o

Tutorials and Reviews

International Journal of Bifurcation and Chaos, Vol. 1, No. 3 (1991) 493-520

© World Scientific Publishing Company

NUMERICAL ANALYSIS AND CONTROL
OF BIFURCATION PROBLEMS
(I) BIFURCATION IN FINITE DIMENSIONS

EUSEBIUS DOEDEL
Department of Computer Science, Concordia University
1455 Boulevard de Maisonneuve O. Montréal, Québec, H3G IM8, Canada

HERBERT B. KELLER
Applied Mathematics 217-50, California Institute of Technology, Pasadena, California,
91125, USA

JEAN PIERRE KERNEVEZ
Mathématiques Appliquées, Université de Technologie de Compiégne, B.P. 233,
60206 Compiégne, France

Received May 20 1991

A number of basic algorithms for the numerical analysis and control of bifurcation phenomena are described. The
emphasis is on algorithms based on pseudoarclength continuation for algebraic equations. Several illustrative examples
computed with the AUTO software package are included. Part II of this paper deals with ordinary differential equations

and will appear in the next issue.

1. Introduction and Examples

1.1.

This paper covers the contents of a one-semester graduate
course given by Doedel at the University of Utah,
at the University of Minnesota, and at Concordia
University during the period 1987-1990. It is aimed at
scientists and engineers who have a need for numerical
techniques in the analysis of bifurcation problems that
arise in their work.

The material mainly addresses numerical continuation
and bifurcation techniques for nonlinear equations in
the form of algebraic systems and ordinary differential
equations. For the latter we consider only the boundary-
value problem. However, as will be shown, this includes
phenomena of interest in initial-value problems, for
example, periodic solutions and homoclinic and hetero-
clinic orbits. Throughout, the fundamental tool is pseudo-
arclength continuation which was introduced by Keller
in 1977. For a closely related introductory account we
refer to the Tata Institute Lecture Notes of Keller
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(19871, from which much of Sec. 2 of this paper was
derived.

A considerable amount of original material is contained
in this paper, especially in the sections on optimization
and control of bifurcation problems. This material is
the result of cooperation of Doedel and Kernévez on
using Keller’s continuation techniques in optimization
and control problems. The presentation here mainly
addresses optimization, but the techniques are ultimately
aimed at controlling bifurcation phenomena. Work on
the latter is in progress.

Most projects carried out by participants in the
course on which this paper is based made use of the
software package AUTO. The numerical examples in
this paper were also computed using this package.
However, this paper does not specifically deal with the
software, which is fully described in Doedel & Kernévez,
[1986]. The emphasis here is on stable and efficient
implementation of basic numerical continuation and
bifurcation techniques, whereas in AUTO, efficiency has
in some cases been sacrificed for the sake of generality
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and ease of programming. Furthermore, several algo-
rithms described here have not been fully integrated
in the software, although they can be defined by the
user. This applies, in particular, to the optimization and
control algorithms, and to the method for computing
general heteroclinic connections. These shortcomings
should be addressed at some time, and this paper describes
some of the ground work for such a more efficient, robust
and powerful package.

The software package AUTO was developed by Doedel
in 1979 [Doedel, 1981]. The current version, AUTO86
[Doedel & Kernévez, 1986}, is available from the Applied
Mathematics Department at the California Institute of
Technology and from the Computer Science Department
at Concordia University. The package has been useful
in several areas of research, and in some cases it has
been integrated into a larger collection of software tools
for investigating bifurcation phenomena. Also, many
improvements have been suggested and sometimes these
have been fully implemented elsewhere. In particular,
Taylor and Kevrekidis (Chemical Engineering, Cornell
University) have developed an interactive version for
the Silicon Graphics Iris [Taylor & Kevrekidis, 1990}, and
Fairgrieve and Jepson (Computer Science, University
of Toronto) have developed a significantly improved
algorithm for computing the Floquet multipliers for
periodic solutions [Fairgrieve et al., to appear].

It is not our purpose here to provide a review of the
literature on numerical continuation and bifurcation
techniques, and our reference list is admittedly limited
and one-sided. Texts in which these techniques play an
important role include the books of Rheinboldt [1986],
Kubitek and Marek [1983], and Seydel [1988]. See also
the review paper on numerical methods for dynamical
systems by Beyn [1990] for related references. An intro-
duction to continuation methods can be found in the
tutorial paper by Seydel [1991].

1.2. A Two-compartment enzyme model

In this and the following subsection we discuss in some
detail a numerical analysis of two simple equations that
arise in modeling biochemical reactions. The objectives
are (i) to introduce and illustrate some bifurcation
phenomena, (ii) to demonstrate the use of numerical
techniques in the analysis of bifurcation problems, (iii)
to mention some specific continuation methods to be
covered in more detail later, and (iv) to mention some
control objectives.

The equations describing both models are of the
form

u' (@) = fWw,N), u(-), f(-,-) €R", MR, t >0 . (1.1)

First consider a one-substrate, enzyme-catalyzed re-
action that takes place inside each of two identical
compartments. These compartments are separated from
each other by a membrane across which the substrate
can diffuse. The compartments can also communicate
through similar membranes with an outside reservoir.
The enzyme (E) is present only inside the compartments,
so that the reaction only takes place there. Schematically
this system can be represented as indicated below.

S0 So + p

Sl,EI

S2,E|

Here s; and s, are the concentrations of the substrate
S inside compartment 1 and 2 respectively, so is the
constant concentration of S external to compartment 1.
The concentration of S external to compartment 2 is
so + p, where p can be thought of as a perturbation.
A simple mathematical model of this situation is
given by the following equations [Kernévez, 1980]

s{ = (so — s1) + (52 — s1) — pR(s1), @2
S5 = (So + 1 — 52) + (51 — 52) — pR(s2) '

We assume that the reaction rate is inhibited by an
excess of substrate. More precisely, we take the reaction
term to be

K

RS:__—_.
© 1 + 5 + ks?

The parameter p in (1.2) is proportional to the char-
acteristic diffusion time of § across the membrane
and the compartment volume. It is inversely proportional
to the volume of the membrane and the Michaelis
constant.

Stationary behavior

We will determine the stationary solutions of (1.2),
i.e., the solution structure of the algebraic system

(S0 — 81) + (52 — 51) — pR(s1) = 0,

(1.3)
(So + p — 52) + (51 — 82) — pR(s2)

In (1.3) we take p = 100 and x = 1. Thus there are
two control parameters left, viz., so and u. First con-
sider the unperturbed case where p = 0. A bifurcation
diagram (or response diagram) for this case with sg
as bifurcation parameter is given in Fig. 1.1. As vertical
axis we have chosen s3. The curves in the diagram then
represent branches (or one-dimensional continua) of
solutions to (1.3). Solid and dashed curves represent
stable and unstable stationary solutions respectively.



Recall that a solution ug of (1.1) at A = \g is called
(asymptotically) stable if all eigenvalues of f,(ug, N\o)
lie in the negative half plane, and unstable if there is an
eigenvalue with positive real part. Stable solutions are
locally attracting.

Note that there are multiple stable solutions for certain
ranges of the control parameter 5o . The upper and lower
part of the primary S-shaped branch consist of stable
solutions. Solutions along this primary branch are
symmetric, i.e., s = s = s along this branch. Thus
these steady states are simply solutions of

(5o + 8) — pR(s) =0 .

The secondary branch, which intersects the primary
branch at two bifurcation points, consists of asymmetric
solutions, i.e., s; # s2, except at the bifurcation points.
Note that the secondary branch has two portions that
consist of stable solutions. Thus here we have four dif-
ferent coexisting stable solutions: Two different sym-
metric states and two asymmetric states. The two asym-
metric states are related. Indeed, if (sq, s3) is a solution
couple of (1.3) with p = 0 then so is (s2, s1). This also
enables us to read both the steady-state values of s;
and of s, from Fig. 1.1.

Singular points

Two types of singular points appear in Fig. 1.1, namely
Solds (or limit points) where a branch turns back, and
bifurcation points, where two distinct branches intersect.

15.051 S2

12.58]

10. QY

30

Fig. 1.1. Bifurcation diagram for Eq. (1.3) with 4 =0, p =100, «=1.
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The two bifurcation points have been marked by open
square symbols. Bifurcation points are in a sense ex-
ceptional (not ‘generic’), in that they do not ’normally’
appear in a one-parameter analysis. But our problem
is itself exceptional because of the symmetry noted above.
Indeed, we will see below that these bifurcations do not
persist when the symmetry is broken by letting u be
nonzero.

Perturbation

We now determine how the perfect diagram Fig. 1.1
changes when we introduce a nonzero perturbation u
in (1.3). This can be answered by numerically tracing out
folds in the two parameters sg and x. In Fig. 1.1 there are
two folds on the primary branch that can be continued,
and another four on the secondary branch. Moreover the
two bifurcations also give rise to folds when px becomes
nonzero. The resulting curves of folds are shown in
Fig. 1.2. Note the presence of the cusp near g = 3.6,
so = 25. This cusp is obtained by continuation of the
folds that border the stable asymmetric solutions on the
secondary branch in Fig. 1.1. Actually there are two such
stable regions and correspondingly there are two cusps.
The second cusp is not indicated in Fig. 1.2.
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Fig. 1.2. Curves of folds for Eq. (1.3) with p=100, k=1.

The information contained in Fig. 1.2 can be best
illustrated by taking a few more horizontal cross sections
in this diagram. The unperturbed diagram of Fig. 1.1
corresponds to the cross section at x = 0 in Fig. 1.2.
Some perturbed diagrams are shown in Figs. 1.3 to 1.6.
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Fig. 1.3. Concentration in compartment 1 versus bifurcation parameter

so for Eq. (1.3) with p=1.0, p=100, xk=1.
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Fig. 1.4. Concentration in compartment 2 versus bifurcation parameter

so for Eq. (1.3) with p=1.0, p=100, «=1.
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Fig. 1.5. Concentration in compartment 1 versus bifurcation parameter

so for Eq. (1.3) with p=5.0, p=100, x=1.
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Fig. 1.6. Concentration in compartment 2 versus bifurcation parameter

sg for Eq. (1.3) with x=5.0, p=100, «=1.




Numerical aspects

The main numerical algorithms used in the analysis of
the two-compartment model above are (i) the continua-
tion of solutions, including continuation past folds, (ii)
the detection of folds and bifurcation points, (iii) branch
switching at bifurcation points, and (iv) the continuation
of folds in two parameters. These numerical techniques
are described in some detail in this paper.

We shall also consider certain algorithms for opti-
mization and control based on numerical continuation.
These are useful when one wants to optimize a functional
in a system possessing multiple solutions, as is the case
in the example above. Other possible applications of
practical importance include the control of folds and the
control of stability regions.

1.3 A One-Compartment
Activator-Inhibitor Model

A simple one-compartment activator-inhibitor model is
given by the following system of ordinary differential
equations [Kernévez, 1980]:

g = (0 - 5) — oR(s, @) ,

d (1.4)
2~ w@ - @ - pREs, ) ,

dt

where s and a denote the concentrations of the two
chemical species S and A inside the compartment. Here
S stands for substrate and A for activator, though both
are substrates in a reaction where they are consumed. This
reaction is catalyzed by an enzyme with reaction rate
proportional to

sa

— k>0
145+ ks?

