
EDIC RESEARCH PROPOSAL 1

Very Large Sets of Heuristics for Scene
Interpretation (VELASH)

Charles Dubout
I&C, EPFL

IDIAP Research Institute

Abstract—Research in machine learning has historically relied
on limited prior knowledge, usually designed by a reduced
number of experts. The VELASH project does the opposite and
aims at combining a very large number of heuristics (feature
extractors) developed by external contributors from all horizons,
to recognize as many objects as possible present in an image.
Computational aspects of the learning problem are of primary
concern, performance becoming critical given such a rich feature
space and since we want to interact with a large number of
external users. To help with the design of those heuristics,
the proposed framework should provide meaningful information
about the performance of an heuristic, areas in which it is useful
and those in which it still needs improvement.

Index Terms—Machine Learning, Object Detection, Classifica-
tion, Scene Interpretation, Boosting, Feature Selection

I. INTRODUCTION

MACHINE LEARNING in general strives to avoid the
necessity for complex handcrafted prior knowledge

and try to develop universal learning methods. The VELASH
project, taking place in the context of the MASH project
(http://www.mash-project.eu), under the EU’s 7th Research
Framework Programme (FP7), does the opposite and advocates

Proposal submitted to committee: September 3th, 2010;
Candidacy exam date: September 10th, 2010; Candidacy exam
committee: Exam president, thesis director, co-examiner.

This research plan has been approved:

Date: ————————————

Doctoral candidate: ————————————
(name and signature)

Thesis director: ————————————
(name and signature)

Thesis co-director: ————————————
(if applicable) (name and signature)

Doct. prog. director:————————————
(R. Urbanke) (signature)

EDIC-ru/05.05.2009

the use of a combination of large-scale learning algorithms as
a basis for high-level artificial intelligence.

The past few decades have seen a shift of ambitions in
artificial intelligence research. From procedural and symbolic
methods aimed at solving very ambitious tasks, the field has
moved to more mathematically well-grounded techniques for
classification and regression problems of modest scales. Sym-
bolic methods allowed detailed descriptions of a priori knowl-
edge, but had difficulties to cope with the unpredictability of
real-world situations. On the other hand, today’s techniques
rely on statistical learning, but as those techniques aim at being
universal, the amount of expert knowledge that they allow has
typically been at a fairly low level, focusing on sophisticated
signal processing and prior distributions.

Our main motivation is to get the best of both worlds
and combine complex handcrafted priors with sophisticated
learning-based statistical methods. If most of the other techni-
cal disciplines allow for large teams of experts to collaborate
on a single complex project over a certain period of time,
machine learning remains an exception. While combining
learning algorithms from different groups is known to improve
performance (the recently awarded Netflix prize is a good ex-
ample), such heterogeneous models have rarely been studied,
and no tool or measure exist to guide their development.

In this proposal we define an heuristic to be any feature
extractor, an algorithm processing the raw signal to produce
values relevant to the problem at hand. We assume that high
performance can only be achieved by the combination of
many of such handcrafted heuristics, and propose to develop
them in an open and collaborative framework similar to the
successful development process of open-source softwares and
collaborative encyclopedias.

Although of general interest, we study this approach for
full scene interpretation, that is to recognize as many objects
as possible from a given image. Latest state-of-the-art algo-
rithms for multiclass object classification already use multiple
families of features (e.g. [1] uses 35 different feature kinds),
but such techniques simply combine (most often linearly)
the results obtained by classifiers trained on every family
independently.

Boosting seems a good candidate as a starting block for
a learning algorithm in this context, as it supports naturally
training with multiple family of features, does not require
all the features to be computed at the beginning, scales well
with the number of features and samples, and allows various
optimization techniques to be applied to speed up training.



EDIC RESEARCH PROPOSAL 2

Input: X,y,H, T
1 for i← 1 to n do w

(1)
i ← 1

2 for t← 1 to T do

3 h(t) ← argmin
h(t)∈H

ε(t),where ε(t) =

n∑
i=1,h(t)(xi)6=yi

w
(t)
i

n∑
i=1

w
(t)
i

4 α(t) ← 1

2
log

1− ε(t)

ε(t)

5 for i← 1 to n do w
(t+1)
i ← w

(t)
i e−yiα

(t)h(t)(xi)

6 end

77 Output: f (T ) =

T∑
t=1

α(t)h(t)

Fig. 1. The pseudocode of the (discrete) AdaBoost algorithm. X is the
matrix of training samples, y is the vector of labels, H is the space of
possible weak learners, and T is the number of steps. h(t) is the optimal
weak learner at step t, ε(t) is its associated weighted error, α(t) is its
associated coefficient, and f (T ) is the final (strong) classifier.

II. RELATED WORKS

In this section follows the descriptions of the three papers
we selected, as they have to do with Boosting using multi-
ple families of features, accelerating Boosting through smart
feature selection and feature selection per se. As the first two
papers build upon the AdaBoost algorithm, the simplest and
most popular Boosting methods, it will be presented first for
the sake of completeness.

