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Using cellular automata and gradients to control self-reconfiguration
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Abstract

Self-reconfigurable robots are built from modules, which are autonomously able to change the way they are connected. Such a robot can,
through this self-reconfiguration process, change its shape. The process has proved to be difficult to control, because it involves control of a
distributed system of mechanically coupled modules connected in time-varying ways. In this paper we present an approach to the control problem
where the desired configuration is grown from an initial seed module. Seeds produce growth by creating a gradient in the system, using local
communication, which spare modules descend to locate the seed. The growth is guided by a cellular automaton, which is automatically generated
on the basis of a three-dimensional CAD model or a mathematical description of the desired configuration. The approach is evaluated in simulation
and we find that the self-reconfiguration process always converges and the time to complete a configuration scales approximately linearly with the
number of modules. However, an open question is how the simulation results transfer to a physically realized self-reconfigurable robot.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Reconfigurable robots are robots built from modules. These
robots can be reconfigured by changing the way these modules
are connected. If a robot is able to change the way the modules
are connected autonomously, the robot is a self-reconfigurable
robot.

Self-reconfigurable robots are versatile because they can
adapt their shape to fit the task. Self-reconfigurable robots
are also robust because, if a module fails, it can be ejected
from the system and be replaced by a spare module. Potential
applications for such robots include search and rescue missions,
planetary exploration, building and maintaining structures in
space, and entertainment. In order to realize these applications,
research has to focus both on the development of the hardware
of self-reconfigurable robots and on their control. The latter is
the focus of this paper.

One of the fundamental control problems of self-
reconfigurable robots is control of the self-reconfiguration
process: the process by which the robot changes from one
shape to another. An example of a self-reconfiguration process
is shown in Fig. 1, where a simulated self-reconfigurable
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robot reconfigures from a random initial configuration to a
configuration resembling a chair.

The method proposed here consists of two steps. In the
first step a three-dimensional (3D) CAD model, representing
the desired configuration, is transformed into a cellular
automaton representation. The desired configuration and the
corresponding cellular automaton is made porous to ensure
that it does not contain local minima, hollow, or solid sub-
configurations which can trap spare modules.

The second step is the actual self-reconfiguration process.
The desired configuration is grown from a seed using the
cellular automaton to guide the growth process. If a cellular
automaton rule indicates that a neighbouring module is needed
at an unfilled position, a gradient is created in the system using
local communication. Spare modules then descend this gradient
to reach the unfilled position. A local, distributed algorithm is
also implemented to ensure that the self-reconfigurable robot
stays connected during the self-reconfiguration process.

The solution to the self-reconfiguration problem presented
here is a new combination of existing ideas. The combination
we present provides a scalable, systematic, and convergent
solution to the self-reconfiguration problem.

The paper proceeds as follows. In Section 2, the related
work is described. In Section 3, we describe the algorithm we
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Fig. 1. This figure shows a simulated self-reconfigurable robot transforming from an initial random configuration to a configuration resembling a chair.
use to transform the 3D CAD model into a cellular automaton
representation. Section 4 describes how the cellular automaton
interacts with the other components of the system to realize the
self-reconfiguration algorithm. Finally, in Section 6, the system
is evaluated using a simulated self-reconfigurable robot where
scalability and convergence properties are documented.

2. Related work

The self-reconfiguration problem is: given a start configura-
tion, possibly a random one, how to move the modules in order
to arrive at the desired final configuration. It is computationally
intractable to find the optimal solution (see [1] for a discussion).
Therefore, self-reconfiguration planning and control are open to
heuristic-based methods.

