
Module 2: A clever way to spot the crack propagation for neo-hookian solids in
Mode-I fracture testing using Matlab

Gaëtan Cortes, Damien Delespaul, and Näım Sabaghi
ME-412 : Experimental Methods in Engineering Mechanics, École Polytechnique Fédérale de Lausanne

(Dated: November 26, 2023)

During the DIC analysis of a Mode-I fracture test for a
Neo-Hookian solid, numerous images can be generated as
a function of the spreading speed, but also as a function
of the material’s elasticity and toughness. To calculate
the J-integral, only the image just before fracture prop-
agation is required. It is therefore necessary to analyse
the images one by one to determine exactly where the
crack is propagating. This paper proposes a simplified
way of determining the image at which the crack begins
to propagate, for a highly elastic solid. The software used
for this method is NCORR, and a fairly qualitative DIC
is required to make this method work. All the calculation
and coding are done with Matlab R2023b.

The method described here uses the displacement gra-
dient, in the direction perpendicular to the crack, i.e. the
direction in which the sample elongates during the test.
Given that the sample elongates at a constant speed, the
evolution of the mean strain gradient for a Neo-Hookian
sample should be linear. When the curve jumps or be-
comes non-linear, this indicates a sudden displacement,
which in turn indicates crack propagation. This abrupt
displacement is due to the ’slackening’ of the two free
sides as they are enlarged by the crack.

To begin with, we need to import all our data from the
DIC and assign them to variables:

rehash
dir data_DIC_1.mat

%First , we import the data from the DIC
. If needed , the name of the file

%can be changed
%We register all the data into a

structure
load data_DIC_1.mat data_dic_save

%Now we need to detect the number of
rows , columns and pictures involved
.

%We load the first picture displacement
grid to get the rows and columns ,

and load
%the whole diplacements to detext the

number of picture
Mat_Size = size(data_dic_save.

displacements (1).plot_u_dic);
Pic_Size = size(data_dic_save.

displacements);

rows = Mat_Size (1);

col = Mat_Size (2);
pictures = Pic_Size (2);

%Now , we save displacements and strains
into variables to be used ! The

%third dimension of the matrix
correspond to the picture. The
first is row ,

%and second is column !
for i = 1: pictures %displacements

u_dic(:,:,i) = data_dic_save.
displacements(i).
plot_u_ref_formatted; %
displacement in the x direction

v_dic(:,:,i) = data_dic_save.
displacements(i).
plot_v_ref_formatted; %
displacement in the y direction

corrcoeff (:,:,i) = data_dic_save.
displacements(i).
plot_corrcoef_dic;

end

for i = 1: pictures %strains
exx_dic (:,:,i) = data_dic_save.

strains(i).
plot_exx_ref_formatted; %x
direction

exy_dic (:,:,i) = data_dic_save.
strains(i).
plot_exy_ref_formatted; %shear
strain

eyy_dic (:,:,i) = data_dic_save.
strains(i).
plot_eyy_ref_formatted; %y
direction

end

All the displacements and strains are now recorded in
variables. For this example, the crack is propagating in
the y direction, so the displacement gradient studied will
be the perpendicular one, i.e. the xx gradient. The dis-
placement gradient is calculated for each pixel in the im-
age, for each image :



2

for i = 1: pictures
[grad_xx(:,:,i),grad_xy(:,:,i)] =

gradient(u_dic(:,:,i));
[grad_yx(:,:,i),grad_yy(:,:,i)] =

gradient(v_dic(:,:,i));
end

Now that the gradients have been calculated, they first
need to be cleaned. Because of the nature of the gradient
and DIC calculations, abnormal values appear at the top
edge of the image, where no displacement should occur.
To counter this problem, the gradient is set to 0 for the
entire top edge:

for p=1: pictures
for c=1:col

grad_xx(1,c,p) = 0;
grad_xy(1,c,p) = 0;
grad_yx(1,c,p) = 0;
grad_yy(1,c,p) = 0;

end
end

Now that the gradient is ready to be used, we need
to determine the average displacement gradient for each
image. Zero values should be excluded, as they are not
representative of the displacement undergone by the sam-
ple. The non-zero values of the displacement gradient for
each pixel in each image are therefore stored in a new
variable, and this variable is then used to calculate the
average of each gradient, for each image!