A. AdaBoost

AdaBoost, short for Adaptive Boosting, is a meta-algorithm,
created by Y. Freund and R. Schapire [2]. Its1 goal is to build
a strong classifier f (T ) : Rd → R as a linear combination
of T (discrete) weak learners h(t) ∈ H : Rd → {−1, 1},
i.e. line 7 of the pseudocode of Fig. 1. A sufficient condition
for f (T ) to be called strong is to have zero training error in
a total number of steps T logarithmic with the total number
of training samples n. As the number of training errors, also
called Hamming loss

RH(f (T )) =

n∑
i=1,sign(f(T )(xi))6=yi

1

where yi ∈ {−1, 1} is the label of training sample i, is only
piecewise continuous, the algorithm prefers to minimize the
exponential margin loss

Re(f
(T )) =

n∑
i=1

e−yif
(T )(xi)

which is an upper-bound on the Hamming loss and has the
advantage of being continuously differentiable. It does so by

1Only the discrete binary AdaBoost algorithm is described in this paper for
simplicity reasons. But it is not difficult to generalize the algorithm to deal
with continuous weak learners (e.g. Real AdaBoost), and/or to multiclass (e.g.
AdaBoost.MH, SAMME).

3 METHOD AND DATA

To learn a category, the learning algorithm is provided with a
set of labeled training images. A positive label indicates that a
relevant object appears in the image. The objects are not
presegmented, their location in the imagesandthe viewpoints
are unknown. As output, the learning algorithm delivers a
final classifier (further on also called “final hypothesis”)
which predicts if a relevant object is present in a new image.
The learning procedure in our framework (see Fig. 1) works as
follows: The labeled images are put through a preprocessing
step that transforms them to gray scale.2 Then, two kinds of
regions are detected. On the one hand, regions of disconti-
nuity are extracted. These are regions around salient points
normalized to quadratic patches. They are extracted with
various existing methods. On the other hand, we extract
regions of homogeneity which are obtained by using two
different image segmentation methods: We compare the well-
known Mean-Shift-segmentation [5] with our similarity-
measure-segmentation. This new segmentation method
allows the segmentation of nonconnected regions. It performs
equally well or better than several other methods with respect
to object recognition in our experiments. Next, we calculate
local descriptors of regionsofdiscontinuity andhomogeneity.
Having various descriptions of the content of an image allows
us to combine various kinds of regions with various
descriptions in one learning step. We use Boosting [12] as
learning technique. Boosting is a technique for combining
several weak classifiers into a final strong classifier. The weak
classifiers are calculated on different weightings of the
training examples. This is done to emphasize different aspects
of the training set. Since any classification function can
potentially serve as a weak classifier, we can use classifiers
based on arbitrary and diverse sets of image features. A
further advantage of Boosting is that weak classifiers are
calculated when needed instead of calculating unnecessary
hypotheses a priori. The result of the training procedure is
saved as the final hypothesis.

Existing data sets for object recognition used by other
research groups (e.g., [8], [1]) show the objects with just
small variations in scale and objects are generally viewed at
similar poses. To be comparable with other state-of-the-art

approaches, we also carried out experiments on the well-
known Caltech3 and the University of Illinois4 databases.
Fig. 2 shows some examples of the Caltech database of the
categories cars (rear), motorbikes, and airplanes. On such
databases, other previous approaches work well, because of
the prominent objects. However, we require far more
complex images to be able to demonstrate the advantages
of our approach. The objects should be shown with high
variation of their location in the image, at different scales,
viewed from several positions. Additionally, the images
should contain high background clutter. Therefore, we had
to build up our own more complex database. This database5

(further on termed GRAZ-01) that was used in [30], contains
450 images of category person (P), 350 of category bike (B),
and 250 of category “counter-class” (N, meaning it contains
no bikes and no persons). Fig. 3 shows some example images
of each category.

Based on our localization results (see Section 7.3), which
reveal that certain methods tend to emphasize context (i.e.,
the final classifier contains many background features), we
have set up a second database (see footnote 5, further on
termed GRAZ-02). This database has been carefully balanced
with respect to background, such that similar backgrounds
occur for all categories. Furthermore, we increased the
complexity of the object appearances and added a third
category of images. This challenging database contains
311 images of category person (P), 365 of category bike (B),
420 of category car (C), and 380 of a counter-class (N, meaning
it contains no bikes, no persons, and no cars). Fig. 4 shows
some example images. Our approach should cope with a high
amount of occlusion and with significant scale changes. The
images include all these difficulties with occlusions up to
50 percent. Also, the scale of the objects varies around 5 times
of their average size.

Regarding different region detection and description
techniques shown in Fig. 1, we experimentally evaluate two
kinds of methods. First, we perform various experiments for
one region extraction with one kind of local description
technique. We do not experiment with all possible combina-
tions, but we focus on methods with high performance based
on results reported in [29] and [30]. The second method is the
combination of various kinds of region detections with

418 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 3, MARCH 2006

Fig. 1. Our framework for generic object recognition starts from a labeled image database. Regions of discontinuity and homogeneity are extracted
and described by local descriptors forming a feature vector. Learning by AdaBoost [12] leads to a final hypothesis which consists of several weak
hypotheses. The solid arrows show the training procedure, the dotted ones the testing procedure.

