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Abstract—The paper presents techniques used in both software
testing and verification. Korat is the tool that has an effective
technique for generation of complex data structures. CVC3 is the
state of the art system for solving complex quantified formulas.
Partial evaluation is the technique used to speedup a computation
of systems by specialization. Testing (represented by Korat) is
used to find bugs in a software, where verification (represented
by CVC3) is used to prove their absence in software. The both
approaches have their own advantages. The natural question is
how to use them together. My research plan is to use Korat
together with partial evaluation to simplify formulas that will be
delivered to CVC3.

Index Terms—Verification, Software Testing, Partial Evalua-
tion

I. INTRODUCTION

TWO main approaches used to increase software quality
and reliability are software testing and verification. How-

ever, they have different ways to achieve this goal. Software
testing represents running a program with a set of inputs to
gain confidence that a result meets its expectation. On the other
hand, verification represents formally proving that a software
meets its specification. Importance of testing and verification
is growing as the consequences of software bugs become more
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severe. The goal of this paper is to present techniques used in
software testing and verification, and to show a possible way
to combine them.

Korat [2] is a tool for automated software testing. The
heart of Korat is a technique for bounded-exhaustive input
test generation. This technique is suitable for generation of
complex data structures. The specification of data structure
is defined by a class (determines links in the structure) and a
predicate (specifies additional structural constraints). Given an
input specification and a finitization that bounds the desired
test input size, Korat generates all inputs (within the bounds)
for which the predicate holds. This systematic search is known
as the Korat algorithm.

We have developed UDITA [4] a language for test input
generation. UDITA is based on Korat algorithm, but it is more
expressive. It allows a user to arbitrarily combine a predicate
and a finitization, which was not the case with Korat. UDITA
is implemented in Java PathFinder [5], the backtrackable in-
terpreter for a Java bytecode. However, UDITA is slower than
Korat because of an overhead introduced by the interpreter. We
are planning to use Korat algorithm for variable instantiation,
especially if the variable is complex data structure.

There are two approaches to checking first order logic
formulas. One is the automated theorem proving (ATP) and
the other is automated theorem proving based on satisfiability
modulo theories (SMT). The advantage of ATP systems is that
they are better in reasoning about the quantified formulas than
SMT systems. On the other hand, advantage of SMT systems
is that they are more effective in reasoning with respect to a
given background theory. CVC3 [1] is the SMT solver that
combines the advantages of both ATP and SMT systems. The
developers of the CVC3 were motivated by another SMT
solver, called Simplify. Simplify was the first SMT solver
with an acceptable performance when reasoning about the
quantified formulas. The goal of CVC3 developers was to
improve techniques used in Simplify [10] and introduce new
ones, among which the best results gave a level instantiation
technique.

Partial evaluation is a technique used for optimization of
programs by specialization. The idea is that a given compu-
tation process can be evaluate with some, not all, values of
process’s variables. The result is the new computation process
that might the starting process. In my research I plan to use
partial evaluation to simplify complex formulas and recursions.
In this way the computation done by a SMT solver and an
interpreter will be faster.

The goal of my research is to develop a system that will be
used for testing and verification of modern software systems.
The base of the system will be an interpreter for Isabelle
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code. Isabelle is the interactive theorem prover. As an input
Isabelle takes a high order formula. Most of these formulas
are complex and hard to solve. I am planning to use three
approaches to address this problem. The first approach is to
simplify the formula by partial evaluation and to pass it to
a SMT solver. While doing this my system will attempt to
evaluate only variables that have small and bound domain.
The second approach is to split the formula into the simpler
formulas and to try to solved them with the SMT solver.
Finally, the last approach is to use a combination of the two
previous approaches.

Similar to my research is the work done with SMASH
tool [9]. The tool aims to find bugs in a complex code. It
decomposes the code into peaces (function calls) and try to
verify properties or to test them under inferred preconditions.
The inferred preconditions bound the inputs to this peaces.
However, the approach does not guarantee termination when
recursions are analyzed. I hope that the partial evaluation will
allow me to make recursion simpler and to prove or disprove
its properties. Also, their approach stays always in the domain
of decidable problems. On the other hand, my approach will
attempt to find counterexamples in undecidable formulas by
partially evaluating them to decidable formulas.

