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Abstract—A wide class of data analytics operations can be
modeled as classical database join operations. In the current
era of data deluge, the explosion in data sizes has led to the
introduction of parallelization as a prominent solution towards
early query termination and attaining high throughput. Unfor-
tunately, parallelization is not sufficient to guarantee systems
with reasonable operational latency. Online algorithms can be
used to reduce latency, at the cost of sacrificing accuracy. Early
approximate results are useful indicators of the “big picture” of
the underlying data and are smoothly refreshed to exact results.
We discuss prior work done towards online aggregation and
statistical estimates. We begin with ripple joins [6]; an online
family of join algorithms that produce running estimates for
the query’s result defined within confidence intervals. Later on,
we describe the DBO system [8] which is designed to overcome
the scalability limitations of ripple joins. To further support
arbitrary join conditions, we analyze an efficient parallel offline
MapReduce algorithm [11] that supports any Θ-join condition.
Finally, we conclude that taming these vast sizes of data requires
an online parallel solution. We discuss the challenges faced in
supporting general join conditions and parallelism in an online
fashion.
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I. INTRODUCTION

DEEP data analytics play an essential role in marketplace
competitiveness, as they represent a cornerstone for

businesses’ prosperity. Sophisticated analysis and data mining
aid decision making in operations management, which in turn
result in cost savings and direct revenues for companies. Joins
are one of the fundamental operations in relational database
but computationally expensive and resources-intensive. Joins
play a great role in data analysis, representing the bulk of the
operations of analysis processing. Furthermore, it was shown
that joins are utilized to support vector and matrix operations,
e.g., matrix addition and multiplication [3]. Provided that these
operations represent the basic building blocks for statistical
analysis, efficiently supporting joins (with arbitrary conditions)
is essential for the feasibility of deep data analysis.

Data analytics target very large sizes of historical data
such as click-streams, software logs, email and discussion
forum archives. This data might be gathered from a plethora
of operational databases or from large-scale experiments and
sensors (e.g. Large Hadron Collider, National Virtual Obser-
vatory) where the data sizes are petabytes or even exabytes.
In response to such data deluge, a prominent solution was to
scale out. MapReduce [4], has emerged as one of the most
popular paradigms for parallel computation. MapReduce has
greatly impacted data management research, e.g., devising
MapReduce join algorithms. Although these algorithms are
parallel and efficient, they were initially rather restrictive in
terms of the supported join conditions that can be queried with.
In [11], Okcan et al. propose a mechanism to evaluate Θ-joins
over MapReduce; a solution that can evaluate queries with
arbitrary join conditions while still exploiting the parallelism,
scalability and fault tolerance of MapReduce.

Batch processing systems, like MapReduce, are optimized
for high throughput in contrast to low latency, thus the user
has to wait until the very end of a query to yield exact
results. Datasets, being too large, typically require hours or
even days to run a query to the end. This is in stark contrast
to the common requirement of low latency imposed by the
industry, where interactivity and quick decision making are
vital. A representative example may be an analyst’s workflow.
An analyst tries to gain preliminary insights at very early
stages. The data is quickly examined for a “rough picture”
by running various queries. Approximate or incomplete results
at this stage usually suffice. Other examples include real-time
applications such as updating Twitter’s back-end systems to
incorporate new tweets or to compute real-time analytics.
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Fig. 1: (a), (b), and (c) represents a series of sampling steps. The
first row depicts online nested loops-join. Whereas the second row
represent a square ripple join. (d) is an example of a rectangular ripple
join, where the value of βR = 2βS . (e) visualizes a block-ripple join
where the blocking factor α = 2.

In conclusion, scalability, interactivity, and low response
time are essential to tame this exponential growth of data sizes
and to support arbitrary joins which are required to facilitate
interactive deep data analytics and efficient large scale compu-
tation. This paper is organized as follows. We first analyze the
work done towards online aggregation and statistical estimates
in sections II and III. Furthermore, we describe an efficient
parallel MapReduce algorithm that supports arbitrary Θ-join
conditions in section IV. Finally, in section V we describe our
research plan, preliminary work towards an online parallel Θ-
join system and our conclusions.

