Instability detection/classification in Obsbox data

Speaker: Loïc COYLE

Acknowledgements: T. Pieloni, M. Schenk, X. Buffat

ADTObsBox

Figure 1: An overview of the LHC transverse feedback system (ADT).

"The ADTObsBox is a very powerful computer system that was designed to receive a copy of the digital bunch-by-bunch transverse position data stream, analyze it online or offline, make it available to users outside of the ADT system, or to store it."

In short:

- \rightarrow rolling buffer & saves on trigger
- \rightarrow 65536 turns
- \rightarrow bunch by bunch
- \rightarrow transverse position data

Problem...

The trigger is not very accurate :

Most of the data does not contain any instabilities.

 \rightarrow instabilities make up less than 1% !

Large amount of data ~4 TB

Very little labeled data collected manually [1] \rightarrow eliminates supervised learning methods

How to find/classify instabilities at this scale ?

ADTObsBox

Raw beam amplitude data at a turn by turn and bunch by bunch resolution. \rightarrow multivariate time series

Example: 07169_Inst_B1V_Q7_20180914_08h53m08s \rightarrow 2 unstable bunches

Key steps

Light preprocessing of Data

Extract features from the data \rightarrow tsfresh [1] :

- Maximum/Minimum
- Mean
- Standard Deviation
- FFT coeffs
- CWT coeffs
- CID coefficient [2] (complexity coefficient)

- ...

Dimensionality reduction : PCA on the extracted features

Find instabilities in PCA space

[1] https://github.com/blue-yonder/tsfresh

[2] Batista, Gustavo EAPA, et al (2014) Data Mining and Knowledge Discovery 28.3 (2014): 634-669.

Principal Component Analysis

PCA vectors truncated to 4 components \rightarrow ~93% variance explained

6

Instability detection

Clustering:

- K-means \rightarrow number of clusters
- DBSCAN \rightarrow scaling problems

Anomaly detection:

- Local Outlier Factor \rightarrow scaling problems
- **Isolation forest**

500

0 pca_3

 \rightarrow requires contamination level

Classification results

Plots for a subset of the data, of the inlier/outlier bunches.

Left: outlier data Right: inlier data

Classification avoids the stray points in **top right** plots.

The anomalies may not be instabilities but they are correctly identified as anomalous.

Comparison with instability table

One case from instability table:

Fill number	Fill type	Cycle phase	Date	Energy [TeV]	beam	plane	total nb of bunches	nb unstable bunches	Tag	other info
6561	Commissioning	FLATTOP	2018-04-15 18:11:24	6.5	1	н	2	1		(emittances are hypothetical, no meas avail.)

Predicted unstable bunches: 1 Number of bunches: 2

Finds correct number of unstable bunches in next file,

~1 min after the table's date entry.

 \rightarrow instability table data columns doesn't line up with timestamps on files.

 \rightarrow need to tune the isolation forest's parameters.

 \rightarrow makes quantitatively measuring the accuracy the anomaly detection challenging.

In most cases finds instability in or around table entry.

Outlier Classification

The **challenge**: classify different types of instabilities. The **problem**: multivariate time series (number of bunches) with differing number of dimensions (bunches).

Consider each bunch as independent, figure out how to extend to multi-bunch later.

10

Classification within the outliers

Time series classification, proof of concept at the **bunch level (univariate)**.

Time series distance metric ? Dynamic Time Warping [1]

- \rightarrow implementations: FastDTW [2] & dtaidistance [3]
- \rightarrow distance matrix of the outlying time series'

Clustering using a Hierarchical Clustering

Would need to be extended to the multivariate level.

[1] R. Bellman and R. Kalaba, "On adaptive control processes," Automatic Control, IRE Transactions on, vol. 4, no. 2, pp. 1–9, 1959.
[2] <u>https://github.com/slaypni/fastdtw</u>
[3] https://github.com/wannesm/dtaidistance

Full plot: https://cernbox.cern.ch/index.php/s/F6m2LQIVVBvCK79 or https://imgur.com/a/jeDk8ts

Conclusion

OBsBox:

- Anomaly detection for instability detection ~working
 - Refine the extracted features
 - Isolation forest hyper parameters
- Some preliminary (univariate) time series clustering ~working
- Proof of concept seems to produce coherent results
- Improvement:
 - \circ More features \rightarrow extend to run on cluster ~nearly working
 - Look into multivariate (multi-bunch) time series clustering
- Look into online use