Another related work is the symbolic execution technique
[7]. It collects constraints over variables on an execution paths.
Additionally, it collects branching conditions on the paths.
The conjecture of this constraints represents the formula that
can be solved by a SMT solver. The difference with my
approach is that it does not use concrete values to partially
evaluate the formulas. Concolic execution [8] is the technique
that uses combination of symbolic execution and testing with
concrete inputs. However, the concrete test inputs are used
for guiding the symbolic execution, and not to simplify the
formulas extracted by symbolic execution.

II. BACKGROUND

In this section I will first present Korat, the tool for software
testing, then CVC3 the system for solving quantified formulas,
and finally the partial evaluation technique, used to optimize
and simplify systems.

A. Korat: Automated Testing Based on Java Predicates [2]

Manual testing is labor intensive and error prone. Therefore,
a research on automated testing is of a great importance. The
authors propose Korat technique for automated testing of Java
programs. The technique tests a method that is annotated with
a precondition and a postcondition. A method is correct if
a precondition holds before and a postcondition holds after
the execution of method. To check this, Korat uses a formal
description of a precondition and automatically generates all
possible (non-isomorphic) test cases. These test cases are used
one by one as the method inputs. Korat executes the method
with the input and checks if output satisfies the postcondi-
tion. If the postcondition is not satisfied Korat generates a
counterexample. After, the counterexample can be used in
debugging purpose.

A precondition and a postcondition of a Java method a user
expresses in the Java Modeling Language (JML) code. The
JML code is convenient for specification because it can be
translated into the Java code. The translated Java code contains
assertions that check the specification. Besides a precondition
and a postcondition, the user writes a class invariant as an
imperative predicate (a Java method that returns a boolean
value). In Korat, this method is called repOk.

The core of the Korat technique is the algorithm for
automated test case generation. With a given bound of a
domain and a predicate Korat generates all non-isomorphic
test cases. These test cases can be complex data structures.
For description of a domain Korat uses a finitization, a set of
bounds that limits the size of the inputs. The finitization is a
Java method that is automatically derived from a Java class
(and can be manually modified if needed). The user specifies
the number and a type of object for every field of the class.
For example, the class BinaryTree has integer field size that
represents a number of nodes in the tree and filed value where
it stores a value. The class BinaryTree also contains field root
of type Nodes that points to a first node in a tree. The class
Node has fields left and right that points to a left and a right
subtrees. In the finitization method user can defines that field
size can only have the value N and field value can have any
value from a range [min, max]. Also it can define that the
domain of root, left and right fields is set of N objects of the
type Node plus value.

In Korat, each test case is represented by a candidate vector.
Each position in candidate vector represents a field of an
object from unified set of objects. The unified set of objects
represents the union of all field domains. For instance, if the
unified set has 5 objects and if they all have 3 fields, the size
of candidate vector will be 15. Also, Korat assigns different
indices (from zero to a size of a domain minus 1) to every
object in every object set. The elements of the candidate vector
are these indeces. For example, at the position i the candidate
vector defines a filed which domain is a set D. The possible
values at that position are 0 to maximum size of D minus 1.