for p=1: pictures
%We now want to find the mean value

of each gradient , ignoring the
ones

%that are at 0. This mean value
will then be used to eliminate

%inexpected values of grad
i=1;
k=1;
l=1;
m=1;
for c=1:col

for r= 2:rows
if(grad_xx(r,c,p) > 0)

grad_xx_0(p,i) =
grad_xx(r,c,p);

i = i + 1;
end
if(grad_xy(r,c,p) > 0)

grad_xy_0(p,k) =
grad_xy(r,c,p);

k = k + 1;
end
if(grad_yx(r,c,p) > 0)

grad_yx_0(p,l) =
grad_yx(r,c,p);

l = l + 1;

end
if(grad_yy(r,c,p) > 0)

grad_yy_0(p,m) =
grad_yy(r,c,p);

m = m + 1;
end

end

end

%We calculate the mean value for
each direction

Mavg_xx(p) = mean(grad_xx_0(p,:));
Mavg_xy(p) = mean(grad_xy_0(p,:));
Mavg_yx(p) = mean(grad_yx_0(p,:));
Mavg_yy(p) = mean(grad_yy_0(p,:));

end

All the averages of each image for each displacement
gradient are now stored in Mavgnm, with n and m rep-
resenting values that can be x or y. These averages can
also be used to clean up the deformation gradient map-
pings, by applying tresholds based on the average. This
could be useful, for example, to exclude unusual values
linked to DIC errors. However, for the present paper, it
is the plots of these averages against images that will be
analyzed:

%We plot the mean values of each image
to help us locate the crack :

%indeed , the crack is propagating on
the part where the plot do a "jump"

plot (1: pictures ,Mavg_xx);
xlabel('Number of the image')
ylabel('Mean value of grad_{xx} (

Perpendicular to the crack)')
saveas(gcf ,'Mean_curve_gradxx.png')

Two examples, for two different tests, are shown in Fig-
ure 1. Two things can be said. Firstly, in some cases, the
curve is non-linear at the very start of the experiment.
This non-linearity is mainly due to the sample not be-
ing taut at the start of the experiment. Once stretched,
it becomes linear again. Secondly, in both cases, the
curve becomes non-linear after a certain stage, or makes
a slight jump. This part clearly indicates crack propaga-
tion. Figure 2 and 3 show the images before and after
the non-linearity, and propagation is indeed visible.



3

(a) Example A

(b) Example B

FIG. 1: Evolution of the mean deformation gradient xx
as a function of images. Non-linearity on the right-hand
side of the curve indicates crack propagation. The ex-
act propagation image can be obtained by analyzing the
curve directly in matlab.

(a) Before crack propagation

(b) After crack propagation

FIG. 2: Image before and after crack propagation for
example A. The propagation is barely perceptible, but
takes place. This is the first propagation, before an un-
stable propagation takes place and tears the sample into
two parts.



4

(a) Before crack propagation

(b) After crack propagation

FIG. 3: Image before and after crack propagation for
example B. The propagation is barely perceptible, but
takes place.

For the two examples chosen, this method shows a
strong ability to reliably detect crack propagation. Af-
ter individual verification of the images, no propagation
was detected prior to that discovered by curve analysis.
Logically enough, a non-linearity of the displacement gra-
dient curve perpendicular to the crack as a function of
the images indicates crack propagation, due to the partial
release of the sample. After analysis on several samples
and DIC, this method did not reveal any particular er-
ror, and could therefore be used quite reliably for crack
propagation determination. It is important to note, how-
ever, that this method is only effective for neo-Hookian
solids, as it requires elastic deformation throughout the
test. Further tests are required to confirm the robustness
of this program, and may be carried out in the future.

ACKNOWLEDGMENTS

We wish to acknowledge Mr. John Martin Kolinski
and the Teaching Assistants for their help during the
experiment, especially Chen Zhuo for his assistance in
using the loading apparatus. We are grateful for this
opportunity to know better about crack structures and
the theory behind those, which we were unaware of.


	 Module 2: A clever way to spot the crack propagation for neo-hookian solids in Mode-I fracture testing using Matlab
	Acknowledgments
	References


