Photonic crystals, PHYS-605

Ecole doctorale photonique

Romuald Houdré

Summer semester 2017

VII Emerging topics

Contents

* 1 Introduction, overview.
 Introduction
 History of photonic crystals
 The key concepts

* 2 Theory
 Main equations
 Band structures and projected band structure
 Plane wave expansion method
 FDTD
 Transfer matrices, FEM and other methods

* 3 Basic properties
 Mirror
 Waveguide
 Bends, splitters, couplers
 Optical resonator
 High quality factor cavities
 Dispersion diagram and equifrequency surfaces
 Superprism, negative refraction
 Selfcollimation
 Fourier analysis of Bloch waves

* 4 Fabrication techniques
 Epitaxy, patterning, etching
 2D, III-V, Si, SOI
 3D, Opals

* 5 Measurement techniques
 External light source
 Internal light source
 Advanced techniques

* 6 Applications
 Couplers
 Polarizer and rotator
 Modulator, routing
 Add/Drop
 Spectrometers and interferometers
 Point defect photonic crystal lasers
 Band-edge photonic crystal lasers

* 7 Emerging topics
 Integration with microfluidics systems
 Biology
 Slow light
 Nano-beam
 Subwavelength structures
 Slotted waveguides
 Sensors
 Optical trapping
 Optomechanic systems
 Dynamic control
 Non-reciprocal structures
 Topological photonic structures
 Novel materials (chalcogenide, diamond, GaN, ...)
 Thermal photovoltaic
 ...
Emerging topics

- Integration with microfluidics systems
- Biology
- Slow light
- Nano-beam
- Subwavelength structures
- Slotted waveguides
- Sensors
- Optical trapping
- Optomechanic systems
- Dynamic control
- Non-reciprocal structures
- Topological photonic structures
- Novel materials (chalcogenide, diamond, GaN,...)
- Thermal photovoltaic
- ...

Optical trapping

Rita Therisod's presentation

Topological structures

Liu Qiu's presentation
Microfluidics

+ Rita Therisod's presentation

Hybridisation with other complex technologies

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramulal Heudrè, Summer semester 2017

Microfluidics

Review article C. Monat et al., Nat. Phot., 1, 106 (2007)

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramulal Heudrè, Summer semester 2017
Biology

Many ideas
- Grafting, trapping of single molecules (DNA, protein, ...)
- Selective optical detection of a molecule or a luminescent specific marker
- Make use of the large emission increase due to resonances

Presently, mainly detection schemes based on refractive index change, for example N. Skivesen et al., Opt. Exp., 15, 3169 (2007)
- Little selectivity
- Associated Δn are often very small
- A few examples of functionalization

Selectivity is achieved by grafting of molecules at a functionalized surface in the holes

Slow light

+ Morteza Navadeh's presentation

Motivation
- Enhancement of linear effects for a constant length - n_x
 - Delay line, buffer memory (≈ max a few 100 bits)
 - Commutation (for devices based on a Δk variation)
 - Sensors
- Polynomial enhancement of non-linear effects - n_x^n
 - Diminution of the interaction length
 - Enhancement also due to intensity increase, J = ρ.v_x if v_x \rightarrow then ρ \rightarrow
- Quantum optics

Issues
- Bandwidth
- Propagation losses
- Coupling
- Dispersion
- Disorder

Review articles:
Slow light

Ecole doctorale photonique, Photonic crystals. PHYS-605. Ramuald Houdré, Summer semester 2017

Slow light

Ecole doctorale photonique, Photonic crystals. PHYS-605. Ramuald Houdré, Summer semester 2017
Slow light

Example of application in a Mach-Zehnder

- Commutation

Slow light

Some approaches

- Band edge
 - dispersion
 - losses
 - back reflection

Slow light

Some approaches

- Dispersion engineering
 - outside band edge, zone boundaries etc...
 - Spatial compression of the pulse

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramonud Heudrè, Summer semester 2017

Slow light

Some approaches

- Dispersion engineering

Shifted rows

\[n_g \approx 30 \]

Low group velocity dispersion

Robustness

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramonud Heudrè, Summer semester 2017
Slow light

Some approaches
- Dispersion engineering

Shifted rows

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramonaud Heudré, Summer semester 2017

Slow light

Some approaches
- Coupled cavities waveguides (CCW)