Korat executes repOk and uses backtracking mechanism to
generate all valid candidate vectors, i.e. those candidate vectors
for which repOk returns true. At the beginning Korat sets all
values in the candidate vector to 0. Korat algorithm monitors
a first access to all fields that are done during the execution.
It makes a field-ordering a list of the filed identifiers ordered
by the first time repOk accessed the corresponding filed. The
filed identifier represents its position in the candidate vector. If
repOk returns true Korat outputs the current candidate vector
as a valid test case. It also generates all candidates that can be
generated by fixing the values of fields in the field-ordering
and varying all possible values of non-accessed fields. After
this, Korat backtracks and increment a field domain index of
the last field in the field-ordering. If the index exceeds the
maximum value, Korat resets it to 0, and increment the domain
index of the previous field in the field-ordering. The procedure
repeats until the one of the domain indices is incremented
without exceeding. Then repOk is executed with the new
candidate. Algorithm terminates when the all domain indices
exceed maximum values. If the predicate value is false then the
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procedure is the same, but Korat instantly increase the domain
index of a field, without generating any candidate. Thus,
Korat omits candidates that could be generated by varying
all possible values of non-accessed fields, and fixing values of
fields in field-ordering. The experimental results shows that
in this way Korat prunes large portion of the search space.
Additionally, algorithm implementation is refined such that it
produces only structurally non-isomorphic test cases.

The authors used several data structures for performance
tests. The results show that Korat is able to generate all
structures within a very large state spaces. This is due to the
effective pruning based on fields accessed during repOk’s ex-
ecution. They also show that generating only non-isomorphic
structures reduces the number of valid data structures.

The authors also compared test case generation of Korat
and the Alloy Analyzer (AA) [11]. Allow is the declarative
language based on relations. It can be used for modeling struc-
tural properties of a program, and is convenient for modeling
class invariants. These invariants correspond to repOk method
in Korat. With Alloy user can also declare field types, which
corresponds to assigning a domains to fields in Korat.

From these descriptions AA can generate all (mostly non-
isomorphic) instances of the model. An instance evaluates
relation such that all constraints of the model are satisfied. AA
translates the Alloy model into a boolean formula and uses a
SAT solver to find a assignment that satisfies the formula. The
assignment is then translated back to an instance of the input
model. To reduce number of isomorphic instances AA adds
symmetry breaking predicates to a formula.

Korat and AA were compared on a set of date structures.
Korat outperforms AA, showing that it is faster in date
structure generation. There are two reasons for this. Because
AA translates an Alloy model to a formula it could be that
the translator generates many unnecessary large formulas. The
second reason is that AA generates more instances than Korat.

The authors tested Korat effectiveness in testing correctness
of methods. The experiments were run on several methods.
Korat generated all structures from size 0 up to a given
size maximum size. The structures were use as inputs to
the methods. The results show that Korat is practical for
correctness checking of methods.

There are few drawbacks of Korat. The first is that it does
not support floating point types. This can be overcome in
combination with symbolic execution. The second is that it can
be used only for a black-box testing. This is partly overcome
in the UDITA language that allows user to test a code in a
white-box manner. Because of the impressive results we are
planning to use Korat algorithm in combination with symbolic
execution for variable instantiation.

B. Solving Quantified Verification Conditions Using Satisfia-
bility Modulo Theories [1]

Many conditions like preconditions or postconditions can be
expressed by quantified formulas. Automated theorem proving
(ATP) system are efficient for solving quantified formulas, but
have a problem in reasoning with respect to a given theory. On
the other hand, satisfiability modulo theories (SMT) systems

are efficient for reasoning with respect to a theory, but are less
efficient for solving quantified formulas. The previous research
attempts to combine the advantages of these two systems
resulted in the Simplify tool, the SMT solver that supports
reasoning about quantifiers. The goal of the authors was to
build even more effective SMT solver based on the DPLL(T)
architecture [13] with efficient instantiation technique. The
first step was to extended the Abstract DPLL Modulo Theories
framework [12] with a rules for quantification. Then, the
authors implemented Simplify’s instantiation techniques into a
new SMT system, CVC3, and improved it with a instantiation
level technique. The technique is responsible for prioritizing
large number of terms that are candidates for quantifier instan-
tiation.

The SMT problem consists of solving some closed first
order formula φ, with respect to some fixed background theory
T with signature Σ. Also it is desirable to allow the formula
to contain additional free symbols, i.e. constant, function, and
predicate symbols not in Σ. We say that φ is T − satisfiable
if there is an expansion of a model of T to the free symbols
in φ that satisfies φ. Tools used for solving these formulas are
called SMT solvers.