II. RIPPLE JOINS FOR ONLINE AGGREGATION

Traditional offline join algorithms are optimized for mini-
mizing the overall completion time. Its drawback is that the
user has to wait until the very end of the running query
to evaluate an exact final answer. In contrast, online join
algorithms are concerned about another factor namely, latency.
More specifically, to minimize the time until an acceptable
answer is provided for the running query.

A. Introduction

Ripple joins [6] represent an online family of join al-
gorithms. In which the result is a running estimate that is
continuously refreshed until it converges to the final exact
answer.

The estimated proximity of the running aggregate is defined
by confidence intervals generated by tools of statistical esti-
mation theory. Ripple joins generalize the traditional blocking
block-nested-loop and hash-joins to a non-blocking version.
Thus, permitting updates to the running estimate of the final
result. The user can control the update rate. Once set, ripple
joins adaptively change their behavior according to the statis-
tical property of the underlying data.

To use statistical estimation theory, input tuples have to
be processed in random order. Such processing is similar to
simply scanning data clustered randomly on disk. Otherwise, if
data is clustered on a specific column, secondary random index
can be used to support random ordering. Alternatively, one can
scan sample base relations gotten from sampling techniques, as

in [12], during processing time or materialized random relation
samples.

There is a spectrum of join algorithms that rise from the
tradeoff between the rate at which the running confidence
intervals are updated and the degree to which the interval
length decreases at each update. Offline join algorithms lie
at one end of this spectrum. Online nested loops joins were
previously proposed [7] and lie along this spectrum. The
algorithm, as shown in fig. 1, operates as follows: at each
sampling step for a join R 1 S where |R| < |S|, a
random tuple s is sampled from S, then R is scanned to
find all the corresponding tuples that joins with s. At the
end of the sampling step the running estimate is updated.
Although this online algorithm is more interactive than the
traditional offline version, yet, its performance is unacceptable
because a) first, a complete scan of R is required before
the estimate is updated. Thus, if it possess a large size,
delays would be inevitable. b) the algorithm is rather rigid;
as the running estimate depends on aggregate equation and
the statistical properties of the underlying data. Dynamically
adapting to them so as to minimize the approximation error is
beneficial. In contrast, ripple joins cover the entire spectrum
of algorithmic possibilities by varying the running aggregates’
update rate. They are as well, designed to avoid the burden of
complete relation scans and to maximize the flow of statistical
information.

B. Ripple Join Algorithms

In the simplest form, known as the “square” version of
ripple joins R 1 S, one new tuple is sampled from each
of R and S at each sampling step, then joined with all
the previously-seen tuples and with each other. Figure 1
visualizes how this simple ripple join swipes out the join-
matrix R 1 S. As depicted in the animation, tuples are
randomly sampled at the same rate. As previously described, it
is desirable to adaptively vary the sampling rates to maximize
statistical information and minimize the confidence intervals.
This variable sampling rates would result in a “rectangular ”
version of the ripple join.

Definition 1. The general algorithm for ripple joins retrieves
βk new random tuples, where 1 ≤ k ≤ K, from the base
relations R1, R2, . . . , RK at each sampling step.

For example, Figure 1 (d) depicts a “rectangular ” version
of the ripple joins with β1 = 1 and β2 = 2, where the second
relation R retrieves twice as much as the first relation S at
each sampling step. Compared to the simple ”squared” ripple
join, this version requires more I/O for each sampling step,
thus takes more time between updates.

We next describe several variants of the ripple joins family.
The traditional offline nested-loop joins are improved by
reading from the outer relation large “blocks” of pages at a
time. Similarly a block-ripple join can be derived along the
same lines; where a new block of random tuples of R and
S are retrieved and compared against each other and all the
previously seen tuples. Blocking is beneficial as it amortizes
the cost of rescanning one relation to join it with the other,
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op Mean:µ Variance:σ2