2. Note that we do not use color information in this work. This might be a
possible area of future improvement.

3. Available at http://www.vision.caltech.edu/html-files/archive.html.
4. Available at http://l2r.cs.uiuc.edu/~cogcomp/index_research.html.
5. Available at http://www.emt.tugraz.at/~pinz/data/.

Fig. 2. The training procedure start from a set of labeled images. Regions of
discontinuity and homogeneity are extracted and described forming a set of
feature vectors. AdaBoost [2] is then used to learn a final classifier, composed
of several weak learners.

performing a certain number T of Boosting steps, maintaining
a distribution of weights w(t) on the samples. At each step
t AdaBoost trains a weak learner h(t) on the distribution
w(t), the only requirements on h(t) being that is has some
discriminative power with respect to those weights, i.e. its
weighted error ε(t) as defined line 3 of Fig. 1 is strictly
below 1

2 , or said differently, it does strictly better than random
guessing. The algorithm then proceed to update the weights
according to the equation of line 5.

B. Generic Object Recognition with Boosting

This paper by A. Opelt, A. Pinz, M. Fussenegger, and
P. Auer [3] explores the limits of weakly supervised image
categorization. The authors call it weakly supervised as the
only information made available to the learning algorithm
during training is the label of the object to categorize in the
image (the algorithm thus has to determine the pose, scale, and
deal with the various illumination and background conditions).
To simplify the problem, the authors use only local descriptors
of regions of discontinuity or homogeneity and do not take into
account spatial information. They also assume that different
descriptors might have different performances depending on
the category of the object, and so they use Boosting as a
learning method as it has no problem dealing with multiple
families of features.

To learn a category the algorithm is provided with a set
of training images along with a binary label indicating if
a relevant object appears in the image or not. The images
are first converted to gray-scale, regions of discontinuity and
homogeneity are then extracted, before being encoded by local
descriptors and presented to AdaBoost [2] (the whole process
is illustrated in Fig. 2).

Contrarily to all approaches before them, the authors believe
that using multiple kind of description methods should yield
better results, as different object categories might be better
represented using different kind of descriptions. They use two
main kinds of information extractors: interest points (scale
invariant Harris-Laplace, affine invariant, and DoG (SIFT
keypoints)) and homogeneous regions (through mean-shift-
segmentation and their own similarity-measure-segmentation).
To describe the regions of discontinuity, they use four different
descriptors: subsampled gray values, basic intensity moments,



EDIC RESEARCH PROPOSAL 3

Input: (R(Ik),yk,wk) ,R(Ik) ≡ {vk,f |f = 1, ..., Fk}
1

2 forall the vk,f do dk,f,j = min
1≤g≤Fk

d(vk,f ,vj,g)

3 foreach k, f find πk,f s.t. dk,f,πk,f (i) ≤ dk,f,πk,f (i+1)

4 k, f = argmax
k,f

max
s

s∑
j=1

wπk,f (j)yπk,f (j)

5 θ =
dk,f,πk,f (s) + dk,f,πk,f (s+1)

2

Output: h(Il) = sign

(
θ − min

1≤g≤Fl
d (vk,f ,R(Il)g)

)
Fig. 3. The pseudocode of the weak learner finder. R(Ik) is the set of
description vectors of image k, y is the vector of labels, w is the weight
vector, h(Il) is the output weak learner, and d is the distance function.
Remark: if there is description vectors of different kinds, d(vk,f ,vj,g)
is done only between vectors of the same kind.

moments invariants, and SIFT. For homogeneous regions they
use only two, namely intensity distribution and invariant
moments 2.

The authors use a slightly modified version of discrete
AdaBoost as learning algorithm, to add the possibility of
putting different weights on positive and negatives images.
The only modification to the pseudocode of Fig. 1 being the
update of the weights of line 5, replaced by

w
(t+1)
i ←


w

(t)
i e−yiα

(t)h(t)(xi)+log η if yi = 1 and
yi 6= h(t)(xi)

w
(t)
i e−yiα

(t)h(t)(xi) otherwise

To generate a ROC curve, the authors use a varying threshold
thAda instead of the sign function on f (T ).

The only element missing to complete the algorithm is how
to find the optimal weak learner at each Boosting step. The
process is described in Fig. 3. From a labeled and weighted set
of training images, the weak learner finder algorithm first build
a distance matrix d containing for every description vector
f in every image k the distance to the closest description
vector in every image j (line 1 of the pseudocode). It then
finds a permutation πk,f for each description vector, ordering
the images from the closest to the farthest according to
the distance matrix d (line 2). Those computations being
independent of the weights w, they are done only once at
the beginning and saved for future evaluations. The algorithm
then selects the best description vector vk,f , according to the
criterion of line 3, and computes the threshold θ line 4. The
criterion can be understood as a maximization of the quantity
(relatively to the weights) of positives before the threshold
on the distance from the selected description vector. That is,
it looks if images close to vk,f according to d are mostly
positives, and thus if vk,f is a good indicator of the presence
of the relevant object.

2The paper gives various settings and tricks that the authors used to obtain
their results, as well as all the references of all the extraction and description
techniques cited here. They are not reported by lack of place and because
they are not crucial to the understanding of the paper.