Chirikjian, Pamecha, and Chiang propose iterative improve-
ment as a way around the computational explosion [1–3]. The
idea is to find a suboptimal sequence of moves which leads
from the initial configuration to the final configuration. This
suboptimal sequence of moves can then be optimized using
local searches. Rus et al. simplify the planning problem by us-
ing a specific intermediate chain configuration, which is easy to
configure into and out of [4]. Kotay, Unsal, and Prevas propose
a hierarchical planner [5–7]. At the highest level, some of the
motion constraints of the underlying hardware are abstracted
away to facilitate efficient planning. Based on these high-level
plans, the lower level then produces the detailed sequence of
actions. Another approach, suggested by Kotay [5], is to use
meta-modules consisting of a small number of modules. The
idea is that, by planning at the meta-module level, there are no
or few motion constraints. This makes the planning tractable.
On the other hand, meta-modules consist of several modules,
making the granularity of the robot larger. A related approach
is to make sure that the robot maintains a uniform scaffolding
structure, facilitating planning [8].

Butler implemented the distributed Pacman algorithm on
the Crystalline robot [9]. The Pacman algorithm was improved
and implemented on the Telecubes by Vassilvitskii [10]. These
two robots have few motion constraints, making the planning
problem easier.

The approaches reviewed so far are deterministic and
planning-based. The following approaches are not deterministic
but are much simpler, because a planning process is not needed.
In early work, the idea was to use local rules as far as possible
and then add randomness to deal with the problems that could
not be solved by using local rules. This is, for instance, true
for the work on Fracta [11,12] and also later work on other
robots [13,14]. The problem tended to be that, even though the
robot often ended up in the desired configuration, it was not
always so. We refer to this as the problem of convergence. This
problem was also present in the work of Yim et al. [15,16].
However, the chance of reaching the final configuration was
higher in this work, because local communication was used to
get some idea about the global shape at the local level.

There are two solutions to the problem of convergence.
One solution, proposed by Bojinov et al. [17,18], is not to
focus on a specific configuration. Instead, the idea is to build
something with the right functionality. Using this approach it is
acceptable if a few modules are stuck as long as the structure
maintains its functionality. Alternatively, Jones et al. insist on a
specific configuration, but achieve convergence by enforcing a
specific sequence of construction [19]. In the work presented
here, we make the configuration porous and thereby remove
local minima, hollow, or solid sub-configurations, guaranteeing
convergence.

In the work presented here, we use 3D cellular
automata (CA). Cellular automata were introduced by Von
Neumann [20], and were introduced in the context of self-
reconfigurable robots by Butler et al. [21]. In their work, cellu-
lar automaton rules are used to control locomotion both in fixed
configurations and in cluster-flow locomotion. In our work we
use 3D cellular automata to represent configurations.

3. Cellular automaton generator

It is difficult to hand-code local rules, which result in a
desired configuration being assembled. Therefore, we need
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Fig. 2. A CAD model of a cube has been approximated with a configuration of 125 cubic modules (left). The configuration is made porous by removing modules
that can cause local minima, create hollow, or solid sub-configurations (middle). This is achieved by enforcing a specific sub-structure on the configuration (right).
a systematic and automatic way of transforming a human-
understandable description of a desired configuration into the
local rules, which we will use for control. In our system,
the desired configuration is specified using a connected three-
dimensional volume in the Wavefront.obj file format. Most
CAD programs can export in this format and can therefore be
used to specify the desired configuration.

The three-dimensional model is transformed into a cellular
automaton, which represents relationships between neighbour
modules in the desired configuration. The algorithm that
transforms the three-dimensional CAD model, representing the
desired configuration, to a cellular automaton works as follows.

(1) The CAD model is approximated with a connected
configuration of modules: the user places the first module
inside the volume of the CAD model then neighbour
positions are added recursively until the surface of the CAD
model is reached.

(2) Modules are removed from the configuration to avoid
configurations with local minima, hollow, or solid sub-
configurations. A simple way of achieving this is to enforce
a specific sub-structure on the configuration that guarantees
these properties (see Fig. 2).

(3) Each module i in the configuration is assigned a unique
number s(i).

