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Sialodacryoadenitis virus, Rat coronavirus

Pneumonia virus of mice
Guineapig adenovirus
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Mouse parvovirus/Rat parvovirus
(Orphan parvovirus)
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Lactate dehydrogenase elevating virus
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Lymphocytic choriomeningitis virus

Clostridium piliforme
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Mycoplasma pulmonis
Helicobacter spp.

Pneumocystis carinii
Toxoplasma gondii
Encephalitozoon cuniculi
Oxyurina
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Introduction

It is generally accepted that rodent pathogens may not
only be hazardous for animals (and humans) but can
severely influence the results of animal experiments.
Microbiological standardization of laboratory animals
is therefore of crucial importance.

It has been known for decades that microorganisms
may have an impact on their hosts in various ways.
Many years ago, influences of microorganisms were
detected on development and growth of tumours. It
was shown by various authors that germ-free mice
develop fewer tumours (lung, liver, mammary glands,
uterus, ovary) after treatment with chemical carci-
nogens than conventionally housed animals (Burstein
et al. 1970, Roe & Grant 1970, Schreiber et al. 1972).
The importance of microorganisms as factors that
may influence animal experiments has already been
described in review articles more than 25 years ago
(van der Waaij & van Bekkum 1967, Hanna et al.
1973, Baker et al. 1979). A first symposium dealing
with this issue was held in 1971, and hitherto known
influences of selected microorganisms were published
afterwards (Pakes & Benirschke 1971).

Importance of microorganisms

Infectious agents may affect animal populations in
various ways. Some are pathogenic and may induce
clinical signs with variable morbidity or mortality.
However, most microorganisms induce no or only
mild disease, at least in cases of endemic infections.
Occasionally, loss of animals occurs as a consequence
of disease or death. Silent infections are often
activated by experimental procedures (stress, im-
munosuppression, toxic substances, tumours) or
environmental influences (transportation, suboptimal
humidity or temperature). Frequently, certain strains
of a given species are more sensitive to an infection,
whereas the same agent may cause milder or different
symptoms in other strains, or the infection may be
asymptomatic. Clinical signs are usually more serious
in immunodeficient animals. Frequently, infections
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result in a reduced life expectancy in the absence of
specific disease for some individuals or a whole
population. Other agents induce silent infections
which are asymptomatic even in the case of experi-
mental inoculation.

Many agents may have an impact on physiological
parameters and thus on the results of animal experi-
ments independent from their pathogenic potential.
Further, infections may increase inter-individual
variability. This may result in increased numbers of
animals necessary to achieve significant results.
Direct effects of infectious agents on experiments
may lead to false conclusions or misinterpretation
and may be responsible for a lack of reproducibility.

The use of laboratory animals that are free from
unwanted microorganisms is an important pre-
requisite to achieve reliable and reproducible results
with a minimum of animals and is therefore a sig-
nificant contribution to animal welfare.

It is obvious that experimental data obtained from
diseased animals should, if ever, be used only with
maximal precaution. However, the effect of clinically
silent infections may also be devastating because they
often remain undetected, and thus modified results
may be obtained and published.

The absence of clinical manifestations has no
diagnostic value. The presence of unwanted micro-
organisms and the suitability of an animal population
for a specific experiment can only be demonstrated by
comprehensive health monitoring before and during
experimentation. Health monitoring data are part of
the experimental work and have to be considered
during interpretation of experimental results by the
experimenter and by the reader of a publication. It
should, therefore, be self-evident that results of health
monitoring are included in scientific publications
(Working Committee for the Biological Characteriza-
tion of Laboratory Animals/GV-SOLAS 1985).
Recommendations for health monitoring of labora-
tory animals have been published repeatedly (Lussier
1991, National Research Council 1991, Kunstyr 1992,
Kraft et al. 1994, Nicklas 1996, Rehbinder et al. 1996,
1998).

Many agents do not only have an impact on ani-
mals or animal experiments. Numerous organisms
are known to affect experiments conducted with
isolated organs or cells. Microorganisms may even
persist in cells, tumours or other biological materials
for unlimited periods of time and therefore influence
in vitro experiments. Furthermore, microorganisms
resulting from a natural infection might contaminate
biological materials (tumours, sera, cells, viruses,
parasites) that originate from or have been passaged in
infected animals. They may severely influence
experiments conducted with such materials, or may
be introduced into animal facilities by contaminated
samples (Collins & Parker 1976, Nicklas et al. 1993).

Unfortunately, research complications due to
infectious agents are usually considered artefacts and
are published only rarely. Information on influences
of microorganisms on experiments is scattered in
diverse scientific journals, and many articles are dif-
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ficult to detect. This text therefore aims to provide an
overview on published influences of selected micro-
organisms on animals as well as on experiments.

To address the problem, several meetings were held
on viral complications on research. The knowledge
available was summarized in conference proceedings
(Melby & Balk 1983, Bhatt et al. 1986, Hamm 1986)
and has later repeatedly been reviewed (Kraft 1985,
Lussier 1988, National Research Council 1991, Han-
sen 1994, Baker 1998, Mossmann et al. 1998).

Aim of this compilation

After detection of an organism in an animal facility
the question frequently arises if and how an animal
experiment might be influenced. Experimenters and
laboratory animal specialists must in such cases be
able to evaluate the importance of an infection on
research. It is the purpose of this compilation to aid in
evaluating the importance of the most relevant
microorganisms for animal experiments. Published
influences of microorganisms on physiological
parameters of laboratory animals have been listed
concisely, and the references are cited. In addition, a
few other questions which often arise together with
infections in populations of experimental animals are
addressed (e.g. zoonotic potential, host specificity).

Furthermore, it is the aim of this study to support
managers of animal facilities in arguing towards
improved microbiological standardization of labora-
tory animals which will result in better and more
reliable results of animal experiments with fewer
animals.

The majority of laboratory animals are mice and
rats, and most information is available for micro-
organisms infecting these species. This compilation
therefore focuses on rodent microorganisms although
there is a general trend towards better microbiological
quality also for other animal species (Rehbinder et al.
1998).
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Sendai virus: implications for animal experiments

Sendai virus

Host species
e mouse, rat, hamster, (guineapig)

Organotropism
e respiratory tract

Clinical disease

e usually inapparent

o severe clinical disease with complicating infections
(M. pulmonis, CAR bacillus)

Pathology

o focal/segmental necrotizing inflammation of
respiratory epithelium

e suppurative or necrotizing bronchitis and bronch-
iolitis

e foci of interstitial pneumonia

Morbidity and mortality

e up to 100% of a colony infected

o morbidity and mortality depending on host strain
(Parker et al. 1978, Steward & Tucker 1978,
Brownstein & Winkler 1986, Percy et al. 1994)