The authors then describe the various experiments that
they did on various datasets (they even created their owns
as they judged most of the available ones at the time too
easy) and with various feature combinations. They use in their
experiment η = 1, falling back to standard AdaBoost, as if
setting it higher might improve the accuracy a bit, it does
so at the expense of the training time. They also use only
their own homogenous regions detector (similarity-measure-
segmentation), as they found that it performs better than mean-
shift-segmentation. Using only the homogeneous regions, the
algorithm already outperforms all other state-of-the-art ap-
proaches (although some of the methods they compare with
try to find explicitly the positions of all the relevant objects
in an image, not only the category of the image), and obtain
close to 100% accuracy on most categories of the Caltech
Database and on Cars Side from the University of Illinois.
They then experiment on their own database GRAZ-01 with
various feature combinations, proving that different features
might indeed perform better for different categories of objects,
similarity-measure-segmentation being better to detect bikes
and SIFT being better to detect persons for example. They also
present some results of combinations of two kind of features
on their database GRAZ-02, and shows that the combination
of both is better than any of the two individually.

The paper describes a learning algorithm based on AdaBoost
and an image representation based on local regions. The
algorithm is very fast after its initial pre-processing and can
use multiple families of feature. As different features have
different performance depending on the image category, the
best results (although very few are presented) are obtained
when combining different feature extractors and descriptors.

If the goal is a bit different from the one of MASH (image
categorization versus full scene interpretation), some ideas
might prove useful. Even if MASH does not directly support
bag of features image representation (it expects a constant
number of features per sub-window), a few tricks can be
employed to still use such a representation. The idea is to
first find good reference vectors (the vk,f in the weak learner
finder) prior to the learning, through clustering for example,
and provide as features to MASH all the distances between the
sub-window and those reference vectors. Thresholding those
distances would then yield the same results as the current weak
learners.

C. Fast Boosting using adversarial bandits
This paper by R. Busa-Fekete and B. Kégl [4] seeks

to improve the computational complexity of the AdaBoost
algorithm using an adversarial multi-armed bandits algorithm.
It builds on a previous paper from the same authors [5]
where they used stochastic bandits, itself building upon the
LazyBoost algorithm. The algorithm was relatively successful
in practice but due to its assumption that the rewards follow a
stationary distribution (completely unrealistic due to the non-
stochastic nature of AdaBoost), no proof could be made on
its convergence, and thus it could not be called a Boosting
algorithm. Using instead adversarial bandits, the authors can
prove a weak-to-strong-learning theorem, meaning that their
algorithm remains a Boosting one.



EDIC RESEARCH PROPOSAL 4

LazyBoost3 [7] is a slightly modified AdaBoost: at each
Boosting step the weak learner is trained using only a fixed-
size random subset of the features instead of all of them.
Despite its apparent naive simplicity this modification can
improve the speed of AdaBoost by several orders of magnitude
while maintaining a similar level of accuracy, at the expense
of an increased number of weak learners [8].

The Multi-armed bandits problem is defined as follows:
there is M gambling machines (i.e. the ”arms” of the bandits),
and at every time-step t the gambler chooses an arm jt,
pulls it, and receives a reward rtjt ∈ [0, 1]. In the stochastic
version the rewards come from a static distribution, while in
the adversarial setup there is a second player that chooses a
reward vector rt ∈ RM before every step, and only the reward
rtjt corresponding to the chosen arm jt gets revealed to the first
player. There is no restriction on the series of reward vectors
rt, particularly they can depend on the previous actions of the
gambler.

One can see the weights w
(t)
i of AdaBoost as the current

exponential loss of f (T ) on the sample i, as the weight update
of line 5 of Fig. 1 simply reflects on w

(t)
i the addition of the

new weak learner h(t) to f (T ). The sum of the weights is thus
equal to the exponential loss Re(f (T )). Defining the edge γ(t)

of the weak learner h(t) as

γ(t) =

n∑
i=1

w
(t)
i yih

(t)(xi)

n∑
i=1

w
(t)
i

= 1− 2ε(t)

it is easy to show that the exponential loss after any number
of steps T is

Re(f
(T )) = n

T∏
t=1

√
1− γ(t)2 (1)

Thus by minimizing the weighted error ε(t) (or equivalently
by maximizing the edge γ(t)) the selected weak learner h(t)

greedily maximize the loss reduction. One can also remark
that if ∃ρ ∈ R > 0, s.t.∀t, γ(t) ≥ ρ, then the loss will decrease
exponentially fast.

The main idea of the paper is to partition the weak
learner space H into (not necessarily disjunct) subsets G =
{H1, ...,HM}, and to use a multi-armed bandits algorithm by
Auer et al. called Exp3.P [6] to learn the usefulness of the
subsets. Each arm represents a subset, so at each step, the
algorithm selects a subset so that AdaBoost then only needs
to find the optimal weak learner h(t) in that subset instead of
the whole space H. The authors call the combined version of
AdaBoost and the Exp3.P algorithm, AdaBoost.MH.Exp3.P4.

