations. Under SI, a transaction T sees the
database state as produced by all the transactions that commit-
ted before T starts, but no effects are seen from transactions
that overlap with T. Reads are never delayed because of
concurrent transactions’ writes, nor do reads cause delays in a
writing transaction. SI also enforces an additional restriction
on execution in order to prevent Lost Update anomalies: it is
not possible to have two transactions which both commit and
both modify the same data item. This is called the “First-
Committer-Wins“ rule. In practice, implementations of SI
usually prevent a transaction from modifying an item if a
concurrent transaction has already modified it. Such approach
is called “First-Updater-Wins“.

A. Problem Statement

It has been known since SI was formalized in [5] that it
allows non-serializable executions. In particular, it is possible
for an SI-based concurrency control to interleave some transac-
tions, where each transaction preserves an integrity constraint
when run alone, but where the final state after the interleaved
execution does not satisfy the constraint. Here is an execution
that can occur under SI:

H : r1(x0, 50) r1(y0, 50) r2(x0, 50) r2(y0, 50)

w1(x1,−20) w2(y2,−30) c1 c2

This sequence of operations represents an interleaving of
two transactions, T1 and T2, withdrawing money from bank
accounts x and y, respectively. Each of the transactions begins
when the accounts each contain $50, and each transaction in
isolation maintains the constraint that x + y > 0. However,
the interleaving results in x + y = −50, so consistency has
been violated. This type of anomaly is called a write skew. A

predicate-based version of this anomaly can also generate non-
serializable executions under SI as noted in [5]. Another type
of anomaly that involves read-only transactions is presented
in [9].

Despite these known anomalies, SI is supported in many
commercial systems. In fact, it is the highest available level
of consistency in widely used systems such as Oracle and
PostgreSQL. Many organizations use these databases for run-
ning their applications, and so they are potentially at risk of
corrupted data.

From the aspect of the DBA or application developer,
the real concern is whether a particular database application,
consisting of several interacting programs acting under SI, will
produce only serializable executions. A theoretical foundation
that allows application developers to tackle this problem has
been established in [9]. The paper also provides some guid-
ance how to modify the application to guarantee serializable
execution.

B. SI Transaction Theory

The starting point for understanding how transactions can
produce anomalies under SI is the theory of multiversion
serializability, e.g. the theory based on directed serialization
graphs (DSG) presented in Section III. Under snapshot iso-
lation, the definitions of serialization graphs become much
simpler, as versions of an item are ordered according to
the temporal sequence of the transactions that created those
versions. Figure 2(a) shows the DSG for the history with
write skew, discussed above. As usual in transaction history,
the absence of a cycle in DSG proves that the history is
serializable. Thus it becomes important to understand what
sorts of DSG can occur in histories of a system using SI for
concurrency control.

Fig. 2. SDG and DSG for write skew example

It is important to note that read and write dependencies can
not occur between two concurrent snapshot-isolated transac-
tions. Thus a cycle in the DSG cannot occur in a history having
only transactions with read and write dependencies. It was
showed in [7] that any cycle produced by SI has two anti-
dependency edges. This was extended by [9], which showed
that any cycle must have two anti-dependency edges that occur
consecutively, and further, each of these edges is between two
concurrent transactions. This important theoretical result has
formed a foundation for characterization of how SI serializa-
tion anomalies can arise and how they can be prevented.

C. Static Dependency Graph

In light of this result, the paper [9] proposes a graph-
based approach for static analysis of the possible conflicts

EDIC RESEARCH PROPOSAL 6

between transactional programs. The goal of this approach
is to determine whether or not a non-serializable execution
of an application can occur under SI. To that end, a static
dependency graph (SDG) is defined for a given collection of
transactional programs. A static dependency edge is drawn
from P1 to P2 if there is some execution of the system, in
which T1 is a transaction that arises from running program P1,
and T2 arises from running P2, and there is a dependency from
T1 to T2. Of special importance are edges called vulnerable
edges. An edge from P1 to P2 is vulnerable if there is some
execution of the system, in which T1 is a transaction that arises
from running program P1, and T2 arises from running P2, and
there is a read-write dependency from T1 to T2, and T1 and
T2 are concurrent. Figure 2 shows DSG(H) and SDG(A) for
the history with an application A that can exhibit the write
skew anomaly.

Within the SDG, certain patterns of edges are crucial in
determining whether or not anomalies might occur. The paper
defines that the graph SDG(A) has a dangerous structure if it
contains nodes P , Q and R, which may not all be distinct,
such that there is a vulnerable edge from R to P , there is a
vulnerable edge from P to Q, and there is a path from Q to
R (or else Q = R).

The main theorem of [9] shows that if a collection of
programs A has SDG(A) without dangerous structure, then
every execution of the programs in A under SI is serializable.
This theory is applied in a manual static analysis to prove that
the TPC-C [13] benchmark application has no serialization
anomalies under SI.

D. Avoiding Anomalies

In cases when analysis of a SDG reveals presence of
dangerous structures, the general approach is to modify one or
both application programs, in ways that do not alter their busi-
ness logic, but avoids dangerous structures. Programmers can
explicitly introduce extra write-write conflicts in transactional
programs, in order to prevent the transaction from running
concurrently with the other transaction on the (formerly)
vulnerable edge. Two different types of modifications are
proposed by [9]:

1) Materialization of the conflicts. Typically, one intro-
duces a new table, and both transactions are made to
write the same row of this table. This method works
particularly well for predicate conflicts.