Interference with research

Physiology

o Sendai virus infection in guineapigs and rats
enhances airway responsiveness to acetylcholine
and substance P (Elwood et al. 1993, Yamawaki
et al. 1995)

o Sendai virus infection aggravates the airway
damage in rat lung allografts with chronic rejection
(Winter et al. 1994)

o Sendai virus infection reduces the life span of the
H-2d and H-2b genotypes B10 congenic mice (Yunis
& Salazar 1993)

Pathology

e increased number of mitotic cells in bronchial
epithelium and in lung parenchyma (Richter 1970)
increase in bronchiolar mast cells persists for
months after infection (Sorden & Castleman 1995)
o Sendai virus nucleoprotein gene is detectable in the
olfactory bulbs of intranasally infected mice for at
least 168 days post-infection (p.i.) by PCR (Mori et
al. 1995)

moderate hypoxia while recovering from a Sendai
virus causes pulmonary oedema in young rats
(Carpenter et al. 1998)

Immunology

e increase in natural killer cell mediated cytotoxicity
(Clark et al. 1979)

e induction of tumour necrosis factor and other
cytokines (Aderka et al. 1986, Costas et al. 1993,
Mo et al. 1995, Uhl et al. 1996)

o long-term effect on the immune system (55 out of
63 parameters are affected (Kay 1978)
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e Sendai virus infection of C57BL/6 mice elicits a
strong CD4 + and CD8 + T-cell response in the
respiratory tract (Cole et al. 1994)

o infected mice have enhanced numbers of cytotoxic
T-lymphocyte precursors (>20x background) for
life (Doherty et al. 1994)

e impairment of macrophage function causing delay
in wound healing (Kenyon 1983)

e induces increased TNF-alpha and INF-alpha
expression (Milone & Fitzgerald-Bocarsly 1998,
Payvandi et al. 1998, Uhl et al. 1998)

Interactions with other infectious agents

o decrease of pulmonary bacterial clearance (Degre &
Solber 1971)

e interaction with bacterial pathogens (Jakab 1981)

Oncology

o production of polyploid variants of tumour cells
with increased chromosome numbers and reduced
tumorigenicity (Matsuya et al. 1978)

o reduced transplantability of hamster tumour cells
in combination with augmented cell-mediated
immunity (Yamada & Hatano 1972, Ogura et al.
1980)

o altered host response to transplantable tumours
(Wheelock 1966, 1967, Collins & Parker 1972,
Matsuya et al. 1978)

o strong influence on chemically induced carcino-
genesis (Peck et al. 1983)
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Mouse hepatitis virus: implications for animal experiments

Mouse hepatitis virus

Host species
e Imouse

Organotropism

e polytropic strains: liver, brain, lymphoid tissue,
(other organs)

e enterotropic strains: intestine, lymphoid tissue

Clinical disease

e inapparent in immunocompetent adults, diarrhoea
and death in neonates (epizootic infection)

e wasting disease in immunodeficient mice

Pathology

e polytropic strains: acute necrosis and syncytia
formation in liver, spleen and lymphoid tissue;
necrotizing encephalitis with demyelinization and
syncytia formation

enterotropic strains: villus attenuation, enteroytic
syncytia and mucosa necrosis of the terminal small
intestine, the caeccum and the ascending colon

Morbidity and mortality

o usually 100% of animals are infected

e mortality close to 100% in neonates during an
epizootic infection and in immunodeficient mice
infected with a polytropic strain

mortality 0% (or very low) in all other cases

Interference with research

Oncology

e contamination of transplantable tumours (Nicklas

et al. 1993)

abnormal tumour invasion pattern, abnormal

tumour passage intervals, spontaneous regression

or oncolysis of normally stable tumours (Braun-

steiner and Friend 1954, Nelson 1959, Manaker

et al. 1961, Fox et al. 1977, Akimaru et al. 1981)

rejection of human xenografts (Kyriazis et al. 1979)

o altered response to chemical carcinogens (Barthold
1986a)

Interactions with other infectious diseases

e confusion about origin of virus isolates: Tettnang
(Smith et al. 1983), multiple sclerosis (Gerdes et al.
1981), puffinosis (Nuttall & Harrap 1982)

o reduced susceptibility for viral infections (PVM,

Sendai) (Carrano et al. 1984)

potentiation of subclinical MHV infections by

urethane and methylformamide (Braunsteiner &

Friend 1954), halothane (Moudgil 1973), transplan-

tation of tumours (Barthold 1986b), concurrent

infection with Eperythrozoon coccoides (Kraft

1982)

enhances resistance to Salmonella typhimurium in

mice by inducing suppression of bacterial growth

(Fallon et al. 1991)
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Immunology

e immunodepression and immunostimulation
depending on the time of infection (Virelizier et al.
1976)

e MHYV replicates in macrophages and with or with-
out lysis in both B and T lymphocytes (Bang &
Warwick 1960, Lamontage et al. 1989, de Souza &
Smith 1991)

e enhanced and suppressed macrophage function
(Boorman et al. 1982, Dempsey et al. 1986) and
dysfunction of T and B cells (Casebolt et al. 1987, de
Souza et al. 1991, Smith et al. 1991, Cook-Mills
et al. 1992)

e activation of natural killer (NK) cells and alteration
of the interferon responsiveness of infected mice
(Virelizier et al. 1976, Schindler et al. 1982)

o reduced levels of cytokines, interleukins and
gamma interferon in spleen cells (de Souza et al.
1991)

o recovered mice have complete or partial protection
against T-cell dysfunctions when re-infected with
different strains of MHV (Smith et al. 1992)

e macrophage dysfunctions continue in MHV-recov-
ered mice (Boorman et al. 1982)

e MHYV infection can durably modify unrelated T-cell
responses that are initiated at the time of infection
(Coutelier et al. 1991)

e permanent decrease of skin graft rejection and T-
cell dependent antibody responses after recovering
from MHV-A59 infection (Cray et al. 1993)

e enhancement of concomitant autoimmune reac-
tions (Lardans et al. 1996)

o altered pathogenesis in transgenic and knock-out
mice (Schijns et al. 1998)

Physiology

o alteration of liver enzyme levels, patterns of protein
synthesis and other biochemical markers (Piazza
1969, Barthold 1986a, Lucchiari et al. 1992)

e induction of alpha-fetoprotein (Kiuchi et al. 1974)
and increase of iron uptake (Tiensiwakul & Husain
1979)

o changes in peripheral blood such as anaemia,
thrombocytopenia, leukopenia and increased
monocyte procoagulant activity (Piazza et al. 1965,
Levy et al. 1981)

o decrease of the incidence of diabetes in non-obese
diabetic mice (Wilberz et al. 1991)

e MHV-3 induces the expression of fgl2 prothrom-
binase in the liver, the enzyme responsible for
fulminant liver failure (Ding et al. 1997)

e MHV-JHM induces nitric oxide synthase type II
expression in brains of acutely infected mice
(Grzybicki et al. 1997)