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramonaud Heudré, Summer semester 2017

\[n_g \approx 50 \]

\[v_g(K) = -\frac{d\omega_K}{dK} = -\Omega R \kappa_1 \sin(KR) \]
\[\omega_K = \Omega \left[1 - \frac{\Delta \alpha}{2} + \kappa_1 \cos(KR) \right] \]

Coupling strength determines the dispersion curve (tight binding)
Slow light

Some approaches
- Coupled cavities waveguides (CCW)
 - Transmission spectrum

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramalald Houadra, Summer semester 2017
Slow light

Well sold, but ... a flat transmission spectrum is mandatory

\[\Delta \tau = (n_e - n_{ref}) \frac{L}{c}\]

Echoes, cavity ring-down

Slow light

Some approaches
- Dynamic structures, see next sections

Commutation between fast and slow regime is achieved in changing the coupling constant

Slow light

Application
<table>
<thead>
<tr>
<th>Figure of merit F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single frequency</td>
</tr>
<tr>
<td>Delay line</td>
</tr>
<tr>
<td>Buffering</td>
</tr>
<tr>
<td>Non-linear effect</td>
</tr>
<tr>
<td>Spatial frequencies</td>
</tr>
<tr>
<td>Normalised delay</td>
</tr>
<tr>
<td>Inclusion of losses</td>
</tr>
</tbody>
</table>

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramaudil Heudre, Summer semester 2017

Slow light

Intrinsic limits due to periodicity

\[
\Delta k \leq \frac{\pi}{a} \quad \text{or} \quad \Delta \tilde{k} \leq \frac{1}{2} \quad \text{or} \quad n_g \Delta u/u \leq \frac{1}{2u} = \frac{\lambda}{2a} \quad \text{or} \quad \frac{\lambda}{2\Lambda} \quad \text{for a CCW, } \Lambda=Na
\]

Usually, $u \approx 0.25-0.3$ and $n_g \Delta u/u \text{ max } 1.7 - 2$ (or 1.7 - 2 / N for CCW)
Slow light

Intrinsic limits due to periodicity

Current values:

Modified WI
(e.g. N. Le Thomas et al., Phys. Rev. B 76, 035103 2007)

\[n_g \frac{\Delta u}{u} \leq \frac{1}{2u} = \frac{\lambda}{2a} = 1.7 - 2 \]

\[n_g \Delta u/u = 0.25 \]

×10 margin for improvement

CCW
(e.g. J. Jägerská et al., Opt. Lett. 34, 359 2009)

\[n_g \Delta u/u = 0.18 \]

×2 margin for improvement

close to the limit

\[n_g \Delta u/u = 0.1 \]

CCW
(e.g. M. Notomi et al., Nat. Phot. 2, 741 2008)

Slow light

Intrinsic limits due to dispersion

To be avoided:

- **GVD**
 Pulse propagation

- **Zone center**
 Radiative intrinsic losses (always the case for a CCW)

- **Zone boundary and band edge in general**
 Backscattering, proximity of the backward propagating mode. \(\Delta k_{\text{scattering}} \approx 1/l_{\text{disorder}} \)

- **Evanescent modes**
 Coupling, disorder

Desired:

- Flat dispersion in the middle of the Brillouin zone below the light cone
Slow light

Extrinsic limits

- Residual disorder

- Light-matter increased interaction due to slowing the light (i.e. increasing the density of states) applies also to interaction with defects such as disorder

- Disorder induced propagation losses \(\propto n_g \) (linear response)

- Disorder induced back-scattering losses \(\propto n_g^2 \) (density of states factor is involved twice)

- For larger disorder/\(v_g \), wavevector loses its relevance
 - Dispersion relations and group velocity cannot be defined anymore
 - Light still propagates through the medium, but only and energy propagation velocity \(v_E \) can be defined

- For even larger disorder/\(v_g \), Anderson light localisation (i.e. absence of light propagation in the presence of disorder). Beware: not described by perturbative approaches to any order.
Slow light

Extrinsic limits

- For larger disorder/\nu_g, wavevector loses its relevance

![Graph showing dispersion curve, surface emission, and waveguide transmission with regions labeled dispersive regime, diffusive regime, localized states, and reduced energy u.]