(4) For each neighbouring pair of modules i, j , a rule is
generated. This rule is of the form: if the CA of the module
in direction

−→
i j is in state s( j) then this CA should change

to state s(i).
(5) The final cellular automaton contains the set of CA rules

and starts in an initial state, called wandering, which is
distinct from any s(i) value.

The introduction of the sub-structure makes the configura-
tion porous and thereby simplifies the reconfiguration prob-
lem, because it can be assumed that the configuration does not
contain local minima, hollow, or solid sub-configurations. This
simplification means that the system is convergent by design.

The self-reconfigurable robot can be thought of as
simulating an infinite three-dimensional lattice of identical
cellular automata, because wandering modules move into
positions where a state change is needed. The use of cellular
automata here is unusual, since modules only change state
once: from wandering to the state of their final position in the
configuration. However, in scenarios where the system goes
through a sequence of configurations to achieve locomotion, the
full functionality of cellular automata can be used.
4. From cellular automaton to desired configuration

Starting from a random configuration, the robot needs
to reconfigure into the desired configuration specified by
the CA. The self-reconfiguration algorithm consists of three
components: a state propagation mechanism; a mechanism to
create gradients in the system; and a mechanism the modules
use to move without getting disconnected from the structure.
We will look at these in turn.

4.1. State propagation

All the modules are initially connected in a random
configuration, have a copy of the cellular automaton, and start
in the wandering state. An arbitrary module is given a state
number chosen randomly from the set of states s(i) allocated
by the CA generator. The idea is to grow the configuration
from this seed module. The neighbouring modules connected
to the seed change state according to the cellular automaton
rules. The seed module can detect whether a neighbour is
missing using sensors and the cellular automaton rules. If this
is the case, the seed attracts a wandering module to the unfilled
position. When a module has reached an unfilled position and
has changed state, it also acts as a seed. Such modules are said
to be finalized. A module stops acting as a seed when all the
neighbour relationships, described by the cellular automaton
rules, are satisfied.

4.2. Creating a gradient using local communication

Seed modules attract wandering modules by creating a
gradient in the system that the wandering modules descend.
The gradient is created as follows: a seed module acts as a
source and sends out zero, representing the concentration of an
artificial chemical, to all its neighbours. A non-source module
calculates the concentration of the artificial chemical at its
position by taking the minimum received value and adding one.
This concentration is then propagated to all neighbours, and so
on. A module that has not received a concentration value is
defined to be uninitialized and one that has to be initialized.
Note that, since we assume that the configuration is porous,
wandering modules can descend the gradient of concentrations
to locate the source without getting trapped.

If wandering modules have to rely on the basic concentration
gradient to locate the source, they have to move around
randomly for a while to detect the direction of the gradient.
In order to avoid this, we introduce a gradient vector that
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makes the direction of the gradient available locally and
thereby eliminates unnecessary moves. The basic gradient
implementation is extended with a vector indicating the local
direction of the gradient. This vector is updated by taking the
vector from the neighbour with the maximum concentration,
adding a unit vector in the direction of this neighbour, and
renormalizing the result.

4.3. Descending the vector gradient

Wandering modules descend the vector gradient to reach
unfilled positions. Unfortunately, the wandering modules
cannot move independently of each other, because they depend
on each other for connection to the robot. The problem is
then to keep the system connected while allowing wandering
modules to move. Modules or groups of modules, which get
disconnected, will fall down and may be damaged or unable to
reconnect. Yim et al. [16] assume that each module has a sensor
that can detect whether it is about to disconnect a group of
modules. We think it may be hard to realize this sensor and have
therefore developed an algorithmic solution to this problem.

The assumption of the algorithm is that all modules that
are finalized are connected, because of the way the state
propagation mechanism works. These modules act as sources
for a new connection gradient. Wandering modules use this
connection gradient to make sure that they can move without
disconnecting themselves and other wandering modules from
the structure.