Reproductive technology

e persistent contamination of embryonic stem (ES)
cells without diminishing their pluripotency
(Okumura et al. 1996)

e MHYV infection influenced the outcome of fertili-
zation. Infected mice produce more MHC-hetero-
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zygous embryos than sham-infected ones (Rulicke
et al. 1998)
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Sialodacryoadenitis virus,
Rat coronavirus

Host species
e rat

Organotropism
e salivary and lacrimal (including Harderian) glands,
respiratory tract

Clinical disease

e enzootic: asymptomatic or mild conjunctivitis in
suckling rats

e epizootic: nasal and ocular discharge, porphyrin
staining, corneal ulceration, swelling of the neck,
exophthalmus

e SDAV may persist for at least 6 months in athymic
rats (Weir et al. 1990, Hajjar et al. 1991)

Pathology

e acute: coagulation necrosis of the ductal structure
of the salivary and lacrimal glands

reparative phase: squamous metaplasia of ductal
and acinar structures of the salivary and lacrimal
glands

Morbidity and mortality
e morbidity: high
e mortality: none

Interference with research

Physiology

o interference with studies involving eyes, salivary
and lacrimal glands or respiratory system (Jacoby
1986)

reduced reproduction and growth rates (Utsumi et
al. 1980)

impairing functions such as olfaction and chemo-
reception for up to 2 weeks post-exposure (Bihun &
Percy 1995)

Immunology

e reduction of interleukin production in alveolar
macrophages (Boschert et al. 1988)

e causes increase of localized graft-vs-host disease in
salivary and lacrimal glands after bone marrow
transplant (Rossie et al. 1988)
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Interactions with other infectious agents

e increased adherence of Mycoplasma pulmonis in
tracheas of infected rats (Schoeb et al. 1993)

e enhances lower respiratory tract disease in rats
following Mycoplasma pulmonis infection (Schunk
et al. 1995)

Oncology

o reduction of epidermal growth factor in submax-
illary salivary gland (Percy et al. 1988)

e causes higher prevalence of anterior pituitary
tumours in male F344/NCr rats (Rao et al. 1989)
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Pneumonia virus of mice

Host species

e mouse, rat, hamster, guineapig (Griffith et al. 1997),
(rabbit)

Organotropism
e respiratory tract

Clinical disease

e asymptomatic in euthymic animals (Smith et al.
1984, Griffith et al. 1997)

e chronic pneumonia and death in athymic (nude)
mice (Richter et al. 1988, Weir et al. 1988)

Pathology
o mild necrotizing rhinitis, necrotizing bronchiolitis
and non-suppurative interstitial pneumonia

Morbidity and mortality

e morbidity: from 20% (in mice) to 50% (in rats and
hamsters)

e mortality: none, except in immunodeficient mice

Interference with research

Physiology

e increases the susceptibility to diabetes induction
by streptozotocin in BALB/cBy] male mice (Leiter
et al. 1988)

causes significant decreases in body weights of
F344/NCr rats but not of B6C3F1 mice (Rao et al.
1989a,b)

Pathology

e produces an interstitial pneumonia with virus
demonstrated in the bronchial epithelium but also
in the alveolar walls and alveolar macrophages in
germ-free athymic and euthymic mice (Carthew &
Sparrow 1980a,b)

causes hydrocephalus after intracerebral inocula-
tion of neonatal mice (Lagace-Simard et al. 1980)
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Oncology
o lowers the prevalence of leukaemia in male
F344/NCr rats (Rao et al. 1989)
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Guineapig adenovirus (GPAdV)

Host species
e guineapig

Organotropism
e lungs, upper respiratory tract

Clinical disease

o dyspnoea (rapid, shallow, laboured or noisy breath-
ing), a hunched posture, piloerection (roughened
coat), eventually sensitivity to touch, hypothermia
and death in sporadic cases within one hour or one
day caused by an acute lobar bronchopneumonia
(necrotizing bronchiolitis)

Morbidity and mortality

e Note: The virus alone seems not to be able to elicit
the disease; some additional weakening factors are
necessary (multi-factorial disease). Nothing is
known about the prevalence of the virus in infected
colonies. Morbidity is considered to be low and
mortality close to 100% (no animal showing
clinical dyspnoea recovered). Subclinical infection
of the upper respiratory tract has recently been
found

Interference with research

o sudden death of experimental guineapigs in spora-
dic cases (or reaching about 5% mortality of a batch
at the most). No other interference is known

Note

Diagnostic method: beside histology and electron
microscopy, also PCR (Pring-Akerblom et al. 1997).
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May be used to detect subclinical infection in the
upper respiratory tract (Butz & Homberger 1997).
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Minute virus of mice (MVM)

Host species

e natural host: laboratory and wild mice (Parker et al.
1970, Singleton et al. 1993, Smith et al. 1993)

e hamsters and rats are susceptible to experimental
infection (Kilham & Margolis 1970, 1971)

Properties of the virus
o highly temperature resistant (Fassolitis et al. 1985)
o highly resistant to environmental conditions e.g.
desiccation (Tattersall & Cotmore 1986, National
Research Council 1991)
like other parvoviruses, MVM can infect cells only
during the S phase of the mitotic cycle (Tattersall
1972)
two allotropic variants exist which replicate in
fibroblasts (MVMp) or in T-lymphocytes (MVMi)
(McMaster et al. 1981, Spalholz & Tattersall 1983,
Antonietti et al. 1988, Gardiner & Tattersall 1988)
e oncogenic transformation of cells by radiation,
chemical carcinogens, or SV40 increases permis-
siveness to MVMp (Cornelis et al. 1988a)
transplacental transmission after experimental
infection of pregnant hamsters, mice and rats
(Kilham & Margolis 1971)
e mouse embryos with intact zona pellucida are not
susceptible to infection (Mohanty & Bachmann
1974)

Strain susceptibility

o the host strain may influence the mode and extent
of horizontal transmission (Tattersall & Cotmore
1986)

o three susceptibility phenotypes in response to
MVMi: asymptomatic infection in C57BL/6, lethal
with intestinal haemorrhage in DBA/2, lethal with
renal haemorrhage in BALB/c, C3H and other
strains (Brownstein et al. 1991)

e amount of viral DNA produced during infection is
dependent on host strain (Kapil 1995)

Organotropism

o viral replication only in mitotically active tissues

e.g. embryos (Tattersall & Cotmore 1986)

benign fetal infections in mice (Kilham & Margolis

1975)

o MVMi causes generalized infection of endothelium,
lymphocytes and haematopoietic cells, and pro-
duces bilateral infarcts of the renal papilli (Brown-
stein et al. 1991)

Clinical disease

e natural infection of mice usually asymptomatic
(Ward & Tattersall 1982, National Research
Council 1991, Jacoby et al. 1996)

subclinical infection in experimentally infected rats
or mice and lethal disease in hamsters after
experimental infection (Kilham & Margolis 1970)