The Abstract DPLL Modulo Theories framework represents
a SMT solver as transition system. The state of the system is
either Fail or M ∥ F , where M is the set of premises (literals
that hold) and F is a formula in CNF which needs to be
checked. The transition relations are defined over the states
by the transition rules. Starting from initial state ∅ ∥ F0, by
applying transition rules the system goes toward a final state.
If the final state is Fail the formula is T − unsatisfiable,
otherwise if it is M ∥ F then it is T − satisfiable if every
clause in F is satisfiable by literals from set M . The two
representative rules are:

UnitPropagation :

M ∥ F,C∨l ⇒ Ml ∥ F,C∨l if

{
M |= ¬C
l is undefined in M

T − Propagation :

M ∥ F ⇒ Ml ∥ F if

{
M |=T ¬C
l or ¬l occurs in F
l is undefined in M

Where C is s clause, l is a literal, |= is propositional en-
tailment, |=T is first-order entailment modulo the background
theory T .

The authors define a new transition system in order to sup-
port quantified formulas. In the system they allow quantified
formulas to occur in M and F wherever atomic formulas
occur. Also, abstract atomic formulas are quantified or atomic
formulas. Additionally, an abstract literal is an atomic formula
or its negation, and an abstract closure is a disjunction of
abstract literals. Finally, the authors extended The Abstract
DPLL Modulo Theories framework with rules that allow
quantified instantiation:

∃ − Inst :

M ∥ F ⇒ M ∥ F,¬∃x̄.φ∨φ[x̄/c̄] if

{
∃x̄.φ in M
c̄ are fresh constants

∀ − Inst :

M ∥ F ⇒ M ∥ F,¬∀x̄.φ ∨ φ[x̄/s̄] if

{
∀x̄.φ in M
s̄ are ground terms
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Where, ∃x̄.φ stands for ∃x̄.∃x̄. . . .∃x̄.φ, and analogous for
∀x̄.φ. Furthermore, the rule ∃ − Inst instantiates ∃x̄.φ with
fresh constants c̄, to get a ground formula φ[x̄/c̄]. (φ[x̄/c̄]
denotes that c̄ replaces x̄ in the formula φ). Then the added
closure on the right hand side is ¬∃x̄∨φ[x̄/c̄], that preserves
the satisfiability of F . Similarly, ∀− Inst rule instantiates ∀x̄
with ground terms s̄ to get a clause ¬∀x̄.φ ∨ φ[x̄/s̄].

It is important to note that for a given existentially quantified
formula it is enough to apply the ∃ − Inst rule only once.
This is because all fresh constants are identical. On the other
hand, a universally quantified formula can be instantiated
with instantiated with many ground literals. They are not
semantically or syntactically identical as fresh constants. This
paper focuses on new efficient strategies for instantiation of
universally quantified formulas or clauses.

One approach is a naive strategy that whenever ∀− Inst is
selected for application to an abstract literal ∀x̄.φ the rule is
repeatedly applied until x̄ is instantiated with every possible
tuple from some finite set G. Mostly, G represents a set of
all ground literals that appears in M . But, this approach can
be inefficient. The Simplify uses refined strategy: it tries to
find a subterm t of ∀x.φ (that is in M ) that contains x, and a
ground term g in M and its subterm s, such that t[x/s] =T g,
i.e. t[x/s] is equivalent to g modulo the background theory T .
The term t is called a trigger. For matching of a trigger and
a ground literal, which is not trivial, Simplify uses syntactic
matching based on the congruence closure of the ground
equations in M .

An orthogonal question is when to apply the ∀− Inst rule.
There are two different strategies: lazy instantiation and eager
instantiation. Lazy instantiation applies the ∀−Inst rule only
when it is the only applicable rule. On the other hand, eager
instantiation applies the rule as soon as it is added to M .
Simplify implements a variation of a eager instantiation.

In CVC3 every subterm or non-equational atom t that
contains all variables in x̄ is a potential trigger. CVC3 also
allows appearance of additional variables beside x̄, where
Simplify is more restrictive end does not allow their appear-
ance. Experiments in the paper show that this restriction is
unnecessary.