R(s, a) = (1.5)

It is evident from the form of R(s, @) in (1.5) that S
inhibits the reaction when its concentration is high. The
parameter p is a ratio of characteristic times, o = 81/6r
where 61 is the characteristic time of diffusion of S
from the outside reservoir into the compartment, and 6y
is the characteristic time of the enzyme reaction. The
terms (so — s) and a(@o — a) describe the transport from
the outside reservoir where the concentrations are held
at a constant so and ag. The parameter o represents the
ratio of diffusion coefficients between the reservoir and
the compartment. The parameters sg, @9, p, o, and « are
all dimensionless and positive, as are the state variables
s and a. We take s9 = 100, a¢gp = 500, « = 0.2, and
k = 0.1. Schematically we have the following situation:
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The bifurcation behavior as p varies is shown
schematically in the bifurcation diagram of Fig. 1.7. There
are now also periodic solutions. The horizontal axis is the
bifurcation parameter p, and the vertical axis is the
maximum of s. That is, for stationary solutions we plot
s, and for periodic solutions we plot maxo, 77 §(¢), where
T denotes period.

There are two Hopf bifurcations indicated by solid
squares. If we increase the bifurcation parameter p then
at the left Hopf bifurcation two complex eigenvalues
of f, (evaluated at the stationary solution) move into
the right half of the complex plane. Thus solutions along
the stationary branch become unstable at this point.
At the right Hopf bifurcation the eigenvalues move back
into the left half-plane and solutions along the branch
of stationary solutions regain stability. According to
the well-known Hopf bifurcation theorem a branch of
periodic solutions of locally small amplitude emanates
from these bifurcation points.

Figure 1.7 also shows the large-amplitude periodic
solutions. The solid dots denote stable periodic solutions,
and the open circles represent unstable periodic solutions.
In particular, we see that the branches that bifurcate from
the two Hopf bifurcation points actually connect. From
Fig. 1.7 we can deduce the dynamical behavior of (1.4)
as p is slowly varied. When p is increased past the
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Fig. 1.7. Bifurcation diagram for the one-compartment model (1.4),
(1.5) with 50 =100, ap=7500, a=0.2, k=0.1
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first Hopf bifurcation the system will jump to a large-
amplitude oscillation. Oscillatory behavior will persist
until the second Hopf bifurcation point is passed,
after which the system will assume a steady state. Now
decreasing p will produce similar behavior in reverse,
except that the jump from oscillatory behavior back to
stationary behavior will take place at a lower p-value
because of the fold on the branch of periodic solutions.
The orbit at the fold, labeled 5 in Fig. 1.7, is shown in
Fig. 1.8. The period of the oscillations along the branch
of periodic solutions is given in Fig. 1.9,

175 ]
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100
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S

Fig. 1.8. The orbit at the fold (label 5) in Fig. 1.7.

Perturbation

We now determine how the bifurcation diagram changes
as a second parameter is varied. Here we choose s¢ as
this second parameter. In particular we want to determine
what happens to the Hopf bifurcation points and to
the folds on the branch of periodic solutions as sg is
varied. Both of these phenomena are structurally stable,
i.e., they persist under general small perturbations, and
thus one expects to find curves of these points in the
p-So plane. The results are shown in Fig. 1.10. For
example, the location of the Hopf bifurcation point and
the fold in Fig. 1.7 can be found in Fig. 1.10 by drawing
a horizontal line at s9 = 100.

From Fig. 1.10 we can draw the following conclusions:
Increasing so above 107.0 gives rise to a second fold on
the branch of periodic solutions. Further increase of
so beyond approximately 110.5 results in the coalescence

15.QPERIOD
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Fig. 1.9. Period versus p for the branch of periodic solutions in Fig. 1.7.
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Fig. 1.10 A two-parameter diagram of Hopf bifurcation points (dashed)
and folds for the one-compartment model (1.4), (1.5) with ag =500,
a=0.2, k=0.1.

and subsequent disappearance of the Hopf bifurcation
points. However the two folds are still present above
so = 110.5. In the absence of other phenomena, the only
possible conclusion is that an isola of periodic solutions



has been formed. Further increase in s to about 112.50
results in the coalescence and disappearance of the folds
as the isola shrinks to a point. The conclusions from
Fig. 1.10 agree with one-parameter bifurcation dia-
grams computed in the region of interest, i.e., by taking
horizontal cross sections at appropriate so-values in the
p-So diagram. Two such bifurcation diagrams are given
in Fig. 1.11 and Fig. 1.12 for sg-values of 110.0 and
111.0. These figures show clearly the emergence of the
isola. Observe the multiple hysteresis behavior in Fig. 1.11.
In Fig. 1.12 note the stability of all stationary solutions,
which for p between 3.0 and 4.7 coexist with a stable
and an unstable orbit. Obviously the existence of the
isola and its associated stable periodic behavior cannot
be detected in the continuation of the stationary branch
since there are no Hopf bifurcations. Indeed, as il-
lustrated, the detection of such phenomena will generally
require use of two parameters. Sometimes, time inte-
gration using ‘random’ initial data may be useful for
generating a starting point on an as yet undiscovered
solution branch.
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Fig. 1.11. Bifurcation diagram for the one-compartment model (1.4),
(1.5) with s =110, a9 =500, «=0.2, x=0.1.

Numerical aspects

The main numerical algorithms used in the analysis of
the one-compartment model above are (i) the detection
of Hopf bifurcations, (ii) the computation of stable and
unstable periodic solutions, (iii) the determination of
the stability of the periodic solutions, (iv) the continua-
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Fig. 1.12. Bifurcation diagram for the one-compartment model (1.4),
(1.5) with sg =111, a9 =500, «=0.2, k=0.1.

tion of Hopf bifurcation points in two parameters, and
(v) the continuation of folds on branches of periodic
solutions in two parameters. A description of such
algorithms is included in this paper. We shall also briefly
consider the discretization of bifurcation problems in
ordinary differential equations and discuss its effect on
the solution structure.

In practical applications there is a variety of op-
timization aspects that arises in connection with problems
of the type illustrated above. We treat such optimization
problems in the basic framework of numerical continua-
tion. Specific optimization problcms suggested by the
example above include the optimization of periodic
solutions (e.g., their amplitude or their stability), the
control of Hopf bifurcation points, and the control of
folds on branches of periodic solutions.

2. Finite Dimensional Bifurcation Problems

2.1 Continuation of Solutions

A first step in the bifurcation analysis of (1.1) consists
of determining the stationary solution branches (or
solution paths). These are solutions [u(s), \(s)] of the
nonlinear system of equations

Su,\) =0, u, feR",

A €R, 2.1
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where s denotes some parametrization. Throughout we
assume that f is sufficiently smooth. Let x = (u, N).
Then we can write (2.1) as

fx) =0, f:R™! - R" 2.2)

In the formulation (2.2) we do not distinguish between
parameter and state. A solution path to (2.2) is denoted
as x(s). The computation of curves of folds and curves
of Hopf bifurcation points also leads to systems of the
form (2.2) and such computations will be considered
later. Much of the material below is from the work of
Keller (e.g., [Keller, 1977, 1987]).

Regular solution paths

A solution xg = x(so) is called regular if fx0 = fy(xo) has
rank n. A segment of a solution path is regular if x(s)
is regular along the segment. In the parameter formula-
tion (2.1) we have Rank [f] = Rank [f| f2] = n iff
either (i) fuo is nonsingular, or (ii) dim N( fuo) = 1 and
f)\o € R( fuo). If a solution xg is regular then the path x(s)
will also be regular near xg.

Remark. 1f Rank [£?|f] =n then either £ is non-
singular and by the Implicit Function Theorem we
have u = u()\) near xo = (4o, Ao), Or else we can inter-
change colums in f,? to see that the solution can be
locally parametrized by one of the components of u.
More precisely, in the latter case let # = (u!, u?, ...,
wi=1 N, ui*!, ..., u") where i is chosen such that fJ
is nonsingular. Then it follows from the Implicit Function
Theorem that we can parametrize the solution locally
in terms of the component u‘, i.e., # = #(u') near
(1o, No)-

Thus we see that a unique branch of solutions passes
through a regular solution. Throughout we assume that
f is sufficiently smooth so that the Implicit Function
Theorem indeed holds and so that the resulting solution
branch is smooth.

Folds

A solution (ug, \o) is called a simple fold (or simple limit
point) if

dim N(f) = 1 and £ € R(fD)
From differentiating f[u(s), Ms)] = 0 we have
fu i) + HANS) = 0

We can choose the parametrization such that

2.3)

2 .
” u ” + N = 1 (arclength parametrization),

where ” u ” = ” u ” = /u * u. From (2.3) we have
2
Mo = O at a fold point (ug, Ao) because £,0 € R(f).
Thus fuo u = 0, and since dim N( fu0 ) = 1 we have
N(f) = Span {iio}.
From differentiating (2.3) we have

Lo + £ No + £2, tio dto + 210 itoho + i hoho = 0 .
2.4)

At a simple fold (uo, Ao) let

MY = Spanfé}, NI(f)*]1 = Span{y3 .

If ¢ is suitably normalized then ¢ = 9. Multiply (2.4) on
the left by ¥* and use Ao = 0 and ¥ 1L R(f) to find

VR No + SS90 = 0
Now y* f # O since 12 €R(fD). Thus

A
N = ————
120 0N

If the curvature io # 0 then (1o, \o) is called a simple
quadratic fold.

Natural parameter continuation

Here the continuation parameter is taken to be A. Suppose
we have a solution (g, \g) of (2.1) as well as the direction
vector 1. (Here u = % .) To find the solution u; at a
fixed, nearby value of \, say, A = A\; = A\g + A\, we can
use Newton’s method

Ja@?, ) Au? = —fw?, M)

v=20,1,2,...
WD W 1 au®
As initial approximation we can take u§°> = uy + A\ .
If fu(u1, \1) is nonsingular and A\ sufficiently small then
the convergence theory for Newton’s method assures us that
the iteration will converge. After convergence of the Newton
iterations the new direction u; can be obtained with only
one extra backsubstitution because from differentiating
Au(N), N) = 0 with respect to A we have the equation

fulur, N = —f,

It is clear that natural parameter continuation fails at a
simple quadratic fold.

Example. Consider Bratu’s Problem

u”(x) + \et®@ =0 for x € [0,1], u(0) =0, u(1)=0



When A = 0 this boundary-value problem has u(x) = 0
as solution. This solution can be continued and the
resulting solution branch is represented below.

MAX U(X)
12.3

10. Q

0.4q =
| | 1 1 [ 1 |
0.0 0.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0
LAMBDA

Fig. 2.1. The solution branch of Bratu’s problem.

We discretize Bratu’s equation by introducing a mesh

[0=xo<x1<...<xN=1}

Xi-x-1=h (<j<N), h=UN,
and by using a second-order centered approximation to

the second derivative. This gives the discrete equations

Wl — 2 + /-1

= e’ =0, =1, ...

1N_1’

If we let U = (u1, u2, ..., V1) then these discrete
equations can be written as

FUN =0, FR" XR—-R", n=N-1

Natural parameter continuation with \ as parameter now
proceeds as follows. Suppose we have \g, Up, and Uo
where U = -:—)f]. Set A1 = Mo + AA. Solve for Uj using
the Newton iteration

Fy(UP, \) AU® = —FU®, M)

@+1)

U,

= U® + AU
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As an initial guess use UI(O) = Uy + A)\Uo. After con-
vergence find U; from

Fu(Ui, \)Uy = —Fy(Uy, M)

Now repeat the above procedure to find U, etc. Above

Fy(U)\) = 2 n

Thus we must solve a tridiagonal system at each Newton
iteration and also when computing the direction U.