COUNT µc =
|R||S|
|Rn||Sn|

∑
(r,s)∈Rn×Sn

expression′(r, s) σ2
s = σ2

c = σ2(R)/αβR + σ2(S)/αβS , where

SUM µs =
|R||S|
|Rn||Sn|

∑
(r,s)∈Rn×Sn

one′(r, s) σ2(R) = 1
|R|

∑
r∈R(µ(r;R)− µ)2

AVG µa =

∑
(r,s)∈Rn×Sn

expression′(r,s)∑
(r,s)∈Rn×Sn

one′(r,s) σ2
a = (σ2

s − 2µρ+ µ2σ2
c )/µ

2
c , where µ = µs

µc

TABLE I: Various mean and variance estimators, Notes: expression′(r, s) and one′(r, s) are equal to expression(r, s) and one(r, s)
respectively if they satisfy the WHERE clause, and 0 otherwise. In case of SUM, for a given r ∈ R, µ(r;R) is defined as the average
of |R||S|expression′(r, s) for all s ∈ S, similarly for µ(s;S). Alternatively, in case of COUNT, µ′(r;R) is defined as the average of
|R||S|one′(r, s) . For AVG estimators, ρ = ρ(R)/αβR+ρ(S)/αβS , where ρ(R) is defined as the covariance of the pairs {µ(r;R), µ′(r;R) :
r ∈ R}, and similarly ρ(S) is defined.

resulting in an I/O savings factor proportional to the block
size.

Another improvement to the traditional nested-loop join is
making use of indexes; when joining R 1 S, and there is
an index on the join attributes of R. Then the Index ripple
join exploits the index to identify tuples from R that join with
the randomly sampled tuple s ∈ S. This saves from much
I/O costs, as full scans of the R relation are not required
anymore. The drawback of such method, is that roles of
“inner” and “outer” relations do no alternate, as each sampling
step corresponds to a complete probe of the index on R.

Finally, we consider the hash ripple join variant. Where two
hash tables are materialized in memory, one for R and another
for S, each of them contains the tuples seen so far. Whenever
a new tuple is retrieved, the hash table corresponding to the
other relation is probed to find potential join results. The
problem with such join is that it only supports equi-joins and
it breaks down whenever memory is not sufficient to cache
both relations.

C. Statistical Considerations

Ripple joins provide running estimates for multi-table
queries in the form of:

Q
ue

ry
Fo

rm
at

SELECT op(expression) FROM R1,R2,R3,..RK
WHERE predicate
GROUP BY columns;

where K ≥ 2, op is an aggregation operator one of
COUNT, SUM, AVG, VARIANCE, or STDEV, expression
is an arithmetic expression that involves attributes of the
base relations R1, R2, R3, . . . , RK , and predicate is a
conjunction of join and selection predicates involving these
attributes.

Without loss of generality, we assume the join between
two relations R and S, i.e., K = 2. The mean µ and
variance σ2 estimators of the various aggregation operations
are summarized in Table I.

To develop tight intervals for the proposed estimators, large
sample confidence intervals are obtained based on the central
limit theorem CLT.

Definition 2. The CLT for iid (independent and identically
distributed) random variables asserts that for large n, the
estimators µn converge to a normal distribution with mean
µ and variance σ2/n.

We consider a standardized random variable Z = (µn −
µ)/(σ/

√
n) yielding a standard normal distribution, i.e. with

R₁ R₂ R₃ R₄ R₅ R₆ R₇ R₈

⋈ ⋈ ⋈ ⋈

⋈ ⋈

⋈

R₁₂ R₃₄ R₅₆ R₇₈

⋈ ⋈

⋈

R₁₂₃₄ R₅₆₇₈

⋈
R₁₂₃₄₅₆₇₈
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First Estimator Second Estimator Third Estimator

Final Result

Levelwise Estimation

(a) (c)(b)

Fig. 2: Levelwise query evaluation. (a) All the bottom-level joins are
evaluated concurrently in the first levelwise step, where an estimator
N1 is evaluated. (b) and (c), the second and third levelwise steps
respectively where N2 and N3 are estimated. (d) The exact final
result is emerged.

mean µ = 0 and variance σ2 = 1. Given p ∈ (0, 1), denote
by zp the z score (unique number) such that area under the
standard normal curve between −zp → zp is equal to p and
such that P{−zp ≤ Z ≤ zp} ≈ p. Substituting with the
previously defined value of Z we get P{µn − εn ≤ µ ≤
µn + εn} ≈ p. Thus the true value of µ lies within ±εn with
an approximate probability of p, where εn = zpσ/

√
n

Ripple joins maximize the flow of statistical information.
It does so by optimizing the values for the aspect ratios
β1, β2, . . . , βK . More specifically they are assigned such that
σ2 =

∑K
k=1

d(k)
αβk

is minimized, more details in [6]