Simplify performs syntactic check to prevent instantiation
loops. It eliminates any trigger whose syntactical instances
occur elsewhere in the formula, which is insufficient for
detecting more subtle loops. For instance, if M contains the
abstract literal ψ = ∀x.(x > 0 → ∃y.f(x) = f(y) + 1) where
f is free, the only trigger is f(x). Next, if the set of ground
terms contains f(3), then with an application of ∀ − Inst, it
is possible to add the abstract clause ¬ψ∨∃y.f(3) = f(y)+1
to F . Then, if Simplify applies UnitPropagate and ∃ − Inst
rules the literal f(3) = f(c1) + 1, where c1 is fresh constant,
will be added to M . The introduction of f(c1) in the set of
ground terms can now give rise to a similar round of rule
applications generating a new term f(c2), and so on. In order
to avoid this, beside synthetic check, CVC3 also dynamically
recognizes loops that can be formed by a group of formulas.
We will refer to this strategy as smart triggers.

Another strategy that CVC3 implements is smart matching.
In order to perform effective term matching, after M is

modified, CVC3 computes and stores the congruence closure
E of the positive ground literals of M over the set G of all
ground terms in M . For any theory T , any two terms equal
modulo E are also equal modulo T ∪ M . Then, to apply
the rule ∀ − Inst to an abstract literal ∀x.φ, CVC3 gener-
ates ground instantiations for x by matching modulo E the
triggers of ∀x.φ. against the terms in G. Additionally, CVC3
implements syntactic unification algorithm. Given a trigger t
of the form f(t1, ..., tn) where f is a free symbol, CVC3
selects from G all terms of the form f(s1, ..., sn). For each
of these terms CVC3 tries to solve the unification problem
t1 =? s1, ..., tn =? sn. The unification does not immediately
fail if g(t̄) =? g′(s̄), where g and g′ are distinct symbols. It
does not fail in the following two subcases: (i) g(t̄) is ground
and g(t̄) =E s,2 and (ii) g is a free symbol and there is a
term of the form g(ū) in G such that s =E g(ū). In the first
case CVC3 removes the equation g(t̄) =?s̄, and in the second
case, it replaces it by the set of equations t̄ =? ū.

When verifying an application, generated conditions are of
type Γ ∧ ¬φ, where Γ represents large number of axioms for
which there is no built-in solver. Furthermore, many of these
axioms may be irrelevant for proving φ. The authors point
out that many resources can be easily spent on producing
and processing instances of these unrelated axioms. Therefore
reducing the number of axioms to those that are relevant is
the key challenge. To solve this problem, Simplify uses global
counter that marks every new clause generated by quantified
instantiation. The new clause is marked with a current value
of the global counter. Then the global counter is incremented
by 1. Later, when case-split occurs literals from clauses that
are marked with the lower value has priority. On the other
hand, CVC3 uses different strategy. For each clause it assigns
local value, called an instantiation level. If the instantiation
level for a term t is n, that means that t is the result of n
rounds of instantiations. At the beginning, instantiation level
of all terms it equal to 0. If a formula ∀x̄.φ is instantiated
with a ground terms whose maximum instantiation level of
all terms is n then all the new terms in φ[x̄/t̄] will have
instantiation level n + 1. Then CVC3 strategy visits ground
terms by instantiation levels. Terms with lower instantiation
level have higher priority. For a given bound b the strategy
will first visit all the ground terms which instantiation level is
between 0 and b. The bound will be increased only in case if
all the ground terms with the level up to b are exercised.

The experimental results shows that this strategy plays an
important role in avoiding instigation loops. The reason is that
every new ground term generated within an instantiation level
n belongs by construction to the next level, n + 1, and so
will not be considered for matching until all other terms in
the level n have been considered. Therefore, performing static
or dynamic checking for instantiation loops is unnecessary.
These checks remove triggers that are essential for efficient
satisfiability check. The instantiation level strategy avoids this
elimination.