It is clear from Fig. 2.1 that the natural parameter
continuation method will fail when the fold on the
solution branch is passed.

Norm continuation

To allow the computation to proceed past a fold one
can choose some other continuation parameter, e.g.,

s =| u”2 = \/m:
Ju(s), Ms)) = 0,
u@®)*u(s) — s2 =0

If we are given a solution (up, A\¢) and the direction

vector (i, .)\0), where ° = 7:- , then Newton’s method

for taking a step along the solution path consists of
solving

(fhHw (HhH®
2u™* 0

Aul(")

A)\I(V)

f(ul(l') , )\l(l'))

@) u® — 52

followed by setting (™) = ul(") + Aul(") and )\E"“)

=\ + AN As an initial approximation we can use

u(10) = ug + Asuy, )\(10) = X + AS.)\()
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Again one extra backsubstitution finds the next direction

vector:
2u1* 0 A 2s ’

This last equation is obtained by differentiating f(u(s),
As)) = 0 and u(s)*u(s) — s> = 0 with respect to s.

Example. In Bratu’s problem the matrix in the above
linear systems has a bordered tridiagonal form, i.c.,
Jfu is tridiagonal and the extra column f, and row 2u*
generally consist of nonzero elements. Schematically the
form of the matrix is as follows.

e o .
e o o .
o o o o
. . .

e o o o

e o o

e o o o o o

We shall show later how to solve such linear systems
efficiently by the bordering algorithm.

The Bordering Lemma

For the norm-continuation method to work at a fold
(1o, o) we need to check that the matrix

Anorm = <fu f)‘>
2u* 0
is nonsingular at (uo, A\o).

Lemma. [Keller, 1977] Let A = <21* 2) Then the

JSollowing hold:

(a) A nonsingular = (A nonsingular if d # b* A~ c),

(b) (dim N(A) = dimN(A4*) = 1) = (A nonsingular iff
(c € R(A) and b € R(A%))),

(¢) If dim N(A) > 2 then A is singular.

Proof.

" A O\ (I A1
(a) In this case A =1\ , " ¢ , where e =
b* 1/\0* e

d — b*A~!c. Clearly A is nonsingular iff e # 0.
(b) Suppose A is singular:
Ax + £c = 0,
b*x + &d = 0.

If £ # Othen ¢ € R(A) which contradicts the assump-
tions. If ¢ = 0 and x # O then M(A) = Span{x]
and b € N(A)L = R(A*), which also contradicts
the assumptions.

(c) is obvious. W

Thus applying the Lemma to A porm We see that norm
continuation works at a fold (ug, A\o) provided f)\O €
R(f l?), which always holds at a quadratic fold, and
provided ug € R( fl?)*. This last condition need not
always be satisfied, e.g., it fails to hold at the fold
u=0x=00of flu,N) = u2 — \ = 0.

Pseudoarclength continuation

This is the most popular continuation method. It is due
to Keller [1977]. Note that arclength continuation can be
formulated as

s o) = 0, |[a@] + ho? =1

This is mainly a theoretical tool. It becomes useful for
computations if we use the approximate formulation

i, \) = 0, (41 — uo)*ito + (\i — Mo)ho — As = 0,

known as pseudoarclength continuation. Geometrically
interpreted, this method finds a solution (u;, A1) to
f(u, N) = 0 in a hyperplane that is at distance As from
(40, M) and that is perpendicular to the direction vector

(ilo’ )\0)
Newton’s method for solving these equations is now

DY ROPN [Aul?
il N /\a®
v )
f(ul( ), A ))
B (ul(") — ug)*uo + ()\1(") — M) Ao — As

The next direction vector (i, .)\1) can be defined by
the equations

flag+ f1 A=0, @o)* &1+ NoX =1 (normalization).

Again (1, 5\1) can then be found by one extra back-
substitution at the end of the Newton iterations. Also
the orientation of the branch is preserved if As is
sufficiently small. It is necessary to rescale the direction

vector so that indeed ” i ”2 + M =1

Theorem. The pseudo-arclength method works when-
ever (up, \o) is a regular solution point and As is suf-



ficiently small. In particular the method works at a
quadratic fold.

Proof. We can prove this using the Lemma. But the
proof becomes even simpler if we use the uniform for-
mulation (2.2). Then the pseudoarclength algorithm can
be written as

SGer) = 0, (x1 — x0)* Xo — As = 0, (||x0|| =1 .
1

The matrix in Newton’s method is ;,,,). It suffices to
0

0

show that ().Cx*) is nonsingular at a regular solution. If
0

fO
on the contrary ()'cx* is singular then f,? z = 0 and
0

xpz = 0 for some vector z with ” z ” = 1. Also f2 %0
= 0 by definition of x¢. But by assumption of regularity,
f,? has rank n. Thus z must be the same as x¢ except
possibly for sign. But then x5z = x§ xo = ” X0 ” 2.
1 which is a contradiction. B

Example. Consider the discretized Bratu problem. The
matrix in Newton’s method applied to the pseudoarclength
equations then again has a bordered tridiagonal form. We
shall now show to solve such linear systems efficiently.

The bordering algorithm

The linear systems that arise when Newton’s method is
applied to the pseudoarclength algorithm are of thc form

(> 2C) - ()
b* d/ \z h
If A is a sparse matrix whose LU decomposition can

be found relatively cheaply (e.g., if A is tridiagonal),
then the following bordered LU decomposition will be

efficient:
(o) = G- D(6-)
b* d B* 1/\0* &

After finding the decomposition A = LU (which may
require pivoting) we compute v, 8 and é from

(2.5)

Ly=¢ U*8=0b &6=d- 8%y

The linear system can then be written as

-6 DG -¢)
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(4)=(3) ()

we obtain the solution (x, z) by the following steps:
Lf = f )

in the given order. This algorithm will work if both A and

the full matrix
o A ¢
4= <b* d)

are nonsingular. To see this, note that we must have
6 # 0. But from the above

Defining

h=h-8f z=~Hhs Ux=f-2z,

§=d-p*y = d—(U* ~'b)*(L"0)
=d-b*U" L lc =d-b*ULU)"lc =d-b*A" !¢

which is nonzero by Conclusion (a) of the Bordering
Lemma.

The case of singular A [Keller, 1987]

Now consider the special case where A4 is singular but
where the full matrix A is nonsingular in (2.5). Thus
we must have N(A) = Span{¢ }, N(4*) = Span{y},
¢ € R(A), and b € R(A*). The right null vector ¢ and
the left null vector ¥ can be computed efficiently as will
be shown below. From (2.5) we have Ax + zc = f, so
that (f — zc) € R(A), i.e., y*(f — z¢) = 0. Since ¥ *c¢
# 0 we have

LY
v*c
*
Therefore x is a solution of Ax = f — I*f c. Now x

= Xp + o¢, where x, is a particular solution which is
easily computed as shown below. Also from (2.5) we
have b*(xp, + a¢) + dz = h. Since b*¢ #= 0 we find

v

v*e

b*¢

h—d

*

Computation of the right null vector

The left and right nullvectors ¢ and  can be computed
very efficiently. To find ¢ we assume that 4 has been
decomposed by Gauss elimination with row and column
interchanges into 4 = PLUQ, where P and Q are
permutation matrices and

" L 0 A U u
L=<l* 1)’ U=<0*0)’
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where L is lower triangular with I’s along the main
diagonal and U is upper triangular with nonzero entries
along the main diagonal. Thus ¢ is a solution of PLUQ¢
= 0, or equivalently, since P and I are nonsingular, of

G 5)() - )
0* 0/ \n 0
14
where ( ﬂ) = Q¢. Choose p = —1. Then find » from
backsubstitution in Ur = u. Since Q is a permutation

matrix we have ¢ = Q* (v) . Note that if 4 has already
u

been decomposed then only one additional backsolve
is needed for computing ¢.

Computation of the left null vector

Similarly we can find ¢ by just one backsolve as fol-
lows: From A*y = 0 we have Q*U*L*P*y = 0, or
equivalently, since Q is nonsingular

(96 D) =6)
u* 0/\0* 1/ \» 0
w . . .
where (v) = P*y. Since U is nonsingular we must have
G ) () =)
* 1/ \»v v
where » # O is arbitrary, e.g., » = —1. Then w is

Sound from L*w = . Finally = P(_wl>.

Computation of a particular solution

To compute a particular solution x, of Ax, = f, when
N(A) = Span{¢], f € R(A), we have the LU decom-
posed form

P(E (8 o7
(- DG - 27
(o u) 2 = (5)

where i = 0 because f € R(A) (the system must be

First solve

followed by

solvable). Write (;}Z > = Qxp. Then we see that z, can

have any value, e.g., 2, = 0. Now find y, from Uy,

= f. Finally x, = Q* <)z/ ") (permutation).
D

Implementation in AUTO

In AUTO it is assumed that a regular solution (u9, \o)
is known for some particular value \g. In most appli-
cations such a (ug, \g) is easily found. If not, then it
is usually possible to introduce a homotopy parameter
in order to reach a suitable starting point. From the
preceding discussion we have seen that the direction
(119, No) of the branch at a regular starting point co-
incides with the normalized null vector of the n by
n + 1 dimensional matrix (fy (40, Mo) | (%0, No)). (A
bifurcation point should not be used as starting point,
since there the nullspace is at least two-dimensional.)
The null vector can be computed efficiently by applying

the procedure discussed earlier to the matrix (f z?*f (x;) )
0

We scale (o, o) so that 02 i} ito + 62\3 = 1, where

0, and 0, are preassigned constants that may be used

to reflect a difference in scale between u and A. By

default 9,, = 0, = 1. More generally, we equip the space

R” x R with the inner product

{1, A, (2, \2)) = 02 ut uz + OFN\2

From the starting point the branch is traced out in a
stepwise manner using pseudoarclength continuation.
Assuming (4j-1, \j-1) and (#;-_1, .)\j-l) have been
computed, the next solution (;, N;) is determined from
the equations

Suj, \j) = 0, (2.6a)
02(u; — uj—)*@j-1 + 620 — Ni—D A1 — As = 0,
(2.6b)

where As is the step size along the branch. The direction
vector (i#j_;, \j-1) can be computed as previously
discussed or it can be computed approximately, viz.,
uj_ = —Al; (4j—1 — uj_») and similarly for \;_;. Itis
then necessary to rescale so that indeed 03 1'4}"_1 uj_1 +
Of.)\f_l = 1, for otherwise instabilities in the continua-
tion procedure can arise. The advantage of using the
inflated system (2.6) is its capability to compute past folds
on a branch. Similar to what has already been shown,

Ju(u, N (u, N)
02a* 62\
0 and 0y, # 0, is nonsingular at regular solution points,

which includes simple folds.

One can choose the step size As to be fixed or to be
adaptive. The following simple adaption scheme is used:
If Newton’s method converges rapidly, then the step size
is increased. If the Newton iteration converges slowly or
if it fails to converge at all, then the step size is halved.
If a selected maximum step size is reached, then As

the Jacobian of (2.6) ( ), with 6, #



will not exceed that value; if a selected minimum step
size is reached, then the program will signal non-
convergence. Convergence criteria can also be selected:
Convergence is said to have occurred if the Newton
increments satisfy

| AX |
1+ |\

|| Au ||
< €y and ————— < €,,
L+ Jlulls

where €, and €, can be selected.