III. SCALABLE APPROXIMATE QUERY PROCESSING WITH
THE DBO ENGINE

DBO [8] is a query processing engine of a prototype
database system. Similar to a traditional database management
system, DBO is capable of evaluating an exact answer for a
query in a scalable fashion. Foremost, it can handle interactive
data exploration by maintaining approximate guesses (with
accuracy guarantees) for the final result at all times. To achieve
this, they introduce a) a redesign of the traditional query
processing engine to promote information sharing amongst the
relational operations. b) a novel scheme for generating join
tuples in a random manner applicable for statistical methods
exploit. c) a generalization to previous analysis [7][6][9] for
different types of queries, and derivation of unbiased estima-
tors for queries over arbitrary number of tables.

A. Introduction
The early work of ripple joins faces scalability problems.

As soon as enough data has been processed that they cannot
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Discovered result tuple during
the scan phase

A run sorted on 
H₁(B)
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Fig. 3: An example of the scan phase. In this example, we assume the join predicate R1.B = R2.C AND R2.E = R3.F AND R3.G = R4.H .
This first levelwise step computes R1 1 R2 and R3 1 R4. In the scan phase a run from each input relation is first read into memory, joined
and checked if for any immediate result tuples. Then the runs are sorted and written back to disk, taking a round-robin fashion.

be stored in main memory, the algorithm is no longer possible
to proceed affectively; as it becomes necessary to page out
one or more records to make room for other new ones and to
page in other records to be checked against the new record.
These I/O operations are random due to the randomness of the
input tables, thus causing severe thrashing. Even the extended
version of hash-ripple joins to a parallel environment [10]
could not provide any statistical guarantees after memory is
overflowed. Their intuition is that usually, the user terminates a
running query early as soon as an accurate answer is provided.
But this is not always the case; available memory buffers may
be consumed after only a few seconds, before the approximate
converges to an acceptably accurate answer. This convergence
might be slow under a variety of conditions including a) if
the join condition has high selectivity, where most of the
buffered tuples contribute nothing to the final result. b) if the
query contains a group-by clause and the group cardinalities
are too many or skewed. c) if the database records or key
values consume much memory, e.g., long character strings.
DBO confronts these challenges and evaluates an approximate
answer with statistical guarantees at all times until it converges
to the exact final result.

B. Overview

The problem with traditional query processing engines is
that relation operators are treated as black boxes. This makes
it impossible to obtain accurate statistical estimates because
intermediate results and internal state are hidden and externally
invisible to the global state of the system. DBO’s execution
engine is quite different, as it exposes information about
relational operators and intermediate results at each single
level of the executing query plan. All operations at a single
level of the query plan “levelwise step” have access to enough
information to compute the final result.

As shown in fig. 2, the DBO engine proceeds by beginning
with evaluating the first levelwise step, where each operator on
this bottom level is executed concurrently. An online estimator

N1 is computed and as time progresses the estimator achieves
more accuracy until it freezes as the step completes. The
resulting intermediate results are used as input to the next
levelwise step. Similarly an estimator N2 is evaluated for this
level at all times. The estimator N2 is combined with N1

to produce an overall single estimate. The same procedure is
applied at each subsequent level until the last levelwise step. At
each levelwise step, an individual join operator is implemented
as a modified version of sort-merge join. This join algorithm
can be described in two phases; a scan phase and a merge
phase.

C. Scan Phase

The scan phase is analogous to the sort phase of a sort-
merge join but with several variations such as a) the immediate
discovery of output tuples by joining subsets of tuples stored in
the memory in a manner similar to the ripple join. These output
tuples are used to generate an estimate for the final result.
b) the randomized order of input data to provide statistical
guarantees for estimators. Since the input of an operator might
be pipelined from the previous one, then the intermediate
output results also have to be random.

The scan phase proceeds as follows:
1) At the beginning of the scan phase, one run from each

relation (or intermediate output) is read into memory and
joined in search for output tuples that are used to obtain
an unbiased approximate for the final result.

