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Li-ion BESS for public transportation 
Outline 

1)  Introduction to electric bus lines 

2) Electric, thermal, aging model of a battery 

3) Case study - battery aging in an electric bus 

4) Conclusions & Outlook 
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Diesel bus: 

 Makes noise, CO2, and particulate 

matter pollution 

 Pay for personnel, infrastructure, and 

fuel ($/litre) 

 Must be exception ready!               

(bus needed for other line, traffic, car 

blocks bus stop, etc) 

What a diesel-powered public transportation bus does 
Product requirements of electric bus line 
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20-30 s wait at 

busy stops 

during rush hour 

Terminal stop    

(0-5 minutes) 

… 

Electric bus: 

 Less noise and no local generation of 

CO2 and particulate matter pollution 

 Pay for personnel, infrastructure and 

electricity ($/kWh) 

 Must be exception ready!              

(bus needed for other line, traffic, car 

blocks bus stop, etc) 

 design the battery for the line 

 

“Typical”* line: 30-40 stops, 10-14 km in 30-50 min, 

11-15 busy stops, 10-20 buses at 5-15 min intervals 

* There’s no such thing as a “typical” bus line 

“Opportunity” / flash 

charge (600 kW) 

Terminal charge (100 kW) 
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The electric bus – TOSA electic bus, Geneva, CH 
Main components – battery as key component 
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Water-cooled 

Traction converter 

Fully automatic 

Energy Transfer 

System 

Water-cooled 

battery pack 

Two-axles drive powered by  

water-cooled traction motors 

 

 

I transport passengers not 

batteries 
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Electric bus in Geneva 
Line 23 to be converted from diesel to all electric* 
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NZZ article March 7, 2015 reports: 

 15 second flash charge every 4 

stops 

 94% of energy from renewable 

sources / emission free in the city 

 Advantage of no overhead lines: 

 Aesthetics: no wires obstructing 

sight 

 Supporting infrastructure for a 

new line with battery buses is 

half the price (bus costs similar)*  

 Time saved for opportunity charging 

– 15s x 13 stops = ~3 minutes 

 

* Source: NZZ, March 7, 2015. Map: Google Maps 
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http://www.nzz.ch/schweiz/genf-tueftelt-am-bus-der-zukunft-1.18497004
https://www.google.ch/maps/dir/Plan-les-Ouates,+ZIPLO/Gen%C3%A8ve+A%C3%A9roport,+Route+de+l'A%C3%A9roport+21,+1215+Le+Grand-Saconnex/@46.205733,6.0384603,12z/data=!4m14!4m13!1m5!1m1!1s0x478c7b712e22ce03:0x892b8329b302b7b7!2m2!1d6.102948!2d46.166602!1m5!1m1!1s0x478c6480ae239337:0xe511a9f24eb8a630!2m2!1d6.109156!2d46.23701!3e3?hl=en


Motivation for battery R&D 
How to quickly estimate all these aging processes? 
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Aging at anode 

Source of images: Vetter et al. (PSI), J. Power Sources, 2005 

Aging at cathode  

 Key R&D question: How can we predict the net aging & 

performance impact of all the reactions above in an electric bus 

with reasonable accuracy? 

 A goal of battery R&D at ABB Corporate Research 
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Electrical, thermal and aging model 
Introduction 
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Battery Model 
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Electrical model 
Record data and fit to electric model 
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 Create an electrical model of 

the battery (right). 

 Power pulse and open circuit 

voltage experiments. 

 Calculate R,C parameters that 

describe overvoltages. 

 Modify R,C parameters as 

battery ages. 

Electric 

Thermal Aging 
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Thermal network model 
Measure thermal properties and calculate Tavg 
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Electric 

Thermal Aging 

 Thermal network model is 

analagous to electrical network:  T 

  voltage, heat transfer  current 

 Critical step #1 - calculate the 

cell’s internal electrical resistance.  

 Critical step #2 - Measure the 

cell’s heat capacity (J/kg/K) and 

conductivity (K/W). 
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Aging model: semi-empirical approach 
Conduct battery experiments and fit data 
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Electric 

Thermal Aging 

 A battery degrades due to 

time (calendar) and use 

(cycling). 

 Critical step #1 – predict 

the temperature.  

 Critical step #2 – predict 

impact of Ah throughput 

(∆SOC, right). 

State of charge (SOC) 

0 100 

A
g
in

g
 i
m

p
a
c
t 

Introduction 

Model 

Case study 

Conclusions 



Case study of electric bus, similar to TOSA, Geneva 
Geneva, Switzerland 
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Case study details: 

 43 kWh, 300 kW Li-ion battery.  

 10 full journeys per day, 365 d/y for 10 y.       

 Lithium titanate (LTO) as anode. 

Key design question: how does cooling influence 

the aging of the battery? 
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Load profile: acceleration & regenerative breaking 
What is the aging impact of cooling? 
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Bus accelerates, 

coasts, slows down 

Bus performs 

regenerative breaking 

Auxiliary power 

during bus stop 
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Load profile: away and return journey of load profile 
What is the aging impact of cooling? 
 
 

Away journey 
Bus recharged 

at end of line 

Return journey 
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Heat transfer coefficient (HTC) impact on aging 
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What is the aging impact of cooling? 
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Heat transfer coefficient (HTC) impact on temperature 
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What is the aging impact of cooling? 
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Conclusions on battery model 
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 For long lifetime of 10 years, liquid-cooling is needed to manage 

aging and core temperature. 

 Battery modelling acts as design guideline and not “perfect” 

forecast (especially for prototypes). 

 Model components are interdependent. For example:  

 Electric model determines resistance. 

 Thermal model calculates temperature (based on resistance).  

 Aging model highly depends on temperature (∆10°C = ca. x2 

more aging), and modifies R. 

Electric 

Thermal Aging 
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Battery R&D 
Sizing of prototypes and developed battery 
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Conclusions 
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 Design the battery for the public transportation line and the bus. 

 

 Models support battery design, but it must be combined with 

experience and field data. 

 

 Batteries will increasingly be used in ABB products and systems 

 Lifetime knowledge critical for reliability                                  

 Continued collaboration with Academia  
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Operation and sizing of a Li-ion battery 
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Capacity (relative to Ah) 

Thermal management = 

more capacity in smaller 

+ lower cost BESS 

Limited capacity 

due to aging 



  

Rapid falling cost of LIB packs in EVs 
The impact of learning curves – 8% annual decline* 
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*Source: Nykvist, B. and Nilsson, M., Nature Climate Change, 23 March 2015 



Battery energy storage 
Overview and future batteries  
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