Laboratory Animals (1999) 33 (Suppl. 1)

o infectivity, organotropism, and pathogenesis of
infection is dependent on characteristics of the
virus (Brownstein et al. 1992, Jacoby & Ball-
Goodrich 1995)

e growth retardation of mice after experimental
infection (Kilham & Margolis 1970)

e MVMi but not MVMp is able to induce a runting
syndrome in experimentally infected new-born
mice (Kimsey et al. 1986)

o fetal death and resorption (Kilham & Margolis 1971)

o periodontal disease and mongolism in hamsters
surviving experimental infection (Kilham & Mar-
golis 1970)

Pathology

e intranuclear inclusions in some infected animals
(Kilham & Margolis 1971)

e no pathological lesions after natural infection
(National Research Council 1991)

Morbidity and mortality

e MVMi more pathogenic for mice than MVMp,
MVMi influences growth of mice shortly infected
after birth, some die of the infection; non patho-
genic in adult mice (Kimsey et al. 1986)

o pathogenic in fetal hamsters and rats, no clinical
disease in experimentally infected mothers (Kilham
& Margolis 1971)

Zoonotic potential
e Nnone

Interference with research

Pathology

e intranuclear inclusion bodies (Kilham & Margolis
1971)

o dental defects in aged hamsters after infection at 5
days of age (Baer & Kilham 1974)

Immunology

e weak induction of interferon in vivo (Harris et al.
1974) and of IFN-f, TNF-« and IL-6 in vitro
(Schlehofer et al. 1992)

e strong inhibitory effects of the immunosuppressive
variant (MVMi) on allogeneic mixed lymphocyte
cultures in vitro (Bonnard et al. 1976)

e inhibition of lymphocyte proliferation and the
generation of cytolytic T-lymphocyte activity but
not interferon production, inhibition of growth and
cytolytic activity of T-cell lines, suppression of an
in vitro antibody response by MVMi but not by
MVMp (Engers et al. 1981)

o inhibition of the generation of cytolytic T-lympho-
cytes by MVMi (McMaster et al. 1981)

o reduction of T-cell mitogenic responses and inter-
ference with helper dependent B-cell responses in
vitro (Tattersall & Cotmore 1986)

o depression of splenic T-cell and B-cell mitogenic
stimulation in vivo (Tattersall & Cotmore 1986)

e neonatal infections by MVMi may have long-term
effects on immunocompetence (Kimsey et al. 1986)
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o inhibition of haematopoiesis in vitro by MVMi but
not by MVMp (Bueren et al. 1991, Segovia et al.
1991

o decreased haematopoiesis in spleen and bone
marrow cells (Segovia et al. 1995)

Physiology

o degeneration of the lens and the adjacent retinal
layers after infection of newborn hamsters, exten-
sive hypertrophy of the Harderian glands (Toolan
1983)

Cell biology

e contaminant of cell lines, leukaemias, and trans-
plantable tumours (Parker et al. 1970, Collins &
Parker 1972, Zoletto 1985, Garnick 1996, Chang
et al. 1997)

persistent infection of cell lines (Ron & Tal 1985,
Koering et al. 1996)

disruption of nucleolar functions by virus replica-
tion in the nucleolus (Walton et al. 1989)
interference of a virus protein (NS1) with cell DNA
replication, cell cycle stops in the S phase (Op de
Beeck & Caillet-Fauquet 1997)

viral DNA replication in fibroblasts co-infected
with MVM and adenovirus is markedly dependent
on the cell line (Fox et al. 1990)

Teratology

e congenital malformation (Margolis & Kilham 1975)

o death and resorption of fetuses (Kilham & Margolis
1971, Jordan & Sever 1994)

Interactions with other infectious agents
o first described as a contaminant of a stock of mouse
adenovirus (Crawford 1966)

Oncology

e contamination of transplantable or chemically

induced tumours (Parker et al. 1970, Collins &

Parker 1972, Bonnard et al. 1976, Lussier 1991,

Nicklas et al. 1993)

inhibition of cell transformation by SV40 (Mousset

& Rommelaere 1982)

stable transformed phenotype is required for com-

plete competence for MVM replication (Romme-

laere & Tattersall 1990)

greater susceptibility of human oncogenic trans-

formed cells and tumour-derived cell lines than of

normal untransformed parental cells (Mousset

et al. 1986, Cornelis et al. 1988a, Rommelaere &

Cornelis 1991)

cultures of transformed rat fibroblasts are more

susceptible to the cytopathic effect of MVMp than

their untransformed homologues (Cornelis et al.

1988b, Guetta et al. 1990)

suppression of Ehrlich ascites tumours in mice after

co-injection of MVM and acquisition of long-term

resistance to additional injections of tumour cells

(Guetta et al. 1986)

o both strains suppress growth of p8§15 mastocytoma
in mice concurrently infected (Kimsey et al. 1986)
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e oncogenes from different functional classes co-
operate in the responsiveness of cells to attack by
MVMp (Legrand et al. 1992)

e cooperation of virus proteins (NS1) with oncogenes
results in cell death (Mousset et al. 1994)
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Mouse parvovirus (MPV)/Rat
parvovirus (RPV)
(formerly ‘Orphan parvovirus’ [OPV])

History

o serological evidence for the existence of additional,
antigenetically distinct parvoviruses was found
during 1983-1984 in mice and rats

e agents were known as ‘orphan’ parvoviruses or OPV

e mouse and rat orphan parvoviruses have been
identified and characterized and have been renamed
mouse parvovirus (MPV) (Ball-Goodrich & Johnson
1994) and rat parvovirus (RPV) (Ball-Goodrich et al.
1998)

Host species

e natural host: laboratory and wild rats (RPV) and
mice (MPV)

Properties of the virus

e all parvoviruses are highly temperature resistant
(Fassolitis et al. 1985)

e all parvoviruses are highly resistant to environ-
mental conditions e.g. desiccation (Tattersall &
Cotmore 1986, Yang et al. 1995, Jacoby et al. 1996)

e MPV is distinct from but related to MVM (Ball-
Goodrich & Johnson 1994)

o MPV infection persists after seroconversion even in

mice inoculated as adults (Smith et al. 1993, Jacoby

& Ball-Goodrich 1995)

viral DNA of RPV is detectable in lymphoid tissues

for months (Ueno et al. 1997)

Strain susceptibility
e Nnone

Organotropism

o viral replication in mitotically active tissues e.g.
gastrointestinal tract, lymphocytes, tumours, trop-
ism for lymphoid cells (McKisic et al. 1993, Jacoby
et al. 1996, Shek et al. 1998)

predilection for lymphoid tissues of infant and adult
mice (MPV) (Jacoby & Ball-Goodrich 1995) or
endothelium and lymphoid tissues of rats (RPV)
(Ball-Goodrich et al. 1998)

e MPV detectable in pancreas, spleen, lymph nodes,
lungs, intestines, kidneys (Smith et al. 1993,
Besselsen et al. 1995)