2.2. Bifurcation and branch switching
Simple singular points

A solution xp = x(s¢) along a solution branch x(s) of
(2.2) is called a simple singular point if f0 = f,(xo) has
rank #n — 1. In terms of the parameter formulation (2.1)
(1o, o) is a simple singular point iff either one of the
following holds:

@) dim N(f)) = 1,
(i) dim N(f,)) = 2,

R e R,
2 € R(SD).

An example of case (i) is
S, \) = u(u — N at (uo, o) = (0, 0),

where fu0 = 0 and f)? = 0. As an example of case (i)
consider

i) - () - G)
S, N) = . at up = £/ = \o
Here fuo = <g g) and f)‘\) = (é)

The Algebraic Bifurcation Equation

Suppose we have a smooth solution branch x(s) of f(x)
= 0. By differentiation we have f,(x(s)) x(s) = 0 at
any point along the branch. Here x(s) is the tangent
to the branch. We may assume that || (s) || = 1. Let
Xo = Xx(so) be a simple singular point with N( f,?) =
Span {1, ¢2} and N((f2)*)) = Span{y] . The direction
vector Xxg lies in N( f,? ) because the equation f ((x(s))
X(s) = 0 holds in particular at x, i.e., f,?)éo = 0. Thus
Xo has the form Xo = a¢; + B¢, for some a = aj,
B = (1. We want to investigate when there is another
branch that passes through x¢ with direction, say, a2¢;
+ B2¢2 with (a3, 82) # (a1, B1).

From differentiating f(x(s)) = O twice and evaluating
at xo we also have

fA%) + flxo% = 0
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Multiply this relation on the left by ¢* to get
l//*ffx)eo)i‘o = 0. Now substitute X9 = a¢; + Bo2
to obtain

VA (adr + Boo)adr + Béa) = O,

which can also be written as the following quadratic
equation in « and 8:

cne? +2cpaB +cnf? =0, oy =y*fleid;, ij=12.
2.7

This equation is called the Algebraic Bifurcation Equation
(ABE) [Keller, 1977].

We want solution pairs («, 3) of the ABE with not both
« and 8 equal to zero. If for example o # 0 then we can
rewrite the ABE as

B

8 2
ci1 + 2cip— + C22(—) 0
[0 [0

Thus we see that if the discriminant Ag = ¢213 — ¢1162
is positive then (2.7) has two distinct real nontrivial
solution pairs («, 81) and (a3, 82) which are unique up
to scaling. The discriminant Ag cannot be negative, since
we already have one real root («1, 31) corresponding to
the direction vector xo. If Ag > 0 then we have two
distinct ‘direction vectors,” o1¢; + B1¢1 and asxd; +
B2¢2, and we expect a bifurcation, i.e., we expect a
second branch to pass through xg.

Practical computation of the bifurcation
direction

From the discussion above we can take one of the two
null vectors, say ¢, to be the direction of the ‘given’
branch at the bifurcation point, i.e., ¢; = xp. Then
(a1, B1) = (1,0) is a root of (2.7) and ¢;; = 0. Under
the assumption that Ag > 0 we also have ¢13 # 0. Then
from (2.7) we find that the second root satisfies a2/82
= —cp/2c13.

Evaluation of c|» and ¢z, requires computation of
the null vectors ¢, ¢2 and ¥. We have already chosen
¢1 = Xg. Choose ¢ L ¢;. Then ¢, is a null vector of

0
FY = ({g&) . In fact, the null space of F,0 is only one-
0
dimensional as will be shown later. It is also not diffi-
cult to see that <g> is a simple null vector of (Fx0 )*

= (( f)?)* X0). We have already shown how to compute
null vectors efficiently. After determining the coefficients
az and B, the direction x; = az¢; + B2¢2 of the
bifurcating branch is normalized so that || X0 ” = 1.
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Practical branch switching

After the computation of the direction x¢ of the bifur-
cating branch, the first solution x; on the bifurcating
branch away from the bifurcation point xo can be
computed by the regular pseudoarclength continuation
method:

Sx1) =0,

" 2.8)
(x1 — x0)*x9 — As = 0,

with initial approximation x(?) = xo0 + As x(').

As we have seen above, the computation of the bi-
furcation direction requires evaluation of the second
derivative f,?x. This is avoided by the orthogonal di-
rection method which uses the vector ¢, rather than
the actual direction xg in (2.8). Recall that we have
chosen ¢ L ¢; with ¢; = xg. The branch switching
procedure then simply consists of computing the null
vector ¢2, followed by the first pseudoarclength con-
tinuation step

Jxp) =0,
(x1 — x0)*¢2 — As = 0,

This method need not always be successful. But it works
well in most practical applications.

Detection of bifurcation points

Let F(x; s) = ((x _ j) ())?)'Co 3 s) and let xo be a simple

singular point. Then FY = F,(xo; so) = Fyx(xo) =

0
(f );) As above, make the specific choice ¢¢ = x¢ for
X9

the first null vector of £, and choose the second null
0
vector ¢2 such that ¢3¢, = 0. Thus Fx0 = <§)XT> We

see that ¢, is also a null vector of Fxo but that ¢,
is not. Therefore F? has a one-dimensional nullspace.

Also, the null vector of (F,?)* is given by ¥ = (g) s

where ¢ is the null vector of ( fxo)*.

Theorem. [Keller, 1987] Let xo = x(so) be a simple
singular point on a smooth solution branch x(s) of f(x)
= 0. Assume that the discriminant Ay is positive and that
0 is an algebraically simple eigenvalue of F, xo. Then det
F, changes sign at xy.

Proof. Consider the parametrized eigenvalue problem

Fy(x(5)d(s) = «(s)9(s),

where «(s) and ¢(s) are smooth near sg, with x(sg) = 0
and ¢(0) = ¢,. This can be done because we have as-
sumed that O is an algebraically simple eigenvalue.
Differentiation of the above equation and evaluation at
so gives

Fl %o¢2 + F2(s0) = ko2,

and upon multiplying this on the left by ¥* we find

V*F2 6162 B v o162 o
¥* ¢

’20 = = =
¥* ¢ ¥* ¢
where ¥ * ¢, # 0 and where ¢ is one of the coefficients
in (2.7). By assumption Ay # 0. As before this implies
that ¢y # 0 and hence k9 # 0. B

Remark. The following theorem states that there must
be a bifurcation at x¢. This result can be proven by degree
theory [Keller, 1978; 1987].

Theorem. Let x(s) be a smooth solution branch of
F(x; s) = 0, where F: R"*! x R - R"*! js C!, and
assume that det F,(x(s); s) changes sign at s = so. Then
x(so) is a bifurcation point, i.e., every open neigborhood
of xo contains a solution of F(x; s) = 0 that does not lie
on x(s).

Implementation in AUTO

The determinant of the Jacobian F, is monitored along
the solution branch x(s) = (u(s), A(s)). Points where the
determinant changes sign are located by a secant iteration
scheme. More specifically, let g(s) denote the scalar
function of which a zero is sought. In the current appli-
cation g(s) is the determinant of the Jacobian F along
the solution branch x(s), but there will be other applica-
tions later. If a change of sign of g(s) is noticed along
the branch then the zero is approximated by the secant
iteration
sY — s”—l

- s")

& e 1
where v is the iteration index.

Solution points where the determinant of the Jacobian
F, changes sign are potential bifurcation points by the
earlier discussion. Also we know that the determinant is

sl = v 2.9)

_ nonzero at simple folds. After the computation of a given

branch has been completed, each potential bifurcation
point found on it is considered in turn and branch
switching is attempted. To switch from one solution
branch to another the orthogonal direction method
outlined above is used. It performs well in most appli-



cations, although difficulties can occur if the branches
intersect at a very small angle.

In the implementation the computation of the basic
branch and of any bifurcating branch is discontinued if
either A or ” u || reaches preset limits, if a user-specified
maximum number of steps have been taken, or if the
procedure fails to converge. The number of successively
detected bifurcations at which branch switching is to be
done can be selected. One can choose to trace out only
one leg, which is useful, for example, in case of symmetric
bifurcations where the solutions on each leg are equivalent.

Here we give a simple example to illustrate
]

Example.

Sx(uy, uz, p1) = (pZ(l = 2u1) — Uz - pipse” M

Dau

Along x = (0, 0, p;) we have

P2 — p1p3

00
0 -1 .0)’

and a simple singular point is at x = (0, 0, p?), where

fx(oa 0, Pl) = (

PV = pa/p3 = 3/5. The Jacobian at the singular point
is
0 0 0
0, 0, p%) = )

o

and at the singular point

(01 D4, O)

0 _
o= (0, pa, 0)

The algebraic bifureation equation is
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use of the algebraic bifurcation equations. Consider the
predator-prey model [Doedel & Kernévez, 1986]

’

u = poui(l — uy) — wuy — pi(l — e~P31),

Uy = —Uy + pauiuz

The term p1(1 — e ~P3¥1) can be thought of as modeling
the ‘harvesting’ of u#;. The exponential term reflects
the increased difficulty of harvesting when u; is small.
We fix p» = ps = 3 and p3 = 5 and we consider the
bifurcation behavior when p; is varied. Let x (uy,
us, p1). Note that x = (0, 0, p;) is a solution branch
with x = (0, 0, 1). The Jacobian f; is

- - e-mul))
0

=1 + pauy

]
with right and left null vectors ¢ = (1, 0)*, ¢1 = Xo
= (0,0, 1)* and ¢ = (1,0, 0)*, ¢ L ¢;. Also Fy

= <£x*) with x* = (0, 0, 1), so that the determinant
0

of
p>»—-pip3 0 O
FQ = 0 -1 0
0 0 1

changes sign at p‘l’, and zero is a simple eigenvalue.
The second derivative is

(=2p2 + pipje=P31, —1, —pse~P1) (=1,0,0) (-pse=P31,0, 0))

(p4,0,0 (0, 0, 0)

((—2pz+p?p§,—1,—p3) (-1,0,0) (-p3,0, 0))

(p4’ Oa 0) (0, 0’ 0)

crio? + 2cppaf + cnf? =0,

where
0 0
cit = Vo191 = (L0 o]l o
1
0 1
ciz = ¥*fAo162 = (L0 0]| o
1 0
1 1
cn = ¥*fl2 = 1,005 0
0

-2p2 + pp3

9

a, m("’3

0
a{, 0)<

a{, 0)(

—P3
0

-1
Da

-2p> + pip?
0

gt
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Thus the quadratic equation is
982 — 10aB = 0,
and up to a scaling factor its roots are
(a1, B) = (1,0) and (a2, B2) = (5, 10)

The direction of the given branch corresponds to the
root (ala Bl) = (11 0)7 i-e-y

0

Xo = a1p1 + Big2 = {0
1

The direction of the bifurcating branch is

10

xp = o1 + B2 = 0],
9

before normalization.