2) Promotion. The program reading the data item in con-
flict is changed to also perform an identity write on the
data item. We say that the read is promoted to a write.

E. Discussion and Related Work

Making SI serializable using static analysis has a number
of limitations. Doing a design-time analysis of the application
code requires highly skilled DBAs able to determine the
possibility of dependencies between every pair of transaction
programs, by looking at the program logic. In general, the pro-
gram logic could be arbitrarily complicated, and this process
might not be always feasible. In addition, the static analysis
must be a continual activity as an application evolves. Every

minor change in the application requires renewed analysis,
and perhaps additional changes (even in programs that were
not altered).

However, the theoretical foundation presented in [9] gave
rise for future researches on how to ensure serializable ex-
ecutions when running under SI. The follow up paper [10]
describes a system to automate the analysis of program
conflicts. One important finding of that work is that snapshot
isolation anomalies do exist in applications developed using
tools and techniques that are common throughout the software
industry. A more recent paper [11] provides Serializable
Snapshot Isolation (SSI), which avoids such anomalies at
runtime without any need to pre-examine the code. However,
this runtime technique is conservative and relies on aborting
transactions that give rise to dangerous structures causing
unnecessary aborts. The most recent paper [12] demonstrates
a new method for implementing serializable snapshot isolation
based on precise criterion for cycle detection and abortion of
transactions.

V. CURRENT AND FUTURE WORK

Designing a system that supports entangled transactions
reveals many research challenges. The semantics of classical
transactions is closely tied to the ACID properties; it is appro-
priate to understand what analogues of these can be expected
to hold for entangled transactions. One is sure, isolation is
clearly relaxed since it requires communication between user
programs. Our need to relax isolation is motivated by the
novel semantics of entangled transactions, not by performance
considerations as with relaxations of classical isolation [6],
[5]. Therefore, it appears that isolation should be relaxed
only “as far as necessary” to permit controlled communication
through entangled queries. We have detected several isolation
anomalies unique to entanglement. Our future plan is to further
formalize the entangled isolation and introduce new definitions
of isolation levels using the approach defined in [6].

In [1] we have described a semantic model that captures
both the fact that each entangled transaction represents a
logical unit of work on its own, and that this work is dependent
on input from other transactions in the system. We have also
presented our prototype that implements entangled transaction
support in the middle tier, and as such can be used with any
existing DBMS. Experiments with our prototype show that the
overheads associated with supporting entangled transactions
are acceptable for real-world use.

However, our prototype supports only the non-interactive
transactional model in which users can be expected to issue
entire entangled transactions at once. Interactive model with
users in the loop comes with its own challenges and cannot
be achieved using our current lock-based implementation.
Thus, our future plan is to further investigate the unique
issues associated with interactivity and potentials of other
concurrency control techniques, including snapshot isolation
presented in this paper.

EDIC RESEARCH PROPOSAL 7

REFERENCES

[1] N. Gupta, M. Nikolic, S. Roy, G. Bender, L. Kot, J. Gehrke and C. Koch,
Entangled transactions, VLDB, 2011.

[2] N. Gupta, L. Kot, S. Roy, G. Bender, J. Gehrke, and C. Koch, Entangled
queries: enabling declarative data-driven coordination, In Proc. ACM
SIGMOD Conf, 2011.

[3] L. Kot, N. Gupta, S. Roy, J. Gehrke and C. Koch, Beyond Isolation:
Research Opportunities in Declarative Data-Driven Coordination, SIG-
MOD Record, 39(1):27–32, 2010.

[4] V. Atluri, E. Bertino and S. Jajodia, ANSI X3. 135-1992, American
Nalional Standard for Information Systems – Database Language – SQL,
George Mason University, 1992.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil and P. O’Neil, A
critique of ANSI SQL isolation levels, In Proc. ACM SIGMOD Conf,
1995.

[6] A. Adya, B. Liskov and P. O’Neil, Generalized Isolation Level Defini-
tions, In ICDE, 2000.

[7] A. Adya, Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions, PhD Thesis, 1999.

[8] G. Weikum and G. Vossen, Transactional information systems: theory, al-
gorithms, and the practice of concurrency control and recovery, Morgan
Kaufmann Publishers Inc., 2001

[9] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil and D. Shasha, Making
snapshot isolation serializable, ACM Trans. Database Syst., 2005

[10] S. Jorwekar, A. Fekete, K. Ramamritham and S. Sudarshan, Automating
the detection of snapshot isolation anomalies, Proc. VLDB, 2007

[11] M. Cahill, U. Röhm and A. Fekete, Serializable isolation for snapshot
databases, Proc. ACM SIGMOD, 2008

[12] S. Revilak, P. O’Neil and E. O’Neil, Precisely Serializable Snapshot
Isolation (PSSI), Data Engineering (ICDE), 2011

[13] TPC-C Benchmark Specification, available at http://www.tpc.org/tpcc/.
[14] S. Abiteboul, R. Hull and V. Vianu Foundations of Databases,

Addison-Wesley, 2005