2) Then, the run from the first relation is sorted and written
back to disk. Rather than sorting the run over the join
key Ri.Key, it is sorted on the value of H(id,Ri.key),
where H is a hash function and id is an input seed
value to the function. In order to ensure that there is no
correlation amongst the different joins, a different value
for the seed id is used for each join. The randomized
hash function ensures a sort order based on a randomized
lexicographical order that is statistically independent of
the tuples’ attributes. This randomized order facilitates
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Fig. 4: The merge phase of a levelwise step used to compute R12 ←
R1 1 R2 and R34 ← R3 1 R4 where R1.B = R2.C AND R2.E =
R3.F AND R3.G = R4.H . First, the head of each run produced by
the scan phase is read into memory and joined then it proceeds as a
merge-join.

the direct use of output tuples into the next levelwise
step.

3) After the run is sorted and written back to disk, another
set of records is paged into the memory. The choice of
paged-in runs adopts a systematic round robin fashion,
where the second run of the first relation R1 is read in
and joined with all the other tuples in memory. Then the
second run from the second relation R2 and the cycle
begins again. An example is depicted in fig 3.

D. Merge phase

The merge phase is analogous to the merge phase of a
traditional sort-merge join except that all merges are run
concurrently; the head of each run of each input relation
in a levelwise step is brought into memory, and runs of
records from each output relation are produced in a round-
robin manner in order to pipeline them into the scan phase of
the next levelwise step without writing them back to disk. An
example is depicted in fig 4.

E. Statistical Considerations

The previous sections describes at a high level how the join
algorithm proceeds. In this section we investigate how online
estimates are computed in the DBO system. As described
previously, there is an estimator Ni for the query result at
each levelwise step. These estimators are combined at all
times to provide an accurate unbiased statistical estimator for

the final result as N =
∑d+1
i=1 wiNi and variance σ2(N) =∑d+1

i=1 w
2
i σ

2(Ni). In order to minimize the error associated
with the estimator N , we seek to minimize the variance of N
over all possible weights. Using Lagrangian multiplers, we can
minimize σ2 by choosing wi = 1/{σ2(Ni)

∑d+1
j=1

1
σ2(Nj)

}.
Once these values are in hand, it is easy to compute the
confidence bounds using the CLT as previously described in
section II-C.

Given that T (i, j, k) = Rj,i × Rj+1,i × . . . × Rk,i which
represents the cross product of all of the tuples in the ith run
of input relations j through k, after r runs have been processed
from each relation in a single levelwise step the following is
equal to the sum of aggregate function f over all tuples that
have been discovered:

α =

r∑
a=1

[
∑

t∈T (a,1,n)

f(t)]+

r∑
a=2

n−1∑
b=1

[
∑

t∈T (a,1,b)

[
∑

t∈T (a−1,b+1,n)

f(t1.t2)]]

In the first levelwise step N1 an estimator to the final result
is computed by scaling the aggregate α with a scaling factor
β, where β is the ratio of the size of the overall data space to
the number of tuples discovered by the scan phase.

β = |R1×R2×...×Rn|∑r
a=1 |T (a,1,n)|+

∑r
a=2

∑n−1
b=1 |T (a,1,b)||T (a−1,b+1,n)|

The estimation process in the subsequent levelwise steps
differs from the first one for two reasons. First, the interme-
diate output tuples which are produced by the merge phase
are in a semi-random order where tuples with the same
join key are generated all in one group. Second, knowledge
about the cardinalities of the intermediate relations which
are required for the estimation process are unknown apriori.
Because the results of the merge phase in the ith levelwise
step are pipelined to the scan phase of the next (i + 1)th

levelwise step. To handle the first problem, DBO samples
blocks rather than tuples; where a group of tuples that have the
same join key are viewed as a single indivisible output tuple.
Thus any correlation due to grouping is removed. Whereas for
the second challenge, DBO partitions the output space into p
approximately equi-sized ranges of key values. Therefore a
clump of output tuples has a probability of 1/p of falling into
a given run yielding a Bernoulli sampling. Thus an estimate X
produced by a join between the in-memory runs can be scaled
by pn to obtain an unbiased estimate for the eventual query
result. Given there are 1 + (r − 1)n discovered estimates X ,
the overall estimate Ni is computed by scaling the aggregate
α with a scaling factor of

β =
pn

1 + (r − 1)n

For more information about derivations, proofs, and variance
estimation, the interested reader might refer to [8] for more
details.
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IV. PROCESSING Θ-JOINS USING MAPREDUCE

The very large data sizes pose many challenges for data
analysis. To ensure reasonable response time for such analysis,
parallel computation is essential. MapReduce [5] has emerged
as a very popular parallel processing paradigm. Although the
MapReduce paradigm does not directly support joins, there
has been some progress on implementing equi-join algorithms
in MapReduce [1], [2], [13], [14], [15]. Equi-joins are ba-
sically implemented by exploiting MapReduce’s key-equality
based data flow management. Nevertheless, the need for load
balancing and supporting arbitrary complex join conditions
has evolved, e.g., for spatial data, band-joins and spatial-joins
are common. Inequality and similarity joins are important for
correlation analysis as well.