The authors use r(t) = min

(
1,− log

√
1− γ(t)2

)
as a

reward. Taking the minimum with 1 is necessary as otherwise
it would be unbounded, since γ(t) ∈ ]0, 1]. This reward makes

3Despite its name, LazyBoost cannot really be called a Boosting algorithm,
as no proof can be made on it’s convergence speed.

4MH as they use a multiclass version of AdaBoost, AdaBoost.MH. Despite
that difference, the following explanations remain valid as AdaBoost is very
similar to its generalized variant.

sense as AdaBoost minimizes the exponential margin loss,
while the Exp3.P algorithm try to maximize the sum of the
rewards. Setting the reward as they did thus makes the two
equivalent (minus the capping by 1, which is rarely a problem
in practice as it happens only when the edge gets close to 1)
according to equation 1.

The authors then go on proving a weak-to-strong learning
theorem for their AdaBoost.MH.Exp3.P algorithm. The proof
of that theorem rely on an upper bound on the weak regret of
the Exp3.P algorithm (Theorem 6.3 of [6]). The weak regret
is defined as follows

max
j

T∑
t=1

r
(t)
j −

T∑
t=1

r(t)

where r
(t)
j is the reward of arm j at step t. The weak regret

thus compare the reward obtained by the gambler to the best
fixed arm retrospectively. As the proof rely on the weak regret,
the authors require stronger assumptions on the edge of weak
learners than AdaBoost. As the weak regret compares the
obtained reward to the one of the best arm, the proof requires
the assumption that there exists a subset of G, denoted by H†,
and a constant ρ† ∈ R > 0 such that under any distribution
of the weights w, there exists a weak learner in H† with an
edge greater or equal to ρ†. If the assumption holds, then the
upper bound on the weak regret of the Exp3.P algorithm can
be used to upper bound the number of steps T necessary for
their algorithm to reach zero training error, and that number
is logarithmic with n, thus proving that AdaBoost.MH.Exp3.P
is indeed a Boosting algorithm.

In their experiments, the authors use stumps as weak learner
(as well as two other weak learner: decision trees and product
of stumps, but model them as respectively a recursive or
an iterative sequence of stumps). Since a stump is simply
a threshold on a particular feature, the authors partition the
space of weak learners by assigning a subset to every feature
(partitioning further would not decrease the computational
time). The authors first carried out two synthetic experiments,
where they could control the number of useful features. Their
algorithm scores halfway between full (standard) AdaBoost
and random sampling of the features (LazyBoost) in the first
experiment and very close to full AdaBoost in the second.
The authors then proceed to benchmark their algorithm on five
well known datasets (MNIST, USPS, UCI pendigit, UCI isolet,
UCI letter). It is hard to draw any conclusion from the test
errors on those datasets, AdaBoost.MH.Exp3.P and LazyBoost
seem a bit better than plain AdaBoost when using stumps
(maybe through the regularization effect of randomization),
and a bit worse using decision trees or product of stumps
(maybe because of the assumption than trees and products can
be modeled as a sequence of stumps). For sure the results of
AdaBoost.MH.Exp3.P are not significantly different from those
of LazyBoost. The criteria on which AdaBoost.MH.Exp3.P
really makes a difference is computational efficiency, as it
require one to two orders of magnitude less time than standard
AdaBoost to reach a similar level of accuracy, provided than
that level is not too high. It also seems to clearly outperform
LazyBoost on that criteria, although since the authors does not



EDIC RESEARCH PROPOSAL 5

provide any information on the size of the subset of random
features selected at each step, no clear conclusion can be given
on that point.

In conclusion the authors present a new Boosting algorithm,
called AdaBoost.MH.Exp3.P, that uses a multi-armed bandits
algorithm to accelerate AdaBoost. The algorithm seem able
to compete in accuracy with AdaBoost, while taking one or
two orders of magnitude less time. A few remarks must still
be made about the paper, to prove a weak-to-strong-learning
bound, the authors had to make an additional assumption
over standard AdaBoost (∃H† ⊂ H,∃ρ† > 0 s.t. ∀w,∃h† ∈
H† s.t. γh† ≥ ρ†). It is also unclear how to partition the space
of weak learner other than stumps, and how the algorithm
really compare against LazyBoost, as the authors did not detail
the parameters that they used.

All in all, as the algorithm is very fast it might be very
useful to the MASH project. A very simple partitioning of the
features would be to have one subset per feature family. The
bandits algorithm would then directly learn the usefulness of
the families. It would then make a very sensible baseline for
future algorithms to compare with.

D. Feature Selection using Multiple Streams
This paper by P. Dhillon, D. Foster, and L. Ungar [9]

extends a previous paper (”Streamwise Feature Selection”
[10]) by J. Zhou and the two last authors of the current paper
to handle multiple family of features.

Streamwise feature selection is a very efficient and suc-
cessful technique to do feature selection. Contrarily to most
other common methods, such as stepwise feature selection or
regularization, streamwise feature selection considers that the
feature come from a stream, and can thus handle dynamically
generated or even infinite feature sets, while most other
methods are batch methods, and require the entire feature
set to be known in advance. Also due to its online nature,
streamwise feature selection only need to look at every feature
once, making it the method of choice when the feature set is
very large.

