

T. Patey, R. Flueckiger, J. Poland, N. Prasad, O. Sologubenko; ABB Corporate Research, 4th of May 2015

Li-ion BESS for public transportation Electric bus battery lifetime estimation

Li-ion BESS for public transportation Outline

1) Introduction to electric bus lines

2) Electric, thermal, aging model of a battery

3) Case study - battery aging in an electric bus

4) Conclusions & Outlook

What a diesel-powered public transportation bus does Product requirements of electric bus line _

Terminal charge (100 kW)

"Opportunity" / flash charge (600 kW)

<u>Diesel bus</u>:

- Makes noise, CO₂, and particulate matter pollution
- Pay for personnel, infrastructure, and fuel (\$/litre)
- Must be exception ready! (bus needed for other line, traffic, car blocks bus stop, etc)

Electric bus:

- Less noise and no local generation of CO₂ and particulate matter pollution
- Pay for personnel, infrastructure and electricity (\$/kWh)
- Must be exception ready! (bus needed for other line, traffic, car blocks bus stop, etc)

→ design the battery for the line

The electric bus – TOSA electic bus, Geneva, CH Main components – battery as key component

Electric bus in Geneva Line 23 to be converted from diesel to all electric*

NZZ article March 7, 2015 reports:

- 15 second flash charge every 4 stops
- 94% of energy from renewable sources / emission free in the city
- Advantage of no overhead lines:
 - Aesthetics: no wires obstructing sight
 - Supporting infrastructure for a new line with battery buses is half the price (bus costs similar)*
- Time saved for opportunity charging
 15s x 13 stops = ~3 minutes

* Source: NZZ, March 7, 2015.

Genf tüftelt am Bus der Zukunft

Map: Google Maps

Motivation for battery R&D How to quickly estimate all these aging processes?

Aging at anode

- Key R&D question: How can we predict the net aging & performance impact of all the reactions above in an electric bus with reasonable accuracy?
- → A goal of battery R&D at ABB Corporate Research

Electrical, thermal and aging model Introduction

Electrical model Record data and fit to electric model

- Create an electrical model of the battery (right).
- Power pulse and open circuit voltage experiments.
- Calculate R,C parameters that describe overvoltages.
- Modify R,C parameters as battery ages.

Thermal network model Measure thermal properties and calculate T_{avg}

Case study

Conclusions

- Thermal network model is analagous to electrical network: T ~ voltage, heat transfer ~ current
- Critical step #1 calculate the cell's internal electrical resistance.
- Critical step #2 Measure the cell's heat capacity (J/kg/K) and conductivity (K/W).

Electric

Aging model: semi-empirical approach Conduct battery experiments and fit data

Introduction

 A battery degrades due to time (calendar) and use (cycling).

- Critical step #1 predict the temperature.
- Critical step #2 predict impact of Ah throughput (∆SOC, right).

Case study of electric bus, similar to TOSA, Geneva Geneva, Switzerland

Case study details:

- 43 kWh, 300 kW Li-ion battery.
- 10 full journeys per day, 365 d/y for 10 y.
- Lithium titanate (LTO) as anode.
- → Key design question: how does cooling influence the aging of the battery?

Load profile: acceleration & regenerative breaking What is the aging impact of cooling?

Load profile: away and return journey of load profile What is the aging impact of cooling?

Heat transfer coefficient (HTC) impact on aging What is the aging impact of cooling?

Heat transfer coefficient (HTC) impact on temperature What is the aging impact of cooling?

Conclusions on battery model

- For long lifetime of 10 years, liquid-cooling is needed to manage aging and core temperature.
- Battery modelling acts as design guideline and not "perfect" forecast (especially for prototypes).
- Model components are interdependent. For example:
 - Electric model determines resistance.
 - Thermal model calculates temperature (based on resistance).
 - Aging model highly depends on temperature (∆10°C = ca. x2 more aging), and modifies R.

Battery R&D Sizing of prototypes and developed battery

Conclusions

Design the battery for the public transportation <u>line</u> and the <u>bus</u>.

 Models support battery design, but it must be combined with experience and field data.

- Batteries will increasingly be used in ABB products and systems
 - → Lifetime knowledge critical for reliability
 - → Continued collaboration with Academia

Power and productivity for a better world™

Operation and sizing of a Li-ion battery

Rapid falling cost of LIB packs in EVs The impact of learning curves – 8% annual decline*

*Source: Nykvist, B. and Nilsson, M., Nature Climate Change, 23 March 2015

Battery energy storage Overview and future batteries