Ecole doctorale photonique, Photonic crystals, PHYS 405, Ramuald Houdre, Summer semester 2017

Slow light

Extrinsic limits

- Fast light / slow light transition

Mode mismatch is responsible for strong backscattering and out-of-plane insertion losses

- High \nu_g, low \nu_g transition taper

- AR PhC intermediate layer

- Topology optimisation
 5dB improvement but still ~20dB

Slow light

Extrinsic limits
- Fast light / slow light transition
- Interplay with interface and evanescent modes

- Optimized hole termination, interplay with interface modes

J. Jägerská, PhD dissertation, EPFL n°4956 (2010)
Slow light

State of the art

- $n_g \approx 30$

- $n_g \approx 50$

- $n_g \approx 100$

- $n_g \approx 30$

- $n_g \approx 100$

Non linear effect, example: third harmonic generation

B. Corcoran et al., Nat. Phot., 3, 206 (2009)
Nanobeam

- High Q
- Large Q/V → quantum optics, microlaser ...
- Ease of fabrication
- Cavity access → tuning, sensors
- Optomechanic applications

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramazul Houadra, Summer semester 2017

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramazul Houadra, Summer semester 2017
Nanobeam

\[Q_{\text{exp}} = 750,000 \]

\(\rightarrow \) optomechanic systems
\(\rightarrow \) slotted guides
\(\rightarrow \) sensors

Ecole doctorale photonique, Photonics crystal, PHYS-605, Ramuald Houdré, Summer semester 2017

Slotted guides

Guides with low index core / empty
How to obtain guided mode in air

- Quantum optic
- Sensor; analyte is introduce in the core
- Insertion of active low index material (non-linear polymer ...)

Implementation in photonic crystals of an approach used in optical nanowires

Ecole doctorale photonique, Photonics crystal, PHYS-605, Ramuald Houdré, Summer semester 2017
Slotted guides

Slotted guides / sensors

Slotted guides / sensors

Slotted WI waveguide
a = 510 nm, f = 0.36, s = 120 nm

Cavity:
Slot 100-120-100 nm
3a cavity, 5a barrier
Slotted guides / sensors

Quality factor
$Q = 26\,000$

École doctorale photonique, Photonics crystals, PHYS-405, Ramuad Houdré. Summer semester 2017

Slotted guides / sensors

Wavelength shift of the cavity resonance upon exposure to gasses

40 attoliters $= 0.04$ µm3
$= 1.8$ attomol
$= 7.2$ attogram (He)
$\approx 10^6$ molecules

Sensitivity $= 610$ nm/RIU

École doctorale photonique, Photonics crystals, PHYS-405, Ramuad Houdré. Summer semester 2017
Sensors

Arbitrary selection of a few examples
- Most of the time, simply a refractive index sensor
- Little selectivity in itself
- See also, microfluidic and slotted guides sections

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramuald Heudra, Summer semester 2017

Sensors

A little bit more elaborated
\[V = 0.15 \, \mu m^3 / 1 \, fg \]

Final goal: functionalize the sphere surface

Without sphere

With sphere

Ecole doctorale photonique, Photonic crystals, PHYS-405, Ramuald Heudra, Summer semester 2017
Sensors

Integrated in a μfluidics environment

Functionnalized holes
Label free
Refractive index detection limit 7×10^{-5}
10 attograms

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramasid Heudre, Summer semester 2017

Sensors

Integrated in a μfluidics environment

Functionnalized holes
Label free
Sensitivity : 64.5 nm/RIU
2.3 $\times 10^{-5}$ nm/M
1.5 fg of human IgG

S. Pal et al., Biosensors Bioelec., 26, 4024 (2011)
Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramasid Heudre, Summer semester 2017
Sensors

A more original approach to obtain optical field in air
- Heterostructure cavity
- Surface mode + open holes
- Measurement $\lambda_{\text{Laser}}(n)$
- 625 nm/RIU or $\Delta n = 3.6 \times 10^{-6}$ (modelling)

Ecole doctorale photonique, Photonic crystals, PHYS-600, Ramaulid Heudre, Summer semester 2017

Dynamic control

+ Antoine Delgoffe’s presentation

Control in time of the optical properties of the structure
Example : quality factor of a cavity

τ_{input}
Low Q, in-coupling fast and efficient

τ_{storage}
High Q, long lifetime of the pulse in the cavity

τ_{readout}
Low Q, out-coupling fast and efficient
Dynamic control

Control in time of the optical properties of the structure

Other more advanced applications:

- Translational invariance \Rightarrow k conservation

- Structure non-translational invariant \Rightarrow No k conservation \Rightarrow Chirped structures