RPV detectable in lymph nodes, small intestines,
kidneys, spleen, etc. (Ueno et al. 1996, Ball-
Goodrich et al. 1998)

Clinical disease

e infection asymptomatic even in infant and severely
immunocompromised mice (SCID mice) (Smith
et al. 1993, Jacoby et al. 1995) and rats (Jacoby &
Ball-Goodrich 1995, Ball-Goodrich et al. 1998)
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Pathology

e no pathology or histological lesions after experi-
mental (i.p., oral) infection (Smith et al. 1993,
Jacoby et al. 1995, Ball-Goodrich et al. 1998)

Morbidity and mortality

e infection asymptomatic even in neonatal and infant
mice and rats (Smith et al. 1993, Jacoby & Ball-
Goodrich 1995, Ball-Goodrich et al. 1998)

Zoonotic potential
e Nnone

Interference with research

Immunology

e MPV first isolated from a CD8 + T-cell clone
that had lost function and viability (McKisic et al.
1993)

o inhibition of proliferation of CD8 + and CD4 +
T-cell clones stimulated with IL-2 or antigen, but
no inhibition of the generation of cytotoxic T-cells
in mixed lymphocyte cultures (MLC) (McKisic
et al. 1993)

o reduced cytolytic capacity of T-cells after MPV
infection (McKisic et al. 1996)

e MPV diminishes the proliferation rate of lympho-
cytes from spleen and popliteal lymph nodes, but
augments the proliferative response of cells from
mesenterial lymph nodes (Jacoby et al. 1996,
McKisic et al. 1996)

o T-cell mediated potentiation of rejection of allo-
geneic skin grafts by MPV infection, induction of
rejection of syngeneic skin grafts (McKisic et al.
1998)

e RPV infection may modulate immune function
(Ball-Goodrich et al. 1998)

Cell biology
e contaminant of cell lines (McKisic et al. 1993)

o infection transplantable tumours (Ball-Goodrich
et al. 1998)

Oncology

e MPV accelerates tumour allograft rejection
(McKisic et al. 1996)

e contamination of transplantable leukaemia cells by
RPV (Ball-Goodrich et al. 1998)

o milder disease (reduced hepatosplenomegaly) or
delayed onset of clinical signs and leukaemia in
RPV infected tumour-bearing rats compared to
uninfected rats (Jacoby et al. 1996, Ball-Goodrich
et al. 1998)
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Kilham rat virus (KRV)

Host species

o natural host: laboratory and wild rats

e hamsters and other species such as Mastomys
(multimammate mouse) can be infected experi-
mentally (Kilham 1961, Rabson et al. 1961,
National Research Council 1991)

Properties of the virus

e highly temperature resistant (Fassolitis et al. 1985)

o highly resistant to environmental conditions e.g.

desiccation (Lum & Schreiner 1963, Tattersall &

Cotmore 1986, Yang et al. 1995)

evidence for virus persistence in rats after natural

infection (Robey et al. 1968, Lipton et al. 1973)

persistent infection after experimental infection of

infant and juvenile rats (Paturzo et al. 1987, Jacoby

et al. 1991)

transplacental transmission (Kilham & Margolis

1966, Kilham & Margolis 1969, Kajiwara et al.

1996)

uterine infection in pregnant rats with severe

disease of the fetuses and persistent infection in

dams (Gaertner et al. 1996)

e persistent infection in T-cell deficient rats (Gaert-
ner et al. 1995)

o limited infection in euthymic rats

Strain susceptibility
e none (Jacoby & Ball-Goodrich 1995)

Organotropism

e viral replication only in mitotically active tissues
(Tennant & Hand 1970) e.g. embryo, intestines,
tumours

o predilection for the developing liver and cerebellum
(Kilham & Margolis 1966, Cole et al. 1970)

Clinical disease

e infection often asymptomatic (Lum 1970, Robinson
et al. 1971), but can be severe or lethal, especially in
athymic infant rats (Gaertner et al. 1991, Jacoby
et al. 1996)

cases of spontaneous clinical disease with deaths
have been reported (Kilham & Margolis 1966,
Coleman et al. 1983)

fetal and neonatal abnormalities (Kilham &
Margolis 1975)

e jaundice and ataxia in young rats

o cerebellar hypoplasia and ataxia in hamsters after
experimental infection (Kilham & Margolis 1964)
periodontal disease in hamsters (National Research
Council 1991)

Pathology

e haemorrhage and infarction especially in the cen-
tral nervous system (El Dadah et al. 1967, Cole
et al. 1970, Margolis & Kilham 1970, Baringer &
Nathanson 1972)
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e intranuclear parvoviral inclusions in areas of
necrosis among clinically affected rats (Jacoby et al.
1979, Lussier 1991)

e mongoloid-type deformity in newborn hamsters
after experimental infection (Baer & Kilham 1962)

o cerebellar lesions in cats after experimental infec-
tion (Kilham & Margolis 1965)

Morbidity and mortality

e pathogenic in fetal and infant rats (Jacoby & Ball-
Goodrich 1995)

e acute disease in hamsters after experimental infec-
tion (Kilham 1961)

e prenatal infections in rats (Jacoby et al. 1988)

Zoonotic potential
e none

Interference with research

Pathology

o increased leukocyte adhesion in the aortic epithe-
lium (Gabaldon et al. 1992)

e hamsters surviving experimental infection develop
stunted growth resembling mongolism (Kilham
1961)

Immunology

e infection of T and B-lymphocytes and suppression
of various lymphocyte functions (McKisic et al.
1995)

e stimulates autoreactive T-lymphocytes specific for
pancreatic antigens (Brown et al. 1993)

o virus alters susceptibility to autoimmune diabetes
in a rat strain which is normally resistant to this
syndrome (Guberski et al. 1991, Stubbs et al. 1994,
Ellermann et al. 1996, Chung et al. 1997)

e alters cytotoxic lymphocyte activity (Darrigrand
et al. 1984)

o depresses lymphocyte viability and a variety of
T-cell functions e.g. in vitro lymphoproliferative
responses (Campbell et al. 1977a,b)

e stimulates interferon production (Kilham et al.
1968)

e increased expression of macrophage-derived cyto-
kines (IL-12, TNF-¢, IL-1p) and CD4 + T-cell
derived cytokines (IL-2, IFN-y) (Chung et al. 1997)

Physiology

¢ inhibition of lipid formation in rat kidney cells in
vitro (Schuster et al. 1991)

e increased abortion rate (Kilham & Margolis 1969)

o delayed healing of osseous wounds in hamsters
(Engler et al. 1966)