CVC3 was evaluated on a 5599 benchmarks from SMT-
LIB. These benchmarks are publicly available and used for
testing SMT solvers. In the first set of experiments the authors
compared instantiation heuristics: 1) basic trigger/matching
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algorithm, 2) basic trigger with smart matching, 3) same
as 2) but with smart triggers, 4) same as 3) but with the
instantiation level. They ran all experiments both on the lazy
and eager instantiation strategies. The eager instantiation is
more efficient than lazy both in average time required for
solving and number of solved cases (benchmarks). The results
proved that the instantiation level is useful technique. Together
with eager instantiation it solved 5435 cases, much more than
other techniques.

The authors also compared a SMT solver (CVC3) with
ATP systems (Vampire [14] and SPASS [15]) and Simplify on
benchmarks that require both quantified and theory reasoning
(nasa benchmarks). All solvers were able to prove most of the
benchmarks. Simplify was faster than Vampire and SPASS,
but it also proved fewer cases. However, CVC3 was able to
solve the most benchmarks with the average time less than a
hundredth of a second. CVC3 was also compared with other
SMT solvers. The only two solvers at the time that supported
quantifiers and SMT-LIB format were: yices and Fx7. CVC3
proved 34 more cases than yices, although yices was faster
than CVC3.

C. Partial Evaluation of Computation Process - An Approach
to a Compiler-Compiler [3]

Two procedures for describing semantics of programming
language are a description of a compiler and description of an
interpreter. An interpreter represents a procedure that evaluates
statements of the defined language. On the other hand, a
compiler represents the procedure that translates a code from a
defined language to a target language (for which there already
exists compiler or interpreter). It is well know that writing a
compiler is harder that writing an interpreter. The reason is that
while writing a compiler, a developer needs to know which
actions are performed during a code translation and which
are done at run time. On the other hand, while describing
semantics of programming language by an interpreter, an
developer does not need to know a distinction between those
actions. But at run time an interpreter is often less efficient
than a compiler. Therefore, the author describes an algorithm
that automatically transforms an interpreter to a compiler. The
bases of the algorithm is the partial evaluation technique.

Partial evaluation is a transformation of a computation
process π with respect to m variables c1, c2, ..., cm that are
substituted with values c′1, c

′
2, ..., c

′
m. The values must be

known before or during the transformation. The computa-
tion process π can also have n variables r1, r2, ..., rn that
are not known before or during the transformation. Partial
evaluation evaluates only portion of π that can be evaluated
using the variables c1, c2, ..., cm and constants in π. After
partial evaluation, the process π is transformed into the new
evaluation process that has the variables r1, r2, ..., rn. If we
assign values r′1, r

′
2, ..., r

′
n to these n variables, a result after

evaluating the new computation process using them will be the
same as a result of the evaluation of the π with c′1, c

′
2, ..., c

′
m

and r′1, r
′
2, ..., r

′
n assign to c1, c2, ..., cm and r1, r2, ..., rn,

respectively. We can write this as:

π(c′1, c
′
2, ..., c

′
m, r′1, r

′
2, ..., r

′
n) = α(π, c′1, c

′
2, ..., c

′
m)(r′1, r

′
2, ..., r

′
n) (1)

where α is partial evaluation algorithm, c′1, c
′
2, ..., c

′
m are

partial evaluation variables and r1, r2, ..., rn are remaining
variables.

An interpreter, int, can be seen as a computation process
with variables that can be classified in two groups. The
variables from the first group are those which values are
a source program and information for syntax and semantic
analysis. We denote this group by s, and their values by s′. The
variables in other group we denote by r, and corresponding
values that will be determined at run time we denote by r′.
If we partially evaluate int with respect to s at the values s′,
then from previous equation (1) we have:

int(s′, r′) = α(int, s′)(r′) (2)

The result of partial evaluation, α(int, s′), can be seen as the
computation process that is translated into the metalanguage
describing the interpreter int. Actually, it can be seen as an
object program corresponding to s′.