Feature selection algorithm in general and streamwise fea-
ture selection in particular assume that all feature come
from a single equivalence class. But often the feature space
has some structure, which if taken into account might help
the feature selection process as generally good features are
spread unevenly across classes. Even when this is not the
case, it is always possible to create new classes of features
by using projections such as principal components analysis
(PCA), transformation such as log or square root, interactions
(products of features), or clustering in the feature space.

Streamwise feature selection is a greedy algorithm which
works by examining features one by one, selecting it if it
significantly improve the accuracy of the model (details below)
and otherwise discarding it for good. Because it enables one to
decide which feature to test at every moment, it is particularly
well suited to handle multiple feature classes, by examining
first features from class which have produced more beneficial
features in the past (the original paper [10], section 3 actually
already contains this idea, but the current paper examines it
in much more details).

Input: k streams, y, w0, α∆

1 for j ← 1 to k do
2 wj ← w0

k
3 ij ← 1
4 end
5 model = ∅
6 while ∃stream 6= ∅ do
7 j ← argmaxj

wj
ij

8 x← streamj

9 α← wj
2ij

10 if p-value(x,y,model) ≤ α then
11 model← model ∪ x
12 wj ← wj + α∆ − α
13 else
14 wj ← wj − α
15 end
16 ij ← ij + 1
17 end

Output: model

Fig. 4. The pseudocode of the multiple streamwise feature selection
(MSFS) algorithm. The algorithm takes as input k streams of features x,
a vector of target values y, the initial wealth w0, and α∆ is a parameter
controlling with w0 the false discovery rate. One can remark that the
algorithm falls back to the original α-investing algorithm if k = 1.

Streamwise feature selection considers feature sequentially
for addition to a linear model

y = β0 +
∑
j

βjxj

by comparing the reduction in training error against an adap-
tively adjusted threshold. Their is two flavors of streamwise
feature selection, depending on how the threshold is computed.
The alpha-investing variant, as used in the current paper, and
the information-investing variant. According to the original
paper [10], both yield virtually identical results. The original
alpha-investing algorithm is given in Fig. 4, provided that
k = 1. The threshold α computed line 9 of the algorithm,
corresponds to the allowed probability of adding a spurious
feature to the model (one which would decrease the accuracy
on a hypothetical test set). It is adjusted using the wealth
w, representing the currently acceptable number of future
false positive. Wealth is increased when a feature is added
to the model (line 11 and 12), as the feature is assumed
correct, and therefore allow more future false positives without
deteriorating the overall false discovery rate. If the feature is
deemed spurious, wealth is decreased (line 14) in order to
keep the guarantee of not adding more than a target fraction
of spurious feature. The authors also give a formula to compute
the p-value of x (that is, the probability that the coefficient of
x would be judged to be non-zero when it is in reality zero)
in the case of regression:

p-value = e−
RMSE(model∪x)−RMSE(model)

σ2

where RMSE means the root mean squared error of the
model on the training set, and the variance σ2 is estimated
as RMSE(model)

n where n is the number of training samples.



EDIC RESEARCH PROPOSAL 6

Streamwise feature selection provide guarantee bounds on
the ratio of the number of expected spurious feature included
in the model E(N) and E(M), the expected number of
beneficial features

E(N) <
α∆E(M) + w0

1− α∆

In all their experiment the authors use as parameter α∆ =
w0 = 1

2 , thus approximately guaranteeing E(N) < E(M).
The authors modified the original streamwise feature selec-

tion algorithm to handle multiple feature classes by giving to
each class its own stream, splitting uniformly the initial wealth
among the streams, and keeping track of the individual wealth
and of how many features from that stream have already been
tested. As the wealth represents how successful the stream has
been in producing useful features so far, the problem of which
stream to select at every step is easily solved, the one with
the highest probability of yielding a useful feature is always
selected.

Giving each feature class its own stream is advantageous
when the distribution of good features is not uniform across
feature classes. In that case the streams of those classes with
more good features will get higher wealth, and will thus be
favored by the algorithm. In the extreme case where a single
class contains all the good feature, the algorithm will quickly
favor its stream and very few features from the other streams
will need to be considered.

The authors then proceed to benchmark their multiple
streamwise feature selection (MSFS) algorithm against mul-
tiple other feature selection schemes, including but not lim-
ited to: standard streamwise feature selection (SFS), stepwise
feature selection, Lasso, or multiple kernel learning (MKL),
on various datasets, adding feature classes when not already
present (PCA and squared). MSFS obtain very competitive
results, even the best when also including interaction terms
(product of already selected features with themselves and other
features). It is also the second fastest method, beaten only
by regular streamwise feature selection, but that it seems to
outperform in term of test error, although it depends of course
on the structure of the particular dataset at hand.

The MSFS algorithm similarly to the one of the previous
section is also very fast and could also be added to the
MASH project as a baseline or in conjunction with another
classification technique (although the simple regression model
should probably be adapted), the class of the features be-
ing already given. The ability to dynamically add features
might also prove useful to find new beneficial features as
interactions in-between families. The MSFS algorithm being
a simple extension to multiple feature classes of an already
popular technique, there is nothing to reproach to it without
formulating the same reproach to SFS.