Cell biology

e contaminant of cell lines (Hallauer et al. 1971)

o persistent infection of cell lines and transplantable
tumours (Wozniak & Hetrick 1969, Bass & Hetrick
1978, National Research Council 1991)
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Teratology

e transplacental transmission in pregnant hamsters
and rats (Kilham & Margolis 1969)

e congenital malformation (Margolis & Kilham 1975)

o death and resorption of fetuses (Kilham & Margolis
1966, Jordan & Sever 1994)

Interactions with other infectious agents

e necrosis in the lung may support secondary colo-
nization with other microorganisms such as Pas-
teurella pneumotropica (Carthew & Gannon 1981)

o KRV together with H-1 and C. piliforme can
influence the prevalence rate of Yersinia-induced
arthritis in rats (Gripenberg-Lerche & Toivanen
1993, 1994}

Oncology

e contamination of transplantable or chemically-
induced tumours (Kilham & Olivier 1959, Camp-
bell et al. 1977, Nicklas et al. 1993)

e contamination of leukaemias or leukaemia virus
preparations (Kilham & Moloney 1964, Bergs 1967,
Spencer 1967)

o suppression of leukaemia induction by Moloney
virus (Bergs 1969, Rommelaere & Tattersall 1990)
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Toolan’s H-1 virus (H-1)

Host species

e natural host: laboratory and wild rats (Jacoby et al.
1979)

hamsters and other species can be infected experi-
mentally (Kilham & Margolis 1975, National
Research Council 1991)

e mouse cells cannot be infected by H-1 (Tattersall &
Cotmore 1986)

antibodies have been detected in humans (Toolan
et al. 1962)

Properties of the virus

o highly temperature resistant (Fassolitis et al. 1985)

o highly resistant at different pH values, desiccation
and other environmental conditions (Greene 1963,
Tattersall & Cotmore 1986)

Strain susceptibility

e None

Organotropism

o viral replication only in mitotically active tissues
e.g. embryo, intestines, tumours (Jacoby et al. 1979,
Jacoby et al. 1996)

o pathogenic for the developing liver and cerebellum
(Jacoby & Ball-Goodrich 1995)

Clinical disease

e 1o clinical signs after natural infection (National
Research Council 1991)

fetal and neonatal abnormalities (Kilham & Mar-
golis 1975)

cerebellar hypoplasia and chronic ataxia in young
animals after experimental infection (Margolis &
Kilham 1975)

Pathology

e 1o lesions after natural infection

o experimental malformations of the central nervous
system, skeleton, and teeth (Kilham & Margolis
1975)

o hepatocellular necrosis after partial hepatectomy
(Ruffolo et al. 1966)

Morbidity and mortality

e 1o clinical signs after natural infection

o mongoloid-like deformations in hamsters experi-
mentally infected as newborns (Toolan & Ledinko
1968)

Zoonotic potential
e none, but antibodies to H-1 have been detected in
humans (Toolan et al. 1962)

Interference with research

Physiology

o delayed healing of bone fractures and altered callus
formation (Kilham & Margolis 1975)
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o inhibition of lipid formation in rat kidney cells in
vitro (Schuster et al. 1991)

e increased abortion rate (Kilham & Margolis 1969,
Jordan & Sever 1994)

Pathology
o hepatocellular necrosis after partial hepatectomy
(Ruffolo et al. 1966)

Cell biology

e contaminant of permanent human cell lines
(Hallauer et al. 1971)

o infection of human cells is increased after onco-
genic transformation (Toolan & Ledinko 1965,
Chen et al. 1986, Dupressoir et al. 1989, Romme-
laere & Cornelis 1991)

e human cells naturally or experimentally trans-
formed with DNA tumour viruses are permissive
for H-1 infection (Faisst et al. 1989)

e a persistent infection can occur in various human
lymphoma-derived cells (Faisst et al. 1990)

Immunology
e weak induction of IFN-f, TNF-o and IL-6 in vitro
(Schlehofer et al. 1992)

Teratology

o transplacental transmission in pregnant hamsters
and rats (Kilham & Margolis 1969)

o fetal deaths and congenital malformation after
inoculation into pregnant hamsters (Ferm & Kil-
ham 1964)

Interactions with other infectious agents

o viral inclusion bodies in animals bearing larval
forms of tapeworms (Kilham et al. 1970)

e H-1 together with KRV and C. piliforme can
influence the prevalence rate of Yersinia-induced
arthritis in rats (Gripenberg-Lerche & Toivanen
1993, 1994}

Oncology

e greater susceptibility of human oncogenic trans-
formed cells and tumour-derived cell lines than
normal untransformed parental cells (Cornelis
et al. 1988, Rommelaere & Cornelis 1991)

o kills preferentially neoplastic cells, little effect on
normal human cells (Telerman et al. 1993, Van
Pachterbeke et al. 1993)

o presence of H-1 virus reduces the number of
tumours produced by an oncogenic adenovirus in
hamsters (Toolan & Ledinko 1968, Rommelaere &
Tattersall 1990)

o reduced incidence of spontaneous tumours in
hamsters experimentally infected at birth (Toolan
1967, Toolan et al. 1982)

o reduced incidence of chemically-induced tumours
in experimentally-infected hamsters (Toolan et al.
1982)

e inhibition of tumour formation in nude mice from a
transplanted human tumour and retardation of
tumour growth (Dupressoir et al. 1989)
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Lactate dehydrogenase
elevating virus

Host species
e mouse (Mus musculus, Mus caroli) (Rowsan 1980)

Organotropism

e polytropic strains: liver, spleen, lymph nodes, testis
tissue

e neurovirulent strain: LDV-C: central nervous sys-
tem, anterior horn neurons, leptomeninges

e mucosal barrier to viral transmission

Clinical disease

o life-long asymptomatic, low-level viraemic persis-
tence

e immunosuppressed AKR and C58 strain: polio-

myelitis with fatal paralysis

mice are infected by mechanical transfer of tissues

or serum from infected animals

natural transmission between cage mates is rare

Morbidity and mortality

e morbidity and mortality are very low

e morbidity and mortality depend on host strain,
immunodeficiency and presence of murine retro-
viruses

Zoonotic potential
e Nnone

Important notice
e Detection of LDV: measuring LDH levels in mouse
plasma, PCR assay (van der Logt et al. 1994)

Interference with research

Oncology

e enhancement of tumour growth (Isakov & Feld-
mann 1981, McDonald 1983)

suppression of chemically-induced mouse lung
tumorigenesis (Theiss et al. 1980) and foreign body
tumorigenesis (Brinton-Darnell 1977)

o Contamination of transplantable tumours (Riley
et al. 1978, Isakov et al. 1981, Nicklas et al. 1993)
interactions with oncogenic murine retroviruses:
ecotropic murine leukaemia virus (Contag &
Plagemann 1988, Contag & Plagemann 1989, Inada
& Yamazaki 1991, Inada 1993, Inada et al. 1993,
Anderson et al. 1995)