[11] proposes a randomized algorithm, called the 1-Bucket-
Θ, to implement any arbitrary Θ-join on the MapReduce
framework which only requires the minimal statistic of re-
lations cardinality. They also propose algorithms that improve
on 1-Bucket-Θ for a certain class of join conditions as well
as with sufficient required statistics knowledge.

A. Overview of Joins and MapReduce

The standard equi-join implementations on MapReduce all
revolve around the same logic of making the join attribute
the key, to ensure that all tuples with identical join attribute
values are processed altogether in one invocation of the reduce
function. This basic algorithm suffers from two problems.
First, the number of reducers are limited to the number of
distinct values in the join attribute, which implicitly restricts
parallelism. Second, this algorithm has no sense of load
balancing; when the join is applied over skewed data (which
is always the case) some reducers would perform more work
compared to others, having variances in the distributed load
amongst the workers. Thus delaying the completion of the job.

Over and above, it is not clear how to support the different
join conditions. For example consider a join between datasets
R and S with an inequality condition, i.e., R.A ≤ S.A. Such
join, seems to be difficult to be implemented over MapReduce
because each tuple of S not only has to be joined with R
tuples of the same A value but also with those of smaller
values. Nevertheless, this proposed solution suffers from many
drawbacks; a) The join algorithm is dependent upon the data,
as it generates a large number of duplicates relying on the
join attribute values. b) If the attribute A is not an integer, or
can have negative values, it is impossible to enumerate all the
values smaller than a given value S.A.

To support any Θ-join condition and overcome all of the
previously mentioned problems, the authors model a join
between two relations as a join-matrix. Since any Θ-join is
a subset of the cross-product, the matrix can represent any
join condition.

B. The 1-Bucket-Θ Algorithm

Each cell in the join-matrix represents a potential join
output. The idea is to assign each cell to a specific reducer
which is responsible for evaluating the output of this cell, i.e.,

R
S

R
S

R
S

R
S

R
S

R
S

Optimal square region Actual join matrix The optimal join matrix cover

(a)

(b)

(c)

The optimal join matrix cover
The join matrix is not divisible
by the "optimal square region"

The optimal join matrix cover

The join matrix is not 
divisible by the 

"optimal square region"

Fig. 5: Matrix-to-reducer mappings in the various cases. (a) The first
case, where R and S dimensions are multiples of

√
|R||S|/r. (b)

and (c) represent the cases where the join matrix is indivisible by
optimal square region, where in (b) |R| < |S|

r
< |S| and in (c)

|S|
r
< |R| < |S|

yielding either a true or false value. Each cell is assigned to
exactly one reducer so as to avoid expensive post-processing
or duplicate elimination. There can be many possible map-
pings that cover the matrix cell. Hence, the problem can be
formulated as given r reducers, what is the mapping from
the join-matrix M cells to reducers R so as to minimize job
completion time.

To minimize job completion time, we need to minimize
both reducer-input and reducer-output related costs. We say
that a join problem is input-size dominated, if reducer-related
costs dominate job completion time. If reducer-output related
costs dominate job completion time, then the join problem is
termed as output-size dominated. The join problem category
is dependent upon the join condition and algorithm. To reduce
the completion time of output-size dominated and input-size
dominated queries, we need to minimize max-reducer-output
and max-reducer-input respectively.

The 1-Bucket-Θ algorithm is devised to minimize both
output and input based costs as it is based upon the following
lemma.

Lemma IV.1. A reducer that is assigned to c cells of the join
matrix M will receive at least 2

√
c input tuples

1) Cross-Product: In the cross-product case, the following
lemma describes the lower bounds that can be achieved.