III. LEARNING IN VERY HIGH DIMENSIONAL FEATURE
SPACE

This concluding section describes the current state of our
researches, as well as a plan of a possible course of actions. It
gives references to current algorithms in scene interpretation,
or more generally, object detection and classification, and

describes how we intend to build upon and advance the state-
of-the-art.

A. State of the research in the field

Many real-world problems have already been solved thanks
to statistical learning (e.g. face detection [8], robot control
[11], handwritten character recognition [12], etc.). The deep
learning architecture [13] even taking that idea to an extreme
by trying to build from the ground up higher and higher levels
of abstraction directly from the raw data. Despite these efforts,
performance remains far from human-level.

The need for complex priors to encode the expert knowledge
and reduce the requirement of a large training set has appeared
in many application fields for which data is scarce. In such
cases, ad-hoc prior knowledge has to be encoded, either by
putting prior distributions on the parameters, constraining
the solution space of the learning algorithm, or explicitly
decomposing the problem into simpler ones as in the DARPA
grand challenge [14]. But very few research projects today
study models with very complex priors.

Detection and recognition of a large class of objects is
a hot topic now in computer vision. Several databases and
challenges are publicly available (Caltech-256, PASCAL VOC,
etc.) and relatively good results have been attained for image
categorization (e.g. [1]).

B. State of our researches

Eight months after the beginning of the project, the initial
development phase of MASH is now drawing to an end, and
the project is already ready to accept external contributions
through its website (http://www.mash-project.eu). The core of
the MASH framework is now running on dedicated servers
and can run classification (detection should follow soon)
experiments through the web. A few baseline classifiers have
been developed (AdaBoost, SVM, k-NN, etc.), as well as a
few initial heuristics (HoG, Haar and Fourier transforms, color
histograms, etc.). Extensive tests particularly on the SVRT
database (more details below) have also been carried out.
The list of classifiers currently running:

• AdaBoost: as presented here, can use any classifier of the
framework as weak learner, but usually stumps or trees

• LogitBoost: variant of AdaBoost using the logistic (rather
than exponential) loss function

• LPBoost: Boosting algorithm directly maximizing a mar-
gin between training samples of different classes

• C4.5: decision tree algorithm developed by Dr. R. Quin-
lan, successor of ID3, using a greedy entropy heuristic
in order to find splits and a pruning strategies based on
confidence limits

• Perceptron: batch and stochastic version of the classical
Perceptron algorithm (as well as a kernelized version)

• SVM: Support Vector Machine classifier, constructs an
hyperplane in a high or infinite dimensional space sepa-
rating the two classes as much as possible (maximizing
the margin and thus reducing the generalization error)



EDIC RESEARCH PROPOSAL 7

• linear SVM: linear Support Vector Machine classifier,
much faster than the standard SVM when using the linear
kernel

• k-NN: Nearest Neighbor classifier, classifies a given
sample according to the mode of the labels of its k nearest
neighbor (in the L-k norm sense)

• NB: Naive Bayes’ classifier, assumes that the features are
independent and can be well approximated by gaussians

• One-vs-One and One-vs-All: combine binary classifiers
(such as a SVM) in one versus one or one versus all
schemes to tackle multiclass problems

As well as the list of different filters that can be applied on
the data prior to training:
• Min-max: normalizes all the features to lie in the range

[0, 1]
• Statistical: normalizes all the features to zero mean, unit

standard deviation
• Energy: normalizes all the samples to unit norm (in the
L-k norm sense)

• PCA: project the data on its principal components
The list of databases currently set up:
• COIL-100: Columbia University Image Library, a (very)

simple database of objects centered on a dark background
• Caltech-256: collection of all 30607 images of everyday

objects distributed in 256 categories
• MNIST: subset of the NIST dataset, a vast database of

handwritten digits (http://yann.lecun.com/exdb/mnist/)
• SVRT: Synthetic Visual Reasoning Test, a group of 23

abstract visual problems, which goal is to compare the
performance of humans and ML algorithms (http://www.
idiap.ch/∼fleuret/svrt/challenge.html)

The framework was already used to provide the baseline
of the SVRT project. AdaBoost (with stumps) and a Gaussian
SVM were trained and tested on every of the 23 problems
using different combinations of heuristics. Preliminary anal-
yses reveal that if the SVM is superior when using simple
heuristics (e.g. the raw pixel data), the opposite becomes true
when using complex heuristics (e.g. the Fourier transform), the
SVM performance remaining approximately the same while
the one of AdaBoost can increase a lot, most often becoming
superior.

C. Research plan

One of the main issue is how to handle learning in such a
large (up to millions of features) and heterogeneous (hundreds
of different heuristics) feature space. Problems that have to be
addressed are
• overfitting: the number of features is likely to be much

larger than the number of samples
• computational cost: as the computing resources are lim-

ited, the computational cost of every heuristic should be
taken into account in order to stay on (time) budget

• equity: if the heuristics were always evaluated in the same
order, heuristics tested first would be unjustly favored,
also if an heuristic is marginally better than another one,
it might be always selected, thus some kind of principled
randomization must be adopted

Creating sensible heuristics for the problem at hand relies
heavily on the capacity to identify the weaknesses of the
current system. Hence, an important task of the project is
to find how to provide useful feedbacks to a contributor
about a heuristic, its performance, how it compares with the
other heuristics, areas where it excels and areas requiring
improvements, etc. Another important feedback to provide to
the contributors is an analysis of the overall performance of
the current system, for example its worst mistakes.