Interactions with other infectious agents

e impaired resistance to bacterial infection (Bonven-
tre et al. 1980)

o inhibits eosinophilic and mast cell responses in
mice infected with nematodes (Morimoto et al.
1998)
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Immunology

e stimulation of B-lymphocyte-activation (Coutelier
et al. 1990, Bradley et al. 1991) and systemic
alteration in lymphocyte circulatory pattern (Mon-
gini 1978)

e clevation of immunoglobulin isotype blood levels
IgG2a (Cafruny & Plagemann 1982, Coutelier &
van Snick 1985, Coutelier et al. 1986, Hovinen
et al. 1990, Li et al. 1990)

e LDV modifies the isotypic distribution of antibo-
dies (Gomez et al. 1997)

e contaminant of monoclonal antibodies (Nicklas
et al. 1988)

o induction of interferon production (Evans & Riley
1968, Lagwinska et al. 1975, Koi et al. 1981,
Lussenhop et al. 1982, Nicklas et al. 1988)

o influence on immunogenic function of macro-
phages and macrophage-dependent immuno-
response (Isakov et al. 1982, Ritzi et al. 1982)

e enhancement of natural killer cell activity (Koi
et al. 1981) and elevation of cytotoxic T-lympho-
cytes (Even et al. 1995)

e reduction of autoantibody production (Hayashi
et al. 1992, Verdonck et al. 1994)

o suppression of cell-mediated immune responses;
inhibition of cytokine production IL-4, IL-1 (Haya-
shi et al. 1991, Monteyne et al. 1993)

Physiology

o changes in haemopoiesis after tumour transplanta-
tion (Motycka et al. 1981, Viktora et al. 1981)

o suppression of development of glomerulonephritis
in autoimmune NZB-mice (Hayashi et al. 1993,
Kameyama & Hayashi 1994)

o decrease in incidence of diabetes in NOD-mice
(Takei et al. 1992) and reduction of streptozotocin-
induced diabetes mellitus in CD-1-mice (Hayashi
et al. 1994)

o changes in clearance capacity for several enzymes
and proteins (Winkelhake et al. 1978, Brinton and
Plagemann 1983, Hayashi et al. 1988, Nakayama
et al. 1990, Hayashi et al. 1992)

e increase in level of serum lactate dehydrogenase
and other enzymes (Brinton 1982)

e mucosal barrier to LDV transmission exists
(Cafruny & Hovinen 1988, Cafruny et al. 1991,
Broen et al. 1992)
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Mouse adenoviruses

e mouse adenovirus type 1 (MAd-1) (strain FL)
e mouse adenovirus type 2 (MAd-2) (K87)

Host species

e mouse (positive serological results in rats are most
likely due to a yet unidentified rat adenovirus
(Smith & Barthold 1987)

Organotropism
e MAJ-1: polytropic
o MAJ-2: intestine

Clinical disease

e none in naturally infected immunocompetent
animals

e wasting disease in athymic mice

Pathology
o MAd-1:
e only experimental infections described
e necrotic foci and intranuclear inclusion bodies in
various organs (brown fat, myocardium, adrenal
glands etc.)
o MAd-2:
e only intestine affected
e intranuclear inclusion bodies in mucosal epithe-
lium
o little inflammation

Morbidity and mortality

e morbidity: no information, mortality: none in
natural infections

o significant strain differences in susceptibility
(x6000) (Kring et al. 1995)

Zoonotic potential
e Nnone

Special considerations

o naturally occurring MAd-1 has not been reported
for many years
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o prevalence of MAd-2 is largely unknown in Europe
(in Australian wild mice: 37% (Smith et al. 1993)
e MAd-1 and MAd-2 do not cross-react serologically

Interference with research

Immunology
e transient increase in IL-12 release from macro-
phages (Coutelier et al. 1995)

Interactions with other infectious agents

e raises susceptibility to E. coli pyelonephritis during
persistent infection (Ginder 1964)

o accelerates experimental scrapie infection (Ehres-
mann & Hogan 1986)

Physiology
o induces blood-brain barrier dysfunction (Guida
et al. 1995)
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Lymphocytic choriomeningitis
virus

Host species

e natural host (may transmit virus): laboratory and

wild mice, pet and laboratory hamsters

aberrant hosts (no virus transmission): most

rodents, dogs, non-human primates, humans

e some continuous cell lines are virus carriers, e.g.
mouse neuroblastoma (N18), baby hamster kidney
cells (BHK-21) and transplantable tumour cells of
infected animals

Organotropism

o kidney

o salivary gland

o lymphohaemopoietic cells
o other organs

Clinical disease

o clinical signs vary with age and strain of infected

animals, route of inoculation and strain of virus

natural infection in mice and hamsters:

e perinatal: persistent infection, ‘late disease’
(wasting at 7-10 months of age)

e adult: acute infection, inapparent

e experimental:

e parenteral inoculation: visceral form in mice
shows asymptomatic conjunctivitis, ascites,
somnolence

e intracerebral inoculation: lymphocytic chorio-
meningitis

e autoimmune haemolytic anaemia in different
mice strains (Coutelier 1994)

febrile illness, grippe-like symptoms in humans

(Maetz 1976)

sensorineural deafness and labyrinth damage,

meningeal involvement in humans (Hirsch 1976)

Pathology
e natural infection in mice and hamsters:
e perinatal: antigen-antibody-immune-complex
glomerulonephritis at the age of 7-10 months
o experimental infection: T-cell mediated immune
disease
o inflammatory lesions in many organs
e murine hepatitis (Lohler 1994, Gossmann 1995)

Morbidity and mortality

e LCMV strain ARM is avirulent for different
hamster strains and guineapig (Genovesi 1987,
Genovesi 1989)

o LCMV strain WE causes 100% mortality in gui-

neapigs (Riviere 1985) and high morbidity of inbred

Syrian hamsters

prevalence of LCMV in different hamster inbred

strains is known (Genovesi 1987)
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Zoonotic potential

e congenital lymphocytic choriomeningitis virus
syndrome in humans (El Karamany 1991, Wright
et al. 1997)

o LCMV is the causative agent for hamster associated
lymphocytic choriomeningitis infection of humans
(Maetz 1976, Ackermann 1977, Garman 1977,
Lehmann-Grube 1979)

e hamsters transmit the virus to humans (Rousseau
et al. 1997, Marrie & Saron 1998)

e virus is shed in saliva, nasal secretions and urine of
infected animals

o wild mice and rats are a natural reservoir of
infection (Ackermann 1964, Smith 1993)