In particular the u;-component of the direction of the
bifurcating branch is zero. In fact the bifurcating branch
lies entirely in the u; = 0 plane as can be seen in Fig. 2.2.
Also shown is a third branch of stationary solutions from
which a family of periodic solutions bifurcates through
a Hopf bifurcation. The branch of periodic solutions
terminates in a heteroclinic orbit as indicated. The stable
behavior is as follows: When we increase p; starting at
p1 = 0 the branch of stationary solutions along which
both u; and uy are nonzero will be followed until the
Hopf bifurcation point is reached. Along this stationary

AN/

Uz

Fig. 2.2. Bifurcation behavior of the two-species predator prey
model.

branch the harvested species u; is constant, but the
predator u, decreases in level! Between the Hopf bi-
furcation and the heteroclinic orbit the system will be
in an oscillatory mode. After the heteroclinic orbit the
system will go to the stable stationary state with both
u1 and u, zero.

2.3. Folds and their continuation

Recall that a simple fold on a solution branch (u(s), Ms))
of flu, \) = 0is a point (up, Ao) satisfying

N(fY) = Span{do), fY €R(fD),
We have .)\0 = 0 and ¢g = uo.

Change of stability

Now assume in addition that zero is an algebraically simple
eigenvalue of fl? . Then there is a smooth parametriza-
tion of the eigenvalue-eigenvector relation near so:

Ju(u(s), N)(s) = k()P(s), «(so) = 0, &(s0) = ¢o .

Differentiate this equation with respect to s and evaluate
at so to get .
13, d000 + fLdo = Kodo

Let N(f2)*) = Span{yo}and multiply the above equa-
tion on the left by ¥ to find

¢3fz?u¢0¢‘0
K = ——————

1240

Yodo # 0

Previously we found

*
VoSwdoto (W27 # 0 at a simple fold),
v Sy

and (ug, \o) is called a quadratic fold if .5\0 # 0. Thus
we see that if (u, N\o) is a simple quadratic fold and if
0 is an algebraically simple eigenvalue of f,? then «(s)
changes sign at (ug, Mo). Hence if the branch consists of
stable solutions ‘before’ the fold then the solutions will
be unstable past the fold, i.e., a change of stability takes
place.

N =

The extended system

To continue a fold in two parameters (‘fold follow-
ing’) we make use of an extended system [Fier, 1985;
Griewank & Reddien, 1984; Jepson & Spence, 1985;
Rheinboldt, 1982]
S, \, p) = 0,
Juu, A, ,u')¢ =0,
¢*do — 1 =10

(2.10a)



Here u € R is a second parameter in the equations. Up
to now pu was considered fixed. The vector ¢¢ belongs to
a ‘reference solution’ (uo, ¢, Ao, po) which in practical
continuation is the latest computed solution point on the
branch. At a fold the Egs. (2.10a) can clearly be satisfied.
This above system has the form

FUp) =0, U=(u,¢,N, FR>™! x R R¥+1
or, using the uniform formulation,

FX) =0, X=(, w, F:R2n+2 5 p2n+l

Parameter continuation

First we consider continuing a solution (u#g, ¢g, Ag) of
(2.10a) at p = po by varying g, i.e., we treat u as the
continuation parameter. This can be viewed as natural
parameter continuation. By the implicit function theorem
there exists a smooth solution branch U(y) = (u(n), o(n),
Ap)) to (2.10a) provided the Jacobian

. aF oo R
Fy = v Vo = fudo  f2 A0
0* ¢ 0
is nonsingular. We have the following elementary con-
tinuation result:

Theorem. A simple quadratic fold with respect to \ can
be continued locally using the second parameter yu as
continuation parameter.

Proof. Suppose Fg is singular. Then

@ fx + zfY =0,

(i) S, dox + fy + 2l 0 = 0,

(i) o5y = 0,

for some x, y € R”, z € R. Since f{’( R(fuo) we have

from (i) that z = 0 and hence x = ¢;¢¢ for some ¢; €
R. Multiply (ii) on the left by y § to get

c1vg £, dodo = 0

Thus ¢; = 0 because by assumption ¥ fl?u dodo # 0.
So x = 0, and from (ii) we now have fuoy = 0, i.e.,
Y = c2¢0. But then by (iii) c; = 0. Thus x = y = 0 and
z = 0 and hence FJ must be nonsingular. B

Note that the theorem does not require zero to be an
algebraically simple eigenvalue of f;. Thus, for example,

fu0 may have the form (g (1) ) , provided the fold re-

mains simple and quadratic.
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Pseudoarclength continuation

Natural parameter continuation in p is too restrictive, since
it would fail at folds with respect to p. These could corres-
pond to cusp points, bifurcation points, or isola forma-
tion points [Dellwo et al., 1982; Seoane et al., 1991].
Therefore we apply the pseudoarclength continuation
method to compute a solution branch

(u(s), ¢(s), Ms), u(s))

That is, we treat g as one of the unknowns in (2.10a)
and we add the equation

(4 —ug)* i+ (b — $0) * b0+ (A — o) ho +( —po) io —As=0.
(2.10b)

As before, (219, <;So, ')\0, Ro) is the direction of the branch
at the current solution point (19, ¢0, Mo, pmo).- The
Jacobian of (2.10a) with respect to u, ¢, \ and p at Xo
= (uo, 0, Ao, po) is now

dF
FY =— (X
X dX( 0)
PR B S S
=\ fodo S fAhbo £ b0
0* Loy 0 0

@2.11)

For pseudoarclength continuation to work we need only
check that F )3 has full rank. For a simple quadratic fold
with respect to A\ this follows from the above theorem.

If ¥§ fu $0d0 # 0, and /) € R(f,), but if £,¢ R(f?),
i.e., if we have a simple quadratic fold with respect to g,
then we can apply the theorem to F)? with the second last
column struck out to see that F$ still has full rank.

Efficient implementation

As we have seen, if ¢§ f.0, dodo # 0, and if either
f)? € R( f,,o) or fuo € R( f,?), then after interchanging the
last two columns, if necessary, we can put the Jacobian

0
(FX) of (2.10a, b), in the form A c), where A is
Xo b* d

nonsingular. The linear systems in Newton’s method then
have the form

(- 9C) - ()
o (5 906490 - 6):

(2.12)
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where e = d — b*A~lc. Omitting explicit bordered
LU-decomposition here, we can still solve (2.12) efficiently
through the following steps:

A¢ = ¢,
e=d - b*¢ (#0),
Af = f,

z=(h — b*f)/e,
x=f-z

Next we show how to solve the linear systems above
that have A as coefficient matrix. From (2.11) we see that
such systems have the form

A O X f
B A4 afly]=1\g]),
0* ¢* 0 z h

where N(A) = Span{o} and N(4*) = Span{y}, with
A=f2 B = fl¢0 and c; = f), 2 = fdo, or
1 =12 ca = f3 doin case fy € R(f)) but £, € R(f,)).
We have from the first of the equations in (2.13) that
Ax = f — zci. Thus we need (f — zc1) € R(A), i.e.,
Y*(f — zc1) = 0, or
*
Z =20 = ¢ f s

v*e

(2.13)

(¥*c; # 0 by assumption)

Then
X = Xxp + agy

A particular solution x,, is easily found by solving
Axp = f — zoc1

using row and column pivoting as has been shown earlier.
From the second of the equations in (2.13) we have Ay
= g — Bx — z0cy, and thus we need y*(g — Bx — 2oC2)
= 0,i.e.,, y*g — Y*B(xp + ado) — 2o¥*c2 = 0, from
which
_ ¥*g — zo¥*e2 — Y*Bxp

a = oo = ’

v*Boo

where Y *Bgo = ¢* f,?u dodo # 0 by assumption. Now
y also has the form

y = y D + B¢09
and as before a particular solution can be computed from
Ayp = g8 — Blxp + agbo) — zoC2

But by the third equation in (2.13) we have ¢gy = h,
i.e., o5(p + Bdo) = h, so that

B — h _*¢3yp
bo%0

Implementation in AUTO

The direction ( i, ')\) of a solution branch of (2.1) at a
regular solution point (#, \) can be obtained by solving

(0 e W) () _ (9)
o Ao A 1

followed by normalization. Here ( i, 5\0) denotes the
direction of the branch at the preceding solution point
(ug, Mo). It is assumed that (ug, Ao) is sufficiently close
to (u, \). Simple quadratic folds along branches of
solutions (u(s), M(s)) of (2.1) correspond to simple zeroes
of the function g(s) = \(s) and these are located accurate-
ly using the secant iteration (2.9).

Once a simple quadratic fold has been detected it
can be continued in the two parameters A and p using
(2.10a, b). This algebraic continuation problem is treated
numerically as any other system of nonlinear equations.
In the implementation the inflated system is generated
automatically and the bifurcation analysis is done by the
same program segment used for general algebraic systems.
This is done, in fact, for all continuation problems that
take the form of algebraic systems. The procedure for
starting a two-parameter continuation at a previously
located fold is very simple in the implementation.

2.4. Hopf Bifurcation points and their
continuation

According to the Hopf bifurcation theorem, a bifurca-
tion of a branch of periodic solutions to #” = f{u, N) from
a stationary solution branch (u(\), \) takes place if a
complex conjugate pair of eigenvalues a(s) + iB(s) of
the Jacobian f,(u(\), N\) crosses the imaginary axis at
nonzero ‘speed,’ i.e., if for some \g we have a(ro) = O,
B(ho) # 0, and &(\o) # 0. We also assume that FARD
nonsingular, so that the stationary solution branch can
be parametrized locally in A. The computation of the
branch of periodic solutions will be treated later. Here we
consider the algebraic continuation problem of tracking
a branch of Hopf bifurcation points in two parameters
[Doedel et al., 1984; Griewank & Reddien, 1983].

If the eigenvalue iB(\o) is algebraically simple then
we have locally a smooth solution branch to the para-
metrized right and left eigenvalue-eigenvector problems:

Su@®), N = «(N)o(r), (2.142)
V@), N = MY, (2.14b)
Y*Ne\) = 1,  (and also ¢*(N)e() = 1), (2.14¢)



with k(\g) = iB(\o). Above * denotes conjugate trans-
pose. Differentiation gives

fuc i + frd + fud = kb + xo, (.15a)
V*fuudt + U fn + 9 fu = BY* + p*,  (2.15b)
V¥ + Y*é =0 (2.15¢)

Multiply (2.15a) on the left by ¥ * and (2.15b) on the right
by ¢ to get

V*fuu it + U fand + U fub = e + ki * o,
(2.16a)

U fuu 6 + Y fad + U fub = Kt + k%
(2.16b)

Adding (2.16a) and (2.16b), using (2.14c) and (2.15¢),
and

Vb + U fub = kW* + ¥*¢) = 0,
we find
K = \L*[fuui‘ + fu)\]d’

From differentiating f(u(\), \) = O with respect to A
we have

u = _(fu)_lf)\a

so that
K = 1V"[_fuu(fu)“lf)\ + funlo

Thus the crossing is transversal, i.e., a(so) = Re(xg) #
0, provided

Re(Wolfo (SR - fhls0) 20 . .17

This condition is also required for the nonsingularity of
the extended system given below and for the numerical
stability of the solution algorithm.

