

Ecole Polytechnique Fédérale de Lausanne

Module 1

Determining theoretical speed for setting oscilloscope triggering

Joao Barini Ramos Julien Jeandroz Joseph Bernaert Victor Solelhac

ME-412

The shear modulus G is found using eq 3

The goal is to set a triggering time capable of catching our signal properly. It is therefore important to account for the maximum crack speed.

Oscilloscope trigger system allows us to set a point in the signal and begin the capture at that point. It is important to notice that the oscilloscope has a buffer. Meaning that the signal just before the chosen point is also being recorded.

Theory and expected signal characteristics

0.1 Crack speed

Crack dynamics depends on various material parameters that are beyond the scope of this project. Nevertheless, having a boundary on its value is essential for setting the oscilloscope triggering system. In fact, if we don't set a measuring frequency high enough, we might loose the signal.

The crack speed is limited by the Rayleigh wave's speed $C_R[1]$. Which is found using 1

$$C_R = C_S \frac{0.862 + 1.14\mu}{1 + \mu} \tag{1}$$

where C_S is found by eq 2 and corresponds to the speed of sound in the material.

$$C_S = \sqrt{\frac{G}{\rho}} \tag{2}$$

$$G = \frac{E}{2(1+\mu)} \tag{3}$$

 $\begin{array}{c|c} \text{Density of the material} & \rho \\ & \text{Poisson's ratio} & \mu \\ & \text{Elasticity modulus} & E \\ & \text{Shear modulus} & G \\ & \text{Shear wave speed} & C_S \\ & \text{Rayleigh wave speed} & C_R \end{array}$

Taking E = 3000 MPa, $\mu = 0.4$ and $\rho = 1.18 \cdot 10^3$ Kg/m³ we find that $C_R = 900m/s$

0.2 Signal frequency

The goal is to be able to catch up the largest frequency reached by the setup. The maximum velocity reached by a crack is defined by its Rayleigh wave speed and rarely exceeds 60% of this limit [**Fineberg**]. Rayleigh's velocity is calculated to be 900 m/s in this experiment (975m/s in Finberg's paper). Therefore, considering a velocity of 540m/s, the sample width of 50mm, the maximum observable frequency is computed according to Eq. 4

$$f_0 = \frac{540}{50 \cdot 10^{-3}} = 10.8kHz \tag{4}$$

References

 Ariel Livne Tamar Goldman and Jay Fineberg.
"Acquisition of Inertia by a Moving Crack". In: Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel (2010).

Introduction