Lemma IV.2. In case of the cross-product R × S, given r
reducers, the lower bound for any matrix-to-reducer mapping
to max-reducer-output is |R||S|/r, and to the max-reducer-
input is 2

√
|R||S|/r

These lower bounds can be achieved if the cardinalities
of both |R| and |S| are multiples of

√
|R||S|
r , otherwise the

problem of minimizing max-reducer-input for a given value
of max-reducer-output can be formulated as an integer linear
programming problem which are known to be NP-hard. Thus
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the authors propose a mapping mechanism that is close to
optimal, visualized in fig. 5, and summarized as follows:

1) In case of |R| and |S| are multiples of
√
|R||S|/r, where

|R| = cR
√
|R||S|/r and |S| = cS

√
|R||S|/r for integers

cS , cT > 0. Under these conditions the optimal mapping
would be a join-matrix partitioned into cS by cT squares
of size

√
|R||S|/r by

√
|R||S|/r. Such mapping would

achieve the lower bounds mentioned in the previous
lemma.

2) In case of |R| < |S|
r < |S|, the max-reducer-input is

minimized by partitioning the matrix into a single row of
r rectangles of sizes R by |S|r .

3) In case of |S|r < |R| < |S|, let cR = b|R|/
√
|R||S|/rc,

cS = b|S|/
√
|R||S|/rc. Where cR and cS indicate

how many optimal squares of side length
√
|R||S|/r.

To cover the remaining cells that might have been
not covered by these optimal squares the heights and
widths of these squares are being scaled by a factor
of (1 + 1/min{cR, cS}). This ensures an upper bound
for max-reducer-output is 4|R||S|/r, and a bound of√
|R||S|/r for max-reducer-input.

After having the mapping setup, converting it into a MapRe-
duce program is conceptually straightforward. Whenever a
new R tuple is received, the map function finds all the regions
intersecting the row that represents this tuple in the join-matrix
and generates a pair of region key and the tuple. The same
concept is applied for any incoming S tuple where the map
function similarly finds all the intersecting columns rather than
rows. The problem now only lies on how to identify the exact
row (or column) in the matrix for an incoming R (S) tuple.
As there is no deterministic mechanism for the map function
to know how many row (column) tuples have been processed
before this current one being computed. To overcome this and
guarantee that tuples are assigned to the appropriate rows and
columns, an additional MapReduce preprocessing step is run
that assigns unique row and column numbers for R and S
respectively.

To overcome this additional MapReduce step, a randomized
algorithm is proposed; such that whenever an incoming R (S)
tuple has been received, the map function randomly chooses
a row (column) in the join-matrix M . Affectively, it creates
an output tuple for each region that intersects with this row
(column). Notice that with randomization, there are some rows
and columns that are randomly selected multiple times for
different tuples, others are not chosen at all. But this variation
is very unlikely when the number of tuples being processed
is large.

2) Θ-Joins: Consider an arbitrary join condition with se-
lectivity σ. To minimize max-reducer-output, each reducer has
to affectively produce σ|R||S|/r tuples. Due to the randomiza-
tion effect of the 1-Bucket-Θ algorithm, which assigns random
samples of R and S among the workers, the join output is
averaged out between all the reducers. Thus any algorithm that
might compete with the 1-Bucket-Θ algorithm would perform
better from the perspective of input-related costs.

Lemma IV.3. Given that 0 < δ ≤ 1. Any join-matrix to
reducer mapping that covers at least δ|R||S| of the whole ma-

R
S

R
S

R
S

(a) (b)

(c)

Join Matrices

Histogram Boundaries

Candidate cells
to be discovered 

by algorithm

Fig. 6: (a) represents the actualjoin matrix, where the shaded portions
depict result cells. In (b), histograms are created and neglected regions
are discovered as shown in (c).

trix |R||S|, has a max-reducer-input of at least 2
√
δ|R||S|/r.

Comparing this to the worst case of the 1-Bucket-Θ algorithm

we get 4
√
|R||S|/r

2
√
δ|R||S|/r

= 2√
δ

.