Furthermore, if α is partially evaluated with respect to int
we have:

α(int, s′)(r′) = α(α, int)(s′)(r′) (3)

Here α(α, int) can be considered as a compiler because it
generates an object program from s′.

The author specifies the two properties that are desirable for
an effective partial evaluation algorithm: 1) While partially
evaluating an process π, α evaluates as larger portion of π
which can be evaluated with constants and values assigned
to partial evaluation variables, and 2) α evaluates as smaller
portion of π as possible which is not evaluated when new
computation process is evaluated with values of remaining
variables. The first property reduces the computation time
of the new computation process, where the second property
reduces the computation time of partial evaluation. If the al-
gorithm has both properties then the compiled object program
is more efficient then interpreter.

The author describes a partial evaluation algorithm in fol-
lowing way. A computation process can be represented as a
graph that has nodes ni (i = 0,1,..., k) that represent conditional
branching points and branches bj (j = 0,1,..., m) between
the nodes that represent sub-computational processes not con-
taining branching points. Furthermore, the author introduces
leaves that represent the termination of the process.

At each stage the algorithm distinguishes two kind of
variables:

• Partial evaluation variables are partial evaluation variables
of the previous stage or variables which values depend
only on constants and/or partial evaluation variables of
the previous stages.

• Remaining variables are variables that are not partial
evaluation variables.

The partial evaluation algorithm is described in 5 steps:
1) Let j(1), j(2), ..., j(m) be m integer variable that are all

set to 1. (note that m is the number of branches in the
graph). Set integer variable g to 1, and make an empty
list L. Go to the step 2.

2) Enter a triplet (bg, S
j(g)
g , a

j(g)
g ) in to the list L, where

S
j(g)
g is a set of pairs of partial evaluation variables and

their values (at the entry point of the j(g)-th entry to
bg), and a

j(g)
g is an address where the result of j(g)-

th partial evaluation of bg is generated. Note that the
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address can point to a new graph or a value stored in
memory. Go to the step 3.

3) Evaluate bg with partial order variables and constants.
Then mark new generated computation process with
b
j(g)
g . Its first address is aj(g)g . At the end, increment

the value of j(g) by 1 and go to the step 4.
4) If the process that bg points to is a leaf (a terminating

process) then stop partial evaluation. If it is not a leaf,
but a conditional branching point ni then we have two
following cases:

a) If ni can be evaluated only with the partial evalu-
ation variables and constants then it determines a
branch that will be chosen next. If that branch is
bq then set g to q and go to the step 5.

b) If ni can not be evaluated only with the partial
evaluation variables and constants then leave it
untouched. Then choose one branch that it points
to. If that branch is bq set g to q and go to the step
5. Then do the same with second branch, bp, but
this time set g to p and go to the step 5.

5) For bj(g)g check if the list L contains a triplet whose first
and second terms match with bg and Sj(g)

g respectively.
a) If it contains the triplet then move the control of

the generated computation process to point to third
term in the triplet, axg . Stop the partial evaluation.

b) If the triplet does not exist then return to the step
2.

The problem with a given algorithm is that it can not terminate
always due to loops in a computation process. It can terminate
if a branch in a loop is selected with a same entry variables
more then once. I plan to use partial evaluation to simplify a
complex code and formulas, expecting that a SMT solver will
be able to solve them easily.

III. RESEARCH PROPOSAL

The paper presented several techniques and two systems for
testing and verification. The first among them is the Korat, a
tool for software testing based on a program specification. The
impressive experimental results show that Korat’s technique
for test case generation is very practical. The second system
is CVC3, the SMT solver with powerful technique that allows
effective reasoning about quantifiers. Finally, partial evaluation
technique can be used to optimize and simplify a computation
process. The goal of my research is to develop effective and
expressive system for testing and code checking that will
combine the power of these systems and techniques.