Interference with research

Immunology

e LCMYV influences humoral and cellular immune
response (Oxenius et al. 1998)

e LCMYV causes a long-lasting immunodepression
with decrease of proliferation capacity of splenic
T-lymphocytes (Thomson 1982, Saron 1990, Saron
1991, Colle 1993, El-Azami-El-Idrissi et al. 1998)

e LCMV induces polyclonal cytotoxic T-lymphocyte
stimulation (Yang 1989, Bocharov 1998)

e neonatally or congenitally infected mice have a
lifelong chronic lymphocytic choriomeningitis
virus infection (Jamieson 1987)

e cnhances the interleukin 12-mediated immuno-
toxicities (Orange 1994, Orange 1995)

e LCMV induces different expression of alpha/beta
interferons (Sandberg 1994)

e LCMV induces a transient bone marrow aplasia
(Binder et al. 1997)

Oncology

e may influence experimental oncology, enhances the
frequency of lymphoma after treatment with
carcinogen (Garman 1977)

o enhances the susceptibility for transplantable
tumour cell lines (Kohler 1990)

Physiology
o growth hormone deficiency can occur (Oldstone
1985)
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Clostridium piliforme
(formerly Bacillus piliformis)

Host species
o all laboratory animals, other mammals (Tyzzer
1917, Fries 1977)

Properties

e spores are relatively resistant to formaline

o relatively sensitive to heat and certain chemical
disinfectants (Itoh et al. 1987)

Susceptibility

o depending on genetic factors of the host (Waggie
et al. 1981, Hansen et al. 1990)

o antigenetic differences among isolates of bacteria
(Boivin et al. 1993, Franklin et al. 1994)

Organotropism
e intestine

o liver

e heart

Clinical disease and pathology

e anorexia and diarrhoea of different severity

e hypertrophy and inflammation of the ileum

o focal necrosis in the liver and/or heart possible
(Fries 1977)

e mesenteric lymphadenopathy

o brain lesions in experimentally-infected Mystromys
albicaudatus (Waggie et al. 1986)

Morbidity and mortality

e inapparent infection, high mortality possible

(breeding colonies)

susceptibility to infection seems to depend on

genetic factors of the host (Waggie et al. 1981,

Hansen et al. 1990)

e isolates of different origin show heterogenicity and
host specificity (Franklin et al. 1994)

o different strains of C. piliforme are likely to exist
(Boivin et al. 1993)

Zoonotic relevance
e one case of human infection in an AIDS patient has
been reported (Smith et al. 1996)

Notice

e C. piliforme is an obligate intracellular parasite
forming spores. It does not grow on cell-free media.
Cultivation in cell lines and embryonated eggs is
possible (Riley et al. 1990, Spencer et al. 1990)

o diagnosis with IFA (Fries 1977), ELISA and Western
blot (Motzel et al. 1991), PCR (Duncan et al. 1993,
Goto & Itoh 1994)
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Interference with research

Immunology

o depletion of neutrophils or natural killer cells
increased severity of disease in juvenile mice
(Van Andel et al. 1997)

Physiology

o causes megaloileitis in Sprague-Dawley rats
(Hansen et al. 1992)

o alters the pharmacokinetics of warfarin and
trimethoprim in mice (Fries & Ladefoged 1979)

o alters serum level of hepatic enzymes (Naiki et al.
1965)

Toxicology

o dose-related exacerbation of Tyzzer’s disease by
carbon tetrachloride in weanling mice (Takenaka &
Fujiwara 1975)

Interactions with other infectious agents
o lower susceptibility to experimental arthritis
caused by Y. enterocolitica (Gripenberg et al. 1993)

References

Boivin GP, Hook RR, Riley LK (1993) Antigenetic diversity in
flagellar epitopes among Bacillus piliformis isolates.
Journal of Medical Microbiology 38, 177-82

Duncan AJ, Carman R]J, Olsen GJ, Wilson KH (1993)
Assignment of the agent of Tyzzer’s disease to Clostri-
dium piliforme comb. nov. on the basis of 16S rRNA
sequence analysis. International Journal of Systematic
Bacteriology 43, 314-18

Franklin CL, Motzel SL, Besch-Williford CL, Hook Jr, RR,
Riley LK (1994) Tyzzer’s infection: host specificity of
Clostridium piliforme isolates. Laboratory Animal
Science 44, 568-72

Fries AS (1977) Studies on Tyzzer’s disease: application of
immunofluorescence for detection of Bacillus piliformis
and for demonstration of antibodies to it in sera from mice
and rabbits. Laboratory Animals 11, 69-74

Fries AS, Ladefoged O (1979) The influence of Bacillus
piliformis (Tyzzer) infections on the reliability of phar-
macokinetic experiments in mice. Laboratory Animals
13, 257-61

Goto K, Itoh T (1994) Detection of Bacillus piliformis by
specific amplification of ribosomal sequences. Experi-
mental Animals 43, 389-94

Gripenberg-Lerche C, Toivanen P (1993) Yersinia associated
arthritis in SHR rats: effect of the microbial status of the
host. Annals of Rheumatic Diseases 52, 223-8

Hansen AK, Svendsen O, Mollegard-Hansen KE (1990)
Epidemiological studies of Bacillus piliformis infection
and Tyzzer's disease in laboratory rats. Zeitschrift fiir
Versuchstierkunde 33, 163-9

Hansen AK, Dagnaes-Hansen F, Mollegaard-Hansen KE
(1992) Correlation between megaloileitis and antibodies to
Bacillus piliformis in laboratory rat colonies. Laboratory
Animal Science 42, 449-53

Itoh T, Ebukuro M, Kagiyama N (1987) Inactivation of
Bacillus piliformis spores by heat and certain chemical
disinfectants. Jikken Dobutsu 36, 239-44

Motzel SL, Meyer JK, Riley LK (1991) Detection of serum
antibodies to Bacillus piliformis in mice and rats using an
enzyme linked immunosorbent assay. Laboratory Animal
Science 41, 26-30

Naiki M, Takagari Y, Fujiwara K (1965) Note on the change of
transaminases in the liver and the significance of the
transaminase ratio in experimental Tyzzer’s disease of

Laboratory Animals (1999) 33 (Suppl. 1)



$1:68

Clostridium piliforme: implications for animal experiments

mice. Japanese Journal of Experimental Medicine 35,
305-9

Riley LK, Besch-Williford C, Waggie KS (1990) Protein and
antigenetic heterogenicity among isolates of Bacillus
piliformis. Infection and Immunity 58, 1010-16

Smith K, Skelton HG, Hilyard EJ, et al. (1996) Bacillus
piliformis infection (Tyzzer’s disease) in a patient infected
with HIV-1: confirmation with 16S ribosomal RNA
sequence analysis. Journal of the American Academy of
Dermatology 34, 343-8

Spencer TH, Ganaway JR, Waggie KS (1990) Cultivation of
Bacillus piliformis (Tyzzer) in mouse fibroblasts (3T3
cells). Veterinary Microbiology 22, 291-7

Takenaka S, Fujiwara K (1975) Effect of carbon tetrachloride
on experimental Tyzzer’s disease of mice. Japanese Journal
of Experimental Medicine 45, 393-