As evident from the previous lemma, we conclude that
unless δ is too small, i.e., very selective join conditions , there
is no other matrix-to-reducer mapping that will result in a
much lower max-reducer-input compared to the 1-Bucket-Θ
algorithm. Nevertheless, in practice it is hard to find such
efficient mapping for various reasons; a) First, more input
statistics, that are beyond the cardinalities of |R| and |S|, ought
to be known to identify regions that need not be covered.
b) Second, the join condition might be an arbitrary user-
defined functions. Thus, to know which regions to bypass
requires a preprocessing stage beforehand, but this defeats the
purpose of the join from the first place. Thus for selective
join conditions, there might be more efficient algorithms than
the 1-Bucket-Θ algorithm, which would neglect many portions
of the join-matrix and not assign them to any reducer. But
in practice it is quite hard to find them due to unavailable
statistics and complex user defined join conditions.

3) Exploiting Statistics: For a popular class of join con-
ditions such as band, inequality, and similarity joins, we can
further exploit statistics to identify regions from within the
join-matrix that do not contain output tuples. This is achieved
by computing an approximate equi-depth histogram on both
relations R and S through two MapReduce jobs. In the first
MapReduce job, n records are sampled from each relation R
and S by outputting a tuple with probability n/|R| or n/|S|
respectively otherwise, discarding it. Then these n records
are sorted by the join attribute and grouped by the reducer
to compute approximate k-quantiles. The second MapReduce
job, passes by each dataset and counts the number of tuples
that fall into each bucket.

Having the approximate equi-depth histogram in hand, now
it is possible to neglect those regions in the join-matrix which
we are confident that no output could extracted from them as
explained in 6.
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V. PRELIMINARY RESULTS AND RESEARCH PROPOSAL

In this section we present a) our research plan in V-A b) our
preliminary results on Online Θ-joins and our current work in
V-B, and c) our conclusions in V-C

A. Future Directions

We have analyzed previous work towards early results and
online aggregation. This work suffers from two limitations;
first the join algorithms are not scalable as parallelization has
become a prominent solution to face the rapid growth of data.
Second, the join algorithms are restricted to equi-joins whereas
sophisticated data analysis requires the support for arbitrary
join conditions. Θ-joins, on the contrary, provide an elegant
solution to process any join condition in a scalable parallel
fashion, but are designed for batch processing systems.

We plan to combine the advantages of both solutions;
the early results (low latency) of online aggregation meth-
ods alongside with the generalization and scalability (high
throughput) of the Θ-joins algorithms. However, designing a
scalable online Θ-join system faces many challenges, some of
which are a) No previous or minimal knowledge of statistics
for relations are known, even the bare minimum requirement
of [11], relation cardinalities. Even if the cardinalities of the
base relations are known, those of intermediate relations (in
multi-level join operations) cannot be anticipated beforehand.
b) Coping with the first challenge by changing the matrix-to-
reduce-mapping during execution gives rise to another chal-
lenge, namely, designing a dynamic model to efficiently use
the available resources to decide and execute these changes.
c) Data arrival rates suffer from data bursts or fluctuations. The
right balance of “stability” has to be found. A very unstable
system has excessive decision overheads while a too rigid
system does not adapt well to the data dynamics. d) It is not
clear yet how to support statistical guarantees and confidence
intervals in such a parallel system.

B. CYCLONE: Online Θ-joins

We confront the first three challenges by introducing a
dynamic model for on-the-fly relation statistics, a simple,
effective and efficient extension to the Θ-joins algorithm to
operate in a fully online manner. The model is used to predict
quantities used in the join algorithm and is designed to adapt
to data fluctuations. This is principally used to predict relation
cardinalities.

Furthermore, the model decides for assignment changes and
dynamically adapts to highly utilize the given resources. As
the choice of an efficient matrix-to-reducer mapping results in
better data distribution, less redundant tuples, less communi-
cation cost, and an overall better utilization of memory and
storage.

We evaluate our model, over which we built CYCLONE,
a parallel online processing system prototype for Θ-joins.
Our preliminary experimental results show that CYCLONE
efficiently utilizes resources and is able to dynamically adapt
to fluctuations in data arrival rates. Most importantly, it is
optimized to achieve high throughput by scaling out, and
acquire low latencies in producing early online results.

C. Conclusions

High throughput and low latency in providing early results
are essential to tame the explosive growth of data in analytical
workloads. We showed how online aggregation provides early
approximate results with statistical guarantees. Furthermore,
we examined how arbitrary Θ-joins can be supported using the
scalable MapReduce framework. Then, to achieve the best of
both worlds, we analyze the challenges facing the combination
of both solutions. Finally, we briefly discuss our preliminary
work and early results.
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