Theorem 1. The self-reconfigurable robot stays connected pro-
vided that a module only moves if: (1) the connection gradient
is initialized in the module and its neighbours; (2) moving it
does not change the concentration of the connection gradient
in neighbouring modules; (3) it is not a source. It is further as-
sumed that, if a module moves, its connection gradient is set to
uninitialized.

The proof is by induction. Basis: given that there is one
source, we need to show that the system stays connected. A
module in the system can be in four situations.

(1) The module is the source. Due to condition 3, it cannot
move and the system stays connected.

(2) A module or some of its neighbours are uninitialized.
This can happen if the gradient has not been propagated
yet. Due to condition 1, it cannot move and the system stays
connected.

(3) One of the neighbouring modules’ concentration will
change if the module moves. This means that the
concentration of one of the neighbours is higher than the
module’s concentration. This implies that the neighbour’s
shortest path to a source goes through the module. This,
again, implies that the neighbouring module depends on
the module for connection. Therefore, and due to condition
2, the module cannot move and therefore the system stays
connected.

(4) None of the neighbour modules’ concentration will
change if the module moves. If moving a module does
not change the concentration of its neighbouring modules,
this implies that they have a concentration that is lower
or equal to the one moving. This, again, implies that the
neighbouring modules either are closer to the source or have
an alternative path to the source. Therefore, the system will
stay connected when the module moves.

Induction: we assume that the theorem holds for n sources
and want to show that it holds for n+1 sources. Adding a source
will cause the modules of the system to fall into three cases.

(1) The module is a source. This module cannot move due to
condition 3,and therefore the system stays connected.

(2) The concentration from the new source has not been
propagated to the module. This can happen when the
concentration from the new source has not yet reached the
module. In both cases, the situation is as it was for a system
with n modules and, by assumption, we know this case
holds.

(3) The concentration from the new source has been
propagated to the module. In this case the module will,
because of condition 2, only move if all neighbouring
modules have an alternative path to either the new source
or the old sources, and therefore the system will stay
connected.

It is possible for more modules to move than this invariant
allows, but this invariant represents a trade-off between keeping
the system connected and avoiding deadlocks. The distributed
nature of the invariant is important, because wandering modules
can locally, by inspecting the concentration of the connection
gradient of their neighbours, decide if they can move without
causing the system to be disconnected. This means that a large
fraction of wandering modules can move in any given time step
and thus significantly reduce the overall time to reconfigure.
Note that Theorem 1 does not hold if sources can be removed.
Therefore, finalized modules in our system keep acting as
sources for the connection gradient.

5. Simulated system

In our simulation, we use modules that are more powerful
than any existing hardware platforms, but do fall within the
definition of a Proteo module put forward by Yim et al. [16].

The modules are cubic and, when connected, form a lattice
structure. They have six hermaphrodite connectors and can
connect to six other modules in the directions: east, west,
north, south, up, and down. Modules directly connected to a
module are referred to as neighbours. A module can sense
whether there are modules in neighbouring lattice cells. In
this implementation, we do not control the actuator of the
connection mechanism, but assume that neighbouring modules
are connected and disconnected appropriately. A module can
only communicate with its neighbours. It is able to rotate
around neighbours and to slide along the surface of a layer
of modules. Finally, we assume that direction vectors can be
uniquely transformed from the coordinate system of a module
to the coordinate systems of its neighbours. This is necessary
to propagate the gradient vector and use the cellular automaton
rules.
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Fig. 3. This figure shows how the number of time steps (left) and moves (right) needed to reconfigure depends on the configuration and the number of modules.
The theoretical lower bound on the number of moves is also shown.
The simulator is programmed in Java3D. The simulation
uses time steps. In each time step, all the modules are picked in
a random sequence and are allowed: (1) to process the messages
they have received since the last time step; (2) to send messages
to neighbours (but not wait for reply); and (3) to move, if
possible. Note that this implies that it can take many time steps
for gradients to be propagated in the system.