A possible time line could be
First year (already done):
• Review of the literature about machine learning in general

and scene interpretation/object detection/image classifica-
tion in particular

• Development of some baseline general purpose learning
algorithms

• Set up of some standard datasets and evaluation of the
baselines

Second year:
• Development of more sensible baselines tailored to learn-

ing with a large number of features, such as the algo-
rithms discussed in this proposal, as well as other state-
of-the-art algorithms such as MKL [1]

• Study of methods to speed up the learning (e.g. taking
the computational cost of an heuristic into account while
doing feature selection, or Dynamic Heuristic Sampling
(see §D below))

• Study the fairness on the selection and evaluation of
features

Third and fourth years:
• Online computation ordering (reorder the evaluation of

weak-learners in order to speed-up testing)
• Help with the design of new heuristics, possible ideas

include: clustering mistakes, i.e. how to summarize the
areas requiring improvement to a designer; clustering
heuristics, find way to explore the heuristic space.

• Thesis writing.

D. Dynamic Heuristic Sampling

Dynamic Heuristic Sampling is an approach that we are
currently investigating. In the context of Boosting with deci-
sion stumps, at each step we have a weight distribution on
the samples and we need to select an optimal feature. We
would like that feature to maximally decrease the current
Boosting loss. The idea is to have a way to compute the
distribution of the loss reductions associated to the features
of every heuristic depending on the current sample weights.
This could be achieved by storing the responses of a limited
number of features (for example 100) on all the samples from
every heuristic at the start, and then compute the loss for
each at every step. We could then sample features from the
heuristic with the highest expected loss reduction. We expect
the algorithm to have the following behavior, to first exhaust
the most informative heuristic before switching to another one
(possibly already exploited). One core issue to address is to
prioritize the estimation of the expected loss reduction, maybe
with bandit-style strategies. Some optimizations also comes



EDIC RESEARCH PROPOSAL 8

to mind; it is probably unnecessary to re-estimate the loss
reduction of heuristics previously judged bad if the weights
did not change much (as happen from a step to the next). Also
if we have a fixed time budget at each step, the computational
cost of the heuristics can also be taken into account, e.g. do
we expect a higher loss reduction from trying 1000 features
from that fast heuristic, or 10 from that slow one?

REFERENCES

[1] P. Gehler and S. Nowozin, ”On Feature Combination for Multiclass
Object Classification”, Proceedings of the Twelfth IEEE International
Conference on Computer Vision (ICCV 2009), 2009.

[2] Y. Freund and R. Schapire, ”A Decision-Theoretic Generalization of
on-Line Learning and an Application to Boosting”, Lecture Notes In
Computer Science; Vol. 904,1995.

[3] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer, ”Generic Object
Recognition with Boosting”, Pattern Analysis and Machine Intelligence
(PAMI), IEEE Transactions on, 28:416-431, 2006.

[4] R. Busa-Fekete and B. Kégl, ”Fast boosting using adversarial bandits”,
Proceedings of International Conference on Machine Learning (ICML),
2010.

[5] R. Busa-Fekete and B. Kégl, ”Accelerating AdaBoost using UCB”, JMLR
W&CP 7:111-122, 2009.

[6] P. Auer, N. Cesa-Bianchi, N. Freund, and Y. Schapire, ”The non-stochastic
multi-armed bandit problem”, SIAM J. on Computing, 32(1):48-77, 2002.

[7] G. Escudero, L. Màrquez, and G. Rigau, ”Boosting Applied to Word
Sense Disambiguation”, European Conference on Machine Learning,
2000.

[8] P. Viola and M. Jones, ”Robust real-time face detection”, International
Journal of Computer Vision, 57:137-154, 2004.

[9] P. Dhillon, D. Foster, and L. Ungar, ”Feature Selection using Multiple
Streams”, International Conference on Artificial Intelligence and Statis-
tics, 2010.

[10] J. Zhou, D. Foster, and L. Ungar, ”Streamwise Feature Selection”,
Journal of Machine Learning Research 7: 1861-1885, 2006.

[11] Y. LeCun, U. Muller, J. Ben, E. Cosatoo, and B. Flepp, ”Off-road
obstacle avoidance through end-to-end learning”, Neural Information
Processing Systems, Vol. 17, 2005.

[12] R. Plamondon and S. Srihari, ”On-line and off-line handwriting recog-
nition: A comprehensive survey”, IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(1), 6384, 2000.

[13] Y. Bengio and Y. LeCun, ”Scaling Learning Algorithms towards AI”,
Large-Scale Kernel Machines, MIT Press, 2007.

[14] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, j. Diebel,
P. Fong, J. Gale, H. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessan-
drini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and
P. Mahoney, ”Winning the darpa grand challenge”, Journal of Field
Robotics, 2006.