The extended system: Complex formulation

The extended system for computing a branch of Hopf
bifurcation points consists of the necessary conditions

S, N\, p) =0,
fu(u’ )\’ ﬂ)(b - iﬁd’ = 0’
¢*¢0 -1= Oa

(2.18)
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to which we want to compute a solution branch (u, ¢,
B, \, ), with u € R*, ¢ € C*, 8, \, u € R. In (2.18)
¢o belongs to a ‘reference solution’ (g, ¢o, 8o, Ao, o)
which in practical continuation is the latest computed
solution point on a branch. First we consider parame-
trizing this branch using the second problem parameter
p as continuation parameter, i.e., we seek a solution
branch (u(u), ¢(n), B(n), Mu)). However, in practice we
use pseudoarclength continuation.
Equation (2.18) defines a mapping

F:R" X C" x R2Z > R" x C" x C

The derivative with respect to (u, ¢, 8, A) at the solution
point (#o, o, Bo, Mo, o) is

£ o 0 i
fl 60 £ - iBol —igo 3 %0
0* Y 0 0

which is of the form

A o 0 Cy
C D —-ipy o

0* ¢35 O O

Here A = fu0 is assumed nonsingular, C = f,ﬁ, b0, €1 =
Y cr = fO d0, and D = f2 — iBol, with N(D) =
Span{go}, N(D*) = Span(yo}, Y40 = 1, and ¢ o
=1.

We shall now show that the above matrix is nonsingular
if the eigenvalue crossing is transversal, i.e., if (2.17) holds.
We do this by constructing a solution x € R”, y € C”, 7y,
Z2 € R, to

x
A o 0 1 y f
C* D* —ipy € al =1le],
0* ¢ O 0 2 h
feER", geC" heC . (2.19)

The first of the three equations in (2.19) is Ax + z2¢1 =
J, where by assumption A4 is nonsingular. Thus we can
write x = 4A~1f — z4 ~1¢;. The second equation can
then be written

CA~If — 25CA~1e; + Dy — z1i¢o + 2202 = g,
and upon multiplying this on the left by g we have

YoCA™Yf — 22yg CA~Ler — z1iYgdo + 22952
= Y58
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We have chosen ¢ such that ¢3 ¢o = 1. For notational
convenience define
f=cCcA-f, & =CA ¢
Computationally f and é; are obtained from
Af = f, J=Cf, A& = ¢,

¢ = Cé (2.20)

Then the above equation can be written as
iz + Yo @1 — z2 = Yo (f — 2

Separate the real and imaginary part of this equation
and use the fact that z; and z, are real to get

Re(y&[é1 — c2Dz2 = Re(Yo[f — &)
z1 + Im(yg[é1 — c2Dz2 = Im(yg[f — gl),

from which

Re(yo [f — &)
Re(y5[é1 — cal)

—zIm(yglé1 - ) + Im(yg[f — gD

22

21

Now solve for x in

Ax = f — z22¢y, (2.21)
and compute a particular solution y, to
Dy = g — Cx + iz190 — 22C2 2.22)
Then
y=JYp + ady, a€C (2.23)

The third equation in (2.19) reads ¢g ¥ = ¢g¥yp + adgdo
= h, from which

h — ¢o¥p

_ (2.24)
b0 Po

=h - d’z)’p

o =

The above construction can be carried out if Re(yg
[61 —c3]) # 0. But, using the definition of ¢; and c3,
we have

Re(y§[¢1 — cal) = Re(¥§[CA~1er — cal)
Re(¥§ 113 00(f0) 1 £ — fAdol)
Re(y £ (SO - fA160

Re(ko),

which we assume to be nonzero (See (2.17)). Thus the
matrix in (2.19) is nonsingular and there exists locally

a branch (u(u), ¢(n), B(n), NM(u)) of solutions to (2.18),
i.e., the Hopf bifurcation persists under small pertur-
bation of the second problem parameter pu.

Algorithm

The above construction can be used in the algorithm for
solving (2.18) by Newton or Chord iteration. First one
computes the left and right null vectors yo and ¢ of the
complex matrix D. Then the steps (2.20)-(2.24) are carried
out in the order of appearance.

Further efficiency can be gained by making use of the
fact that certain calculations in the construction are real
or involve real variables. For a more efficient real formula-
tion see Griewank & Reddien [1983]. For large » most of
the computational effort is spent on LU decomposing 4
and D. Here A is real and assumed nonsingular. D is
complex with a one-dimensional nullspace. The decom-
position of D requires row and column pivoting. The null
vector ¢ of D and the null vector ¢ of D* can be
computed efficiently as already shown in Sec. 2.1 except
that now we have to use complex arithmetic.

Pseudoarclength continuation

In practical computation one does not want to use the
second problem parameter p as continuation parameter
in the extended system (2.18) because a solution branch
may contain folds with respect to x. Thus, as before, we
treat p as an additional unknown and we add the
pseudoarclength relation

W — up)*uo + (¢ — $0)* o + (B — Bo)Bo
+ O\ — No)ho + (1 — podiio — As = 0

Newton’s method applied to the enlarged system then
leads to linear systems with matrices of the form <’;* ;)

where A represents the matrix in (2.19). The solution
algorithm for such systems has already been given in
Sec. 2.3 [See Eq. (2.12)]. It involves solving subsystems
with A as matrix as already discussed.

Implementation in AUTO

In the software a standard eigenvalue solver is used to
compute the eigenvalues of f,(u(s), A\(s)) along the sta-
tionary solution branches. By monitoring the number of
eigenvalues in the left half-plane together with the real
part of the eigenvalue closest to the imaginary axis, the
software package is capable of detecting Hopf bifurcation



points. The precise location is determined by secant itera-
tion (2.9) on the real part of the critical conjugate pair
of eigenvalues. Success of this procedure depends of
course on the step size As being sufficiently small and on
the Hopf bifurcations being nondegenerate.

The two parameter continuation of Hopf bifurcation
points is done using the pseudoarclength continuation
scheme applied to the equivalent real formulation of (2.18).
Then this equation represents a nonlinear system of 3n +
2 equations in 3n + 3 unknowns. Generally one will have
branches of solutions with possible bifurcation points. In
the implementation the expanded system for two parameter
continuation of Hopf bifurcation points is generated
automatically and the computation is channeled through
the basic routines for general algebraic systems. The com-
plete starting data are also generated automatically using
data from a previous run in which the Hopf bifurcation
point was detected. No advantage is taken of the special
structure of the Jacobian of the enlarged system.

Example. Consider the equations

u'(t) = u(l — u) — cyyuv,
v'(t)
w'(t)

This can be thought of as a simple predator-prey model
where, say, u, v and w represent plankton, fish, and sharks,
respectively [Doedel, 1984]. The term N1 — e~ ") re-
presents fishing, the parameter A being the fishing quota.
The factor (1 — e~‘") models the fact that the quota
cannot be met if the fish population is small. The other
parameters are fixed: ¢, = 1/4, ¢y, = 1/2, ¢y = 3, Cow
= 3, and ¢, = 5.

The bifurcation behavior with \ as parameter is shown
in Fig. 2.3. The vertical axis is the Ly-norm of (u, v, w).
There are two Hopf bifurcation points. The stable behavior
as \ increases in Fig. 2.3 is as follows: For small A\ one
follows the branch of stable stationary solutions (solid
curve) that starts at the left of the diagram. Along this
branch the values of # and v are constant, but w decreases.
At the stationary bifurcation point (label 6) the value of
w is zero, and one switches to the bifurcating stationary
branch along which w = 0 everywhere. This second
branch is followed until the top right bifurcation point
(label 2) where v is also zero. Thereafter one follows the
third (horizontal) branch along which both v and w are
zero and u = 1.

The results of the two-parameter continuation of the
Hopf bifurcation points in Fig. 2.3 is shown in Fig.
2.4. As second parameter we use c,y. The curve of Hopf
bifurcations contains two bifurcation points (meta bi-

—CyV + Cyyv — Cypyvw — N1 — e CeY),

—CwW + CywVW
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Fig. 2.3. Bifurcation diagram when ¢, =3.

6.QC UV

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Fig. 2.4. Loci of Hopf bifurcation points.

furcations!). Clearly, in a certain range of values of
cyv the \-bifurcation diagram has four Hopf bifurcation
points. The one-parameter bifurcation diagram that
corresponds to the cross section of Fig. 2.4 at ¢, = 4
is given in Fig. 2.5.
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The stable behavior as A varies in Fig. 2.5 is as follows:
For small A one follows the branch of stationary solutions
that starts in the top left of the diagram. Along this
branch the values of u and v are constant, but w decreases
for increasing A. At the Hopf bifurcation the behavior
becomes time periodic in (1, v, w). The two branches of
periodic solutions intersect in a transcritical bifurcation
near A = 3. Here one switches to the second branch of
periodic solutions along which w is identically zero. This
second branch is followed until the top right Hopf bi-
furcation where the solutions become stationary, still with
w equal to zero. Further increase in \ leads to decreasing
and ultimately vanishing v much like in Fig. 2.3.

Some orbits are shown in Fig. 2.6. We see a family of
orbits in (%, v, w) in which the w-component becomes
smaller and ultimately negative. One of these orbits has
w equal to zero and thus lies in the «, v-plane. This orbit
connects to the second family of which all orbits lie in
the u, v-plane. The orbit where the two families meet
corresponds to the secondary periodic bifurcation in
Fig. 2.5.

0.55] (U V. W |
0.5 R
00'.. /' A
'::°°°°9500 /’
0.45] / / o,
I'l 0"1
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l’o° _______ a:’: o el
0° ,’
0.35] P4 s
°° I¢
s e
J o
o Vg

0.3 §

(] .
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o.25] .- -
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LAMBDA

Fig. 2.5. Bifurcation diagram when ¢, =4.

2.5. Fixed points, folds, and Hopf bifurca-
tion for maps

The continuation schemes presented so far have analogues
for discrete maps. Consider a fixed-point iteration

U+l = g(uka )\)’ k = O’ 1! 2’ sesy

SHARKSA\

Ny,
>
PLANKTON|

Fig. 2.6. The two families of periodic solutions. One family lies entirely
in the u, v-plane. Of the other family only one orbit is in the u, v—-plane.
This orbit is common to both families and corresponds to the secon-
dary periodic bifurcation near A=3 in Fig. 2.5.

where £ is the iteration index and \ a free parameter. Such
iterations can give very complicated dynamical behavior.
The concept of steady state, or fixed point arises here, as
does the concept of Hopf bifurcation. The fixed point
analysis consists of studying the solution structure of

Su,\) = gu,\) — u =0,

which is a special case of (2.1). The treatment of bifurca-
tion points and the detection of folds with their subsequent
continuation in two parameters is then identical to the
procedures described in Secs. 2.1-2.3.

Hopf bifurcation for a map corresponds to the cross-
ing of the unit circle of a conjugate pair of eigenvalues
of the Jacobian matrix g,(u, A\). This gives rise to the
bifurcation of an invariant curve from the fixed-point
branch. The detection of these Hopf bifurcations proceeds
in much the same way as the detection of such points for
differential equations. Let ex(f,) denotes the kth eigen-
value of f,(u, \). We have ex(f,) = ex(gy) — 1, so that
Hopf bifurcation corresponds to the crossing of the
imaginary axis of one of the quantities log[l + ex(f,)].

Given a Hopf bifurcation point for a map from a
one-parameter numerical analysis, one can continue such
points in two parameters by using the following
modification of the extended system (2.18)



gu, \, p) — u = 0,
gu(u, X’ I"')d) - eiB¢ = 0’
¢*¢0 - 1= 09

where $ is the angle of the conjugate pair on the unit
circle.