In order for a module to move, it has to satisfy the motion
constraints of the system. This means that, in order to move to a
new position, the new position has to be free. If using the rotate
primitive, the position that the module has to rotate through to
get to the new position has to be free as well. This is all assumed
to be sensed locally. A less idealistic module will of course have
more motion constraints. However, the working hypothesis is
that, by designing a porous sub-structure suited to this specific
module, some of the motion constraints may be ignored.
This may make it possible to implement a variant of our
algorithm.

In our implementation the problem of two modules moving
into the same cell at the same time is not addressed because, in
the simulation, only one module is allowed to move at a time.
However, in a real parallel-running system, this problem has to
be addressed.

6. Experiments

We pick two self-reconfiguration tasks taken from [16]. The
two tasks are to reconfigure from a rectangular plane to a disk
orthogonal to that plane and to a sphere. The rules for these
configurations are automatically generated using the cellular
automaton generator based on a mathematical description of
a sphere and a disk. This automaton is then downloaded into
the modules of the simulation and the assembly process is
started.

We repeated the experiments twenty times with changing
numbers of modules. For each experiment we recorded the time
steps needed and the total number of moves, and calculated
the theoretical lower bound on the required number of moves.
The lower bound is the minimum number of moves needed
to reconfigure from the initial configuration to the final
configuration, assuming that interference with other modules
can be ignored [22]. The time steps needed to reconfigure grow
approximately linearly with the number of modules (see Fig. 3),
which is comparable to the results reported by Yim et al. [16].
Fig. 3 shows that the number of moves grows more than linearly
with the number of modules. However, this is also true for the
theoretical lower bound.

In all experiments the system converges to the desired
configuration, which supports the claim that the system is
convergent by design.

The number of moves and the time to complete a
reconfiguration are important characteristics of an algorithm.
However, another aspect is the amount of communication
needed. This information is summarized in Fig. 4. The
system relies heavily on communication, and in one case
1.5 messages are sent on average per module per time step.
These messages originate from propagating two changing
gradients, propagating state information, and negotiations
between neighbours for mutual exclusion and thereby the
right to move. We can see that the number of messages
depends on the number of modules, and also on the number
of moves and time steps. This is indicated by the fact that the
reconfiguration into the disk configuration uses significantly
more messages than the reconfiguration into the sphere
configuration, even though the two configurations contain
approximately the same number of modules. In our current
implementation, little is done to minimize the number of
messages, so there is room to improve the performance. The
trade-off is efficiency versus simplicity. If we minimize the
number of messages, the complexity of the algorithm will
increase. One thing worth noting is that, if the modules do not
have to prevent disconnection from the structure, the attraction
and state messages are the only ones needed, reducing the
communication load significantly.

7. Conclusion and future work

We have presented the cellular automaton generator
which takes as input a 3D CAD model of a desired
configuration and outputs a cellular automaton that represents
this configuration. A specific sub-structure is enforced on
the desired configuration, making it porous. This reduces the
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Fig. 4. This figure shows the amount of communication as a function of the number of modules for the disk (left) and sphere (right) configuration. The
communication for the attraction and connection gradients is shown. The number of messages needed to keep the system connected, in addition to the messages
needed to propagate the connection gradient, is also shown (move). The messages needed to propagate state information are also shown (state). Finally, the total
number of messages is shown (total).
complexity of the self-reconfiguration problem, guarantees
convergence, and improves the efficiency of the self-
reconfiguration algorithm. The efficiency is further improved
by using gradients to guide the self-reconfiguration process.
Finally, we have presented a way to keep the system connected
that is based only on local information and therefore allows for
a high degree of parallelism in the system.

Overall, the system represents an interesting and novel
solution to the self-reconfiguration problem, based on a
combination of existing ideas, which is efficient, systematic,
and convergent. However, an important question is to what
degree these ideas transfer to a physically realized self-
reconfigurable robot, and this will be the focus of our future
research.
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