- Time invariant structure \Rightarrow Energy conservation

- Time dependant structure \Rightarrow No energy conservation \Rightarrow Dynamic control

Dynamic control

Dynamic control of the quality factor of a cavity

Y. Tanaka, Nat. Mat., 6, 862 (2007)
Dynamic control

Trap and release of a pulse and frequency shift

Non-reciprocal systems

+ Liu Qiu’s presentation

Very active topic also in the metamaterials field

Needed functionality in many optical systems

Require systems with time invariance symmetry breaking \((t \rightarrow -t)\) or time-dependent structures

- Magneto-optical materials

- Non-linear effects

- Non centro-symmetric structures
 - chiral structures (metamaterials)

Beware that there are several deeply wrong papers in this field, which misunderstand what an optical insulator actually is.

Little compatibility with integrated optics technologies

Improper

Improper
Non-reciprocal systems

Oblique transitions with breaking of
- translational invariance Δk
- temporal invariance $\Delta \omega$

Refractive index modulation $\cos(\Omega t + qz)$
- non symmetric to couple odd and even modes
- $\Omega \rightarrow \Delta \omega$
- $q \rightarrow \Delta k$
- bandwidth depends only from the ability to design waveguides with parallel dispersion curves

$\omega_1 \rightarrow \omega_2$
$\omega_1 \leftarrow \omega_1$

- Isolation
- Non-reciprocal frequency conversion

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramaud Heudre, Summer semester 2017

Non-reciprocal systems

$L = 2L_c$

$\omega_1 \rightarrow \omega_2 \rightarrow \omega_1$
$\omega_1 \leftarrow \omega_1 \leftarrow \omega_1$

Purpose is to introduce a non-reciprocal π phase shift

port 1 \rightarrow port 3
port 2 \leftarrow port 3

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramaud Heudre, Summer semester 2017
Novel materials

- Chalcogenides
- SiC
- Diamond
- GaP
- GaN and III-N
- Deformable structures
 Nicola Bartolomei's presentation

Chalcogenides

Photorefractive, photo-induced metastables states

- Fabrication
- Trimming
- $\Delta n \approx 2.5$
- Fast non-linear effects (Kerr)

Chalcogenides

Tuning

Photowritten high-Q cavities

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramasidd Heudra. Summer semester 2017

GaN and III-N

Large bandgap material PhC, possible materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Refractive index</th>
<th>Band gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaN</td>
<td>2.6 @ 370 nm</td>
<td>3.4 eV</td>
</tr>
<tr>
<td></td>
<td>2.4 @ 500 nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.39 @ 600 nm</td>
<td></td>
</tr>
<tr>
<td>AlN</td>
<td>2.17 @ 500 nm</td>
<td>6.2 eV</td>
</tr>
<tr>
<td>SiNₓ</td>
<td>≈ 2.0</td>
<td>3–4 eV</td>
</tr>
<tr>
<td>SiC</td>
<td>2.5–2.8</td>
<td>2.4–3.6 eV</td>
</tr>
<tr>
<td>SiO₂</td>
<td>≈ 1.45</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>1.8–2.34</td>
<td>3.3 eV</td>
</tr>
<tr>
<td>GaP</td>
<td>3.25–3.44</td>
<td>2.2 eV</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.37–2.67</td>
<td>5.5 eV</td>
</tr>
</tbody>
</table>
GaN and III-N

Suspended structures

Ecole doctorale photonique, Photonic crystals, PHYS-605, Ramuad Heudrè. Summer semester 2017

GaN and III-N

Record quality factor in GaN PhC

\[Q_{\text{meas.}} = 44,000 \]
\[Q_{\text{theo.}} = 80,000 \] (with injectors)

Optimized H0 cavity

Normalized resonant scattering intensity

\[Q = 4.4 \pm 0.3 \times 10^4 \]

linewidth = 34 pm

Wavelength (nm)

APL Phot. 2, 0331301 (2017)
GaN and III-N

Continuous-wave 2nd and 3rd harmonic generation

\begin{align*}
P_{\text{SHG}} &= 0.74 \text{ nW for 0.78 mW input coupled in the cavity} \\
P_{\text{SHG}} / P_{\text{coupled}}^2 &= 2.4 \times 10^{-3} \text{ W}^{-1}
\end{align*}

APL Phot. 2, 0331301 (2017)

That's all ...