The computation of the branch of invariant circles that
bifurcates from a branch of fixed points of a map at a
Hopf bifurcation point is not included in AUTO. For
some methods for this purpose see [Chan, 1983; Kevrekidis
et al., 1985, and van Veldhuizen, 1987]. One difficulty in
such computations is the possible loss of differentiability
of such invariant curves [Aronson et al., 1982].

3. CONTROL OF BIFURCATION
PROBLEMS IN FINITE DIMENSIONS

Here we consider the problem of minimizing an objective
functional
w = gu, N,

when the control and state variables A and u are related
by the state equation

Su, M) =0 3.1

Here g:R” x R™ — R and f:R” X R™ — R” are C!.
We let X = R” x R™, with element x = (u, ). The
specific objectives are:

(i) Optimization in systems where the state equation has
a ‘complicated’ solution structure. For example, we
may want to locate a solution with certain desired
features.

(ii) Control of bifurcation phenomena. For example, we
may want to control the location of a fold or a Hopf
bifurcation point. A more complicated case is the
control of the distance between two folds (e.g., elim-
ination of hysteresis, or elimination of unwanted
solutions).

In the presentation below we give special attention to
numerically stable and efficient implementation. For earlier
work see Doedel & Kernévez [1987a, b].

In addition to the equality constraint (3.1) we may have
inequality constraints

hi(u,)\)go’ i=1’--’nhy

where each 4;: X = R is C!. Inequality constraints are
often needed for existence of an optimal solution xy =
(uo, Mo) since they introduce boundedness. Only those
that are active, i.e., those that satisfy

hiug, \o) = 0, i€, card(y) = ng,
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have to be taken into account in the optimality system and
they can be considered as included in f{u, \) = 0.

3.1.

Necessary conditions for a solution xp of fix) = 0 to
locally minimize g(x) are stated below:

The optimality equations

Theorem. Let xo minimize g(x) over all x close to xy with
JSx) = 0. Assume that f,c0 = fi(xo) has full rank. Then
there exist p € R", g € R such that

D)*p + (g)*q = 0,
p'p+4* =1

(3.2)

Proof. Since f,? has full rank we can permute the com-
ponents of x € R"*”\ and write x = (y, z) where y € R",
and z € R™\, so that

£ = (fyo fzo), where fy0 is nonsingular.

By the implicit function theorem we can locally para-
metrize the solution to f(y, z) = 0 as y = w(z). Then g(x)
= g(y, 7) = g(W(2), 2). A necessary condition for g to
have a minimum at (yg, z¢) is that

gw, + 8 =0

Also, from differentiating f(w(z), z) = 0 with respect to
zZ we have
wl+ =0

0 0
y z

and therefore the n + 1 by (n + n))-dimensional matrix

0 0
a0 = |2
o= g0 o

has rank < n. In fact, 4¢ has rank n because by assump-
tion the n by n submatrix fy0 is nonsingular. The n + n),
by n + 1 dimensional transpose matrix A therefore also
has rank # and consequently it has a one-dimensional null
space, i.e.,

0y x 0y *
UD* (&) \4 0
for some p € R", ¢ € R. This final equation is equivalent
to (3.2). H

Thus

Remarks.

(1) Since x = (u, ), Eq. (3.2) splits into
Do + (€)*q =0,
SY)*p + 8.a=0 i=1,..
p*p+¢* = 1.

»m (3.3)
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(2) If we distinguish the active constraints A;(#, \) = 0,
i € I, from the state equation f(u, A) = 0 then we
have the optimality system

Su, N) = 0,
hiu, \) = 0,
U + €D*q + (B))*r = 0,

UL P+ 80 a+ (B r=0, i=1,..n.
p*p+ @ +r*r=1,

i €1,

where p € R”, g € R, and r € R,

(3) One needs two parameters (in a ‘generic’ system) in
order to have bifurcations. Finding a bifurcation in
a one parameter bifurcation diagram is ‘exceptional’
for such a system. For an objective functional to reach
its minimum at a simple bifurcation point, while using
only one control parameter, is even more exceptional.
Thus we expect to encounter this situation only when
there are at least two control parameters. Now f, =
(fu fn; r,) will have full rank (= n) at such a bifur-
cation point. For example, if the bifurcation point
is a simple bifurcation with respect to \; then fj, €
R(f,,) but typically f, € R(f,). Similarly we can expect
the full-rank condition of the theorem to hold at a
cusp, at an isola formation point, and similarly at
higher-order singularities, when the system is generic.
Of course, many systems are not generic and excep-
tional points can arise.

Example. Assume that we have a solution curve con-
taining a fold F to

f(u, A, IL) =0,

for fixed control parameters \ and varying scalar parameter
u. The aim is to find (#, N\, p) € R” X R™ X R so that
the fold & is as far to the right as possible. There are
several applications where such control is of interest, for
example in certain ignition problems. We can consider the
parameter p as a component of the state variable. Define
the objective functional as

3.4

gu, \, p) = p,

and begin by optimizing with respect to p. Starting from
a point (ug, po) on the manifold f(u, p) = 0 we continue
a branch [u(s), u(s)] and find the fold. At this point the
optimality conditions (3.3) are
f u*p = 0,
f'p+4q=0,
p*'p+¢* =1

3.5

The successive continuation algorithm given below can
lead to a solution that also satisfies the other optimality
relations:

fip =0, i=1,..,n. (3.6)

Remark. As already stated, in case some constraints s;(u,
N\, i) < 0 are active, we need to augment (3.4) with the
corresponding equations h;(u, N\, p) = 0, augment the
adjoint state p with Lagrange multipliers r;, and replace
(3.5), (3.6) by

fip + D, Wi =0,

J€ly

N E DN NN N R RN
J€l,

Lo+ D, )N+ g =0,
j€lg

pro g+ Dyrt =1
J€lg

3.2. Successive Continuation
The necessary conditions (3.3) give rise to the system

S, N) =0,
gu,N) — o =0,

fip + giq =0, (3.7
fap+ &g =r1 i=1..m,
p*p + ¢* =1,

where we have introduced new parameters 71, ..., Tpy.

The algorithm then consists of the following successive
continuation strategy applied to (3.7):

(1) INITIALIZATION: Find a solution (u, N) to f(u, \) = 0
and evaluate w = g(u, N\).
(2) STARTING PROCEDURE: Continue a branch of solutions
to
fu,N) =0, gu,N) —w =0,

with all control parameters \; fixed, except one, say
M. For notational simplicity we may take k = 1. Each
point on the branch then consists of (\1, u, w). Locate
a quadratic extremum of w. Such a point can also be
thought of as a fold with respect to « on the branch.

(3) GENERATION OF STARTING POINT: At each extremum
from Step (2) we can find p and g, not both zero,
and {7;}/) with 7; = 0, satisfying the last three
equations in (3.7).



(4) MAIN ALGORITHM: Free another control parameter,
say, A2, and compute an entire branch of solutions
(M, N2, 4, p, q, 72, ..., Tny, w) to (3.7). Locate zero
intercepts of the remaining 7; using, say, the secant
iteration (2.9). Restart the continuation procedure at
each of these zeroes, fixing the corresponding 7; at
zero and freeing one of the remaining X\;. Continue
doing this as long as further zero intercepts are found
and while there are still unused control parameters
left.

Remarks.

(1) Continuation of solution branches to (3.7) is done
using pseudoarclength continuation with branch
switching at eventual bifurcation points.

(2) If there are also inequality constraints A;(u, \) < 0,
then monitor the values of A;(u, \) along solution
branches and locate zero intercepts. From these points
the algorithm can be repeated with the corresponding
active inequality constraint included in the state
equation f(u, \) = 0.

Efficient implementation

Rewrite the Eq. (3.7) in the successive continuation
algorithm as

S =0,
g(x) - w = 0’
fip + giq =0,
*
fup + g;9-7=0,
p*p+q -1=0,

3.3)

where x = (u, \), u € R?, A ¢ R"™ and 7 € R”:. Here
X\ denotes the control parameters with respect to which
g has a local extremum, and u denotes the remaining
control parameters, for which

7= fup + guq # 0,

>. Then Fy = <fx> and F,' =

8x

i=1,...,n,.

Jx)
gX) —w
(f," &}). Since Rank(fy,) = nand f)p + gfq = 0,

it follows that Rank(Fy) = n also. Define y = <;’) .

Let F(x, w) = <

Then (3.8) becomes

Flx, ) = 0,

E* =0, (3.92)
\b*\b -1= 09

T=FY (3.9b)
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First (3.9a) is solved for x € R”+™ ¢ R?*1, and
w € R. Thereafter (3.9b) is used to evaluate 7. Recall
that in the successive continuation algorithm we seek
zeroes of the components 7; of 7.

The Jacobian matrix at a solution (xp, ¥g, wo) of
(3.9a) is

F? o v
E2 EY o,
o* 295 0O

wherey = F®= (0,0, ..., 0, —1)* € R"*!, The linear
operator (1~;*¢)§3 acts upon a vector x € R”*" as follows:

(EX)3x = (ES%)* o

The linear systems in Newton’s method applied to (3.9a)
are then of the form

A O v\/[x f
c A o|ly]| =g (3.10)
0* ¢* 0/ \z h

As noted above, the n + 1 by n + n), matrix A = F,'(o
has rank n. We have N(4*) = Span{\//} . Let N(A) =
Span{q&i};'il. The first equation in (3.10) is Ax =
S — vz. Thus we must have

The solution x to
vrf

Ax=f—¢*77

has the form
m
X = Xxp + Z oid;.
i=1

A particular solution x, is easily found, as are the null
vectors {] i», of A and ¢ of A* as will be shown
below. The second equation of (3.10) then reads, upon
left multiplication by 7,

n\
$1CE, + D aj9) = dig

j=1

which can be rewritten as

ny
D @1Co)e; = dlg — 67Cxp, i=1,...,m\ .
-~ 3.11)



518 E. Doedel et al.

Upon solving the linear Eqgs. (3.11) for the {a,-];'il one
can evaluate x = xp, + z in=)‘1 a;¢;. Now find a particular
solution y, to

A*y = g - Cx

Finally we have y = y, + By, where by the third
equation in (3.10), ¥ *(yp, + B¥) = h, from which
h — y*yp

vy
In practice we use pseudoarclength continuation which
adds one more dimension to (3.10). But this inflated
system can be solved efficiently as discussed earlier in
Sec. 2.3.

The solution algorithm above also establishes the
nonsingularity of the matrix in (3.10) provided that

(1) The matrix f)? has full rank.
(2) The ny by n), matrix in (3.11) is nonsingular. We call
this matrix Q. Its entries are

Qij = ¢iCh; = dT(F %o = dT(FL ) * Yo

= Yo Fx 60i-
(3) The inner product ¥ *v is nonzero.

8 =

By the implicit function theorem we can then locally
continue the solution (x, ¥, w) of (3.9a) using any one of
the u; as continuation parameter. (In practice we use of
course pseudoarclength continuation in order to be able
to compute around folds with respect to u;).
Condition (1) is our basic assumption. It is easily
seen that condition (3) is satisfied. If not, then the
last component (= gq) of ¥ must be zero and by (3.8)

we then have (f} g;“)(‘(/)’) = 0 where y € R” is not zero.

Thus f,"y = 0, which contradicts the assumption that
f+ has full rank.