The first step in development is to implement a system with
an architecture that will allow combining ideas described in
the previous section. Therefore, I implemented an interpreter
for Isabelle [16] code. Isabelle is an interactive theorem prover
that allows a user to express mathematical formulas in a formal
higher order language. Although, Isabelle aims in proving or
disproving some simple formulas, it mostly requires a lot
of human assistance. The reason for building an interpreter
is to make Isabelle more automated. We also found that
translation of verification conditions of programs written in
programming languages (like Scala or Java) to Isabelle code

is quite convenient. Thus, Isabelle code can be seen as the
intermediate code for verification and testing.

I have implemented an interpreter for the Isabella code that
supports operations over integers and booleans. It supports
conditional branching statement and function definitions. This
allows a user to write more sophisticated properties. I also
implemented a backtracking engine, in the interpreter, that
allows a nondeterministic instantiation of variables. A user
can specify a range of a nondeterministic integer variable
by giving its minimum and maximum value. For boolean
values a user has an option to select which value (true
or false) will be nondeterministically assigned to a variable
first. The nondeterminism is used in combination with copy
propagation technique that postpones an assignment of value
until the first non-copy operation that uses the variable. The
interpreter instantiate a variable when the first such non-copy
(arithmetic or conditional) operation is reached. The variable
is instantiated with one of the values from its domain. After
the code is executed, with one value, the backtracking engine
will backtrack to the assignment point and choose the next
value from domain, and so on. For instantiation of a variable
that represents algebraic data structure we plan to use Korat
algorithm.

For testing and verification I am planning to extract two
different formulas from an Isabelle code. The first formula
can be obtained by dynamic symbolic execution that will
follow one possible execution path. Symbolic execution col-
lects branching conditions on the path and forms a formula
called the path condition. The path condition is a conjecture
of the branching constraints on the path. With conditions
over variables it forms a formula whose solution represents
a collection of values. When these values are assign to the
variables it is guaranteed that the path will be executed. In
my system the solution (values) will be found by passing the
formula to a SMT solver that supports quantified formulas.
This is the place where I plan to use CVC3 or Z3 [6]
solvers. This kind of formula could be suitable for finding an
counterexample, if a corresponding path violates an property.
It is also suitable if there are few possible paths in a code.
The second formula is the one that represents entire or part
of a code. The observation is that an Isabelle code represents
a symbolic formula. Thus, we can directly translate the code
into the SMT-LIB format, supported by CVC3 and Z3. In this
case to prove that a property is valid, we would need to negate
it and check unsatisfiability of its negation. If the negation is
satisfiable, that means that the starting code violates a property.

I will use partial evaluation to simplify a complex formula.
My system will recognize the most appropriate variables
for instantiation in the formula. After instantiating them, I
expect to obtain a much simpler formula. The appropriate
variables are those that have a bounded domain. This approach
can be also used for testing undecidable formulas. Here, the
appropriate variables will be those that form the smallest set
that will transform an undecidable into a decidable formula.
The simplified formulas will be passed to the CVC3 or Z3. It
is possible that the SMT solver will easer find counterexample
or prove the simplified formula. If we can not solve a formula
with an identified set of the appropriate variables we will chose
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a random variable and instantiate it. Partial evaluation can also
help with solving recursive calls. The recursive function will
be partially evaluated, and thus simplified.

The partial evaluation can be used in two different pur-
poses: either to find a counterexample (testing) or to prove a
property (verification). When we search for a counterexample,
existentially quantified variables needs to be instantiated with
every value from their domain. This can be a problem if the
domain is large or unbounded. It can also happen that we
can not determine boundaries of the domain. In this case we
can partially evaluate a formula, and leave these existentially
quantified variables untouched and hope that SMT-solver can
solve the partially evaluated formula. The same problem
occurs with universally quantified variables when we need
to prove validity of a formula. Analogously, we will leave
these variables uninstantiated, and pass the negation of the
formula to a SMT-solver. Thus, decision to prove or find
an counterexample in a formula can take into the account
the number of uninstantiated existentially and universally
quantified variables. On this decision depends which variables
can not be evaluate (instantiated) further: existentially or
universally quantified variables (with unbounded or large or
unknown domain). But it can happen that a chosen variable
triggers the execution that will bound some of these variable.
In that case we can update the set of appropriate variables.
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