Finally, Condition (2) is satisfied if the given extremum
of the objective function g(x) on the manifold f(x) = 0
at the point x = xg corresponds to a strict quadratic
extremum. In fact, in this case Q is positive (or negative)
definite. To see this, let x(s) be any solution path to
F(x, w) = 0that passes through xp. From differentiating
F(x(s), w(s)) = 0 we have F,Xx + F,o = 0. At xg
we have @ = 0 so that F2%, = 0, and therefore %o =
= in=0 o;¢;. Taking the second derivative gives

Fxx.x..x.+Fx..x.+2FXw.x.(;)+Fww(;)(..0+Fw(B=0

Evaluation at xg, using &9 = 0, and multiplication on
the left by ¢* results in

\L*Fxg)?ofo + tﬁ*F"cO wy =0

We already know that y*F° = y*y # 0. Thus

V*F (T aip ) (T i)
@o = =
Y*FY

a*Qa

‘L*F;O

and for a strict quadratic extremum this must be nonzero
for all nonzero choices of a.

Computation of the null vectors

The null vectors {¢>,~] ,.gl of A and ¢ of A* can be
computed efficiently by a generalization of a procedure
given earlier. Assume that the n + 1 by n + n) matrix
A has been decomposed by Gauss elimination with row
and column interchanges into A = PLUQ, where P and
Q are permutation matrices. P has dimensions n + 1 by
n+1,Qisn + nybyn + ny, and

~ L 0 A U R
= U =
L (1* 1) ’ (0* O*) ’

where L and U are n by n and R is n by n). L is lower
triangular with 1’s along the main diagonal and U is upper
triangular with nonzero entries along the main diagonal.
Thus both L and U are nonsingular. Then each ¢; is a
solution of PLUQ ¢; = 0, or equivalently, since P and
I are nonsingular, of

U R Vi 0

0* 0*/\—e;/\0/)°
where ( Vi ) = Q¢;. Choose e; € R™ to be the ith
unit vector. Find each v; from backsubstitution in Uv;
= R e; = the ith column of R. Then ¢; = Q* ( v; )

—&;
Note that if A has already been decomposed (for
computing xp) then only one additional backsolve is
needed for each ¢;.
We find ¢ in one backsolve as in Sec. 2.1: From

A*Y = 0 we have Q* U*L*P*y = 0, or since Q is

nonsingular
u* O\ /L* I\(w\y (O
R* 0/\0* 1/\»/ \0O/°

w
where <v> = P*y. Since U* is nonsingular we must

T om0,

Take v = — 1. Then wis found from L*w = 1. Finally

()



Particular solutions x, and y, to Ax = ..., and A*y
= ... can also be computed using the decomposition
above (cf. Sec. 2.1).

3.3.

Another optimization algorithm that requires the con-
tinuation path to remain on the equilibrium manifold
Sx) = 0is the projected gradient method. In this method
the direction of the branch is taken to be the direction
of steepest descent. This leads to the following system
of equations:

The projected gradient method

x =xo + a(gd)* + (f))*6,
Jx) =0,

(x — x0)*x9 — As = 0,
which can be rewritten as

flxo + a(8D* + (f)*B) = 0,
aglxo + X3(f)*B - As = 0, (3.12)

and which is to be solved for 3 € R” and « € R. Newton’s
method for (3.12) is

(f,?(f,?)* f,?(g,‘i)*>(Aﬁ>
(f2x0)* %% /\Aa

__[fxo + aed* + (£)*B)
aglto + ¥5(fD*B - As

The new direction vector x is given by
X = agd)* + ()8,

where & and B are obtained from

&) <B> _ (0) _

gg X0 o 1
This takes only one extra backsubstitution at the end
of the Newton iterations. The normalization used in
(3.13) is %*%¢ = 1. Rescale (8, &) so that || #]|> =
x*x = 1.

(f,?(f;’)* .13

(f x0)*

Efficient implementation

The linear systems in Newton’s method are of the form

(720G

(3.14)
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where

A= f0= 0 M Sy o o).

We assume again that A4 has full rank (= n). As already
mentioned, this poses no real restriction if the system
SJ(x) = 0is generic. Thus AA4* is nonsingular and (3.14)
can be solved by the algorithm for bordered systems given
earlier. The bordering algorithm requires the solution of
two subsystems of the form

AA*x = f .

This can be done efficiently as follows: First determine
the decomposition

A = PLOQ ,

where L is n by n and lower triangular with 1’s on the
main diagonal, and U = (U R)is n by n + ny with
U upper triangular and nonsingular. As before, the
null vectors {¢;}72, of A and a particular solution y,
of

Ay = f

can be computed efficiently. Then y =y, + 2 ,"2*1 ojdj,
and x is the solution to

n
A*x =y = yp + D, 0jd) 3.15)

i=1

The right-hand side must be in the range of A*. This is
equivalent to requiring that

n

Z a1¢7¢j = "d’?yp, i=1,...,m

i=1

This system is nonsingular and can be solved for {a;};>,.
Now y can be evaluated and the overdetermined system
(3.15) is uniquely solvable for x.

Acknowledgements

These notes correspond to the material covered by Doedel
in a graduate seminar on numerical bifurcation analysis
in the Department of Mathematics at the University of
Utah during the fall quarter of 1987. He is thankful to
the participants at the seminar for their patience and
interest. Thanks also go to the the Department, and in
particular to Professor Hans Othmer, for the invitation
and support.



520 E. Doedel et al.

The course was given again at the University of
Minnesota in the spring quarter of 1988, and this led to
the current form of the notes. Thanks are extended to the
participants for their interest in the material and their
many comments. Thanks also the School of Mathematics,
the Department of Computer Science, the Department of
Chemical Engineering and the Minnesota Super Computer
Institute for making the visit possible. Special thanks go
to Professor Don Aronson for his invitation.

Much of the material comes from the work of the
authors and from joint work of Doedel with Wolf-
Jirgen Beyn and Mark Friedman.

The numerical examples were done using the software
package AUTO. The latest version of the very useful
companion graphics package PLAUT was developed by
Nguyen Thanh Long at Concordia University.

References

Aronson, D. G., Chory, M. A., Hall, G. R. & McGehee,
R. P. [1982] “Bifurcations from an invariant circle for
two parametcr families of maps of the plane: A computer-
assisted study,” Comm. Math. Phys. 83, 303-353.

Beyn, W.-J. [1990] “Numerical methods for dynamical systems,”
in Proceedings of the SERC Summer School at Lancaster
(UK) (Oxford University Press).

Chan, T. N. [1983] M. Comp. Sci. Thesis, Concordia Uni-
versity, Montréal.

Dellwo, D., Keller, H. B., Matkowsky, B. J. & Reiss, E. L.
[1982] “On the birth of isolas,” SIAM J. Appl. Math.
42 (5), 956-963.

Doedel, E. J. [1981] “AUTO: A program for the automatic
bifurcation analysis of autonomous systems,” Cong. Num.
30, 265-284 (Proc. 10th Manitoba Conf. Num. Math. and
Comp., Univ. Manitoba, Winnipeg, Canada).

Doedel, E. J. [1984] “The computer-aided bifurcation analysis
of predator-prey models,” J. Math. Biol. 20, 1-14.

Doedel, E. J., Jepson, A. D. & Keller, H. B. [1984] “Nu-
merical methods for Hopf bifurcation and continuation
of periodic solution paths,” in Computing Methods in
Applied Sciences and Engineering VI, ed. Glowinski, R.
& Lions, J. L. (North Holland, Amsterdam), pp. 127-136.

Doedel, E. J., Keller, H. B. & Kernévez, J. P. [1991] “Nu-
merical analysis and control of bifurcation problems: (II)
Bifurcation in infinite dimensions,” Int. J. Bifurcation and
Chaos 1 (4), (to appear).

Doedel, E. J. & Kernévez, J. P. [1986] “AUTO: Software
for continuation and bifurcation problems in ordinary differ-
ential equations,” Applied Mathemaics Report, California
Institute of Technology, 226 pages.

Doedel, E. J. & Kernévez, J. P. {1987] “Optimization in
bifurcation problems, Part I: Theory and illustration,” Lecture
Notes in Control and Information Sciences 102 (Springer-
Verlag), pp. 181-190.

Doedel, E. J. & Kernévez, J. P. [1987] “Optimization in bifur-
cation problems, Part II: Numerical method and applica-
tions,” Lecture Notes in Control and Information Sciences
102 (Springer-Verlag), pp. 191-203.

Fairgrieve, T. F. & Jepson, A. D. “O. K. Floquet multipliers,”
to appear in SIAM J. Numer. Anal.

Fier, J. M. [1985] “Fold continuation and the flow between
rotating, coaxial disks,” Thesis, Part I, California Institute
of Technology, Pasadena CA.

Griewank, A. & Reddien, G. W. [1983] “The calculation of Hopf
points by a direct method,” IMA J. Numer. Anal. 3, 295-303.

Griewank, A. & Reddien, G. W. [1984] “Characterization
and computation of generalized turning points,” SIAM J.
Numer. Anal. 21 (1), 176-185.

Jepson, A. & Spence, A. [1985] “Folds in solutions of two
parameter systems and their calculation: Part I,” SIAM
J. Numer. Anal. 22 (2), 347-368.

Keller, H. B. [1977] “Numerical solution of bifurcation and
nonlinear eigenvalue problems,” in Applications of Bifur-
cation Theory, ed. Rabinowitz, P. H. (Academic Press),
359-384.

Keller, H. B. [1978] “Global homotopies and Newton methods,”
in Recent Advances in Numerical Analysis, (Academic
Press), pp. 73-94.

Keller, H. B. [1987] “Lectures on numerical methods in
bifurcation problems,” Notes by Nandakumaran, A. K. &
Ramaswamy, M., Indian Institute of Science, Bangalore
(Springer-Verlag).

Kernévez, J. P. [1980] Enzyme Mathematics (North-Holland,
Amsterdam).

Kevrekidis, I. G., Aris, R., Schmidt, L. D. & Pelikan, S. [1985]
“Numerical computation of invariant circles of maps,”
Physica 16D, 243-251.

Kubicek, M. & Marek, M. [1983] Computational Methods
in Bifurcation Theory and Dissipative Structures (Springer-
Verlag).

Rheinboldt, W. C. [1982] “Computation of critical boundaries
on equilibrium manifolds,” SIAM J. Numer. Anal. 19 (3),
653-669.

Rheinboldt, W. C. [1986] “Numerical analysis of parametrized
nonlinear equations,” University of Arkansas Lecture Notes
in the Mathematical Sciences (Wiley-Interscience).

Seoane, M. L., Doedel, E. J. & Kernévez, J. P. [1991] “A
method for the localization and continuation of isola
centers and bifurcation points,” (submitted to Int. J. Bi-

furcation and Chaos)

Seydel, R. [1988] From Equilibrium to Chaos. Practical Bi-
furcation and Stability Analysis (Elsevier, New York).

Seydel, R. {1991] “Tutorial on continuation,” Int. J. Bifurca-
tion and Chaos 1 (1), 3-11.

Taylor, M. A. & Kevrekidis, I. G. [1990] “Interactive AUTO:
A graphical interface for AUTO86,” Technical Report,
Department of Chemical Engineering, (Princeton University).

van Veldhuizen, M. [1987] “A new algorithm for the numerical
approximation of an invariant curve,” SIAM J. Sc. Stat.
Comp. 8 (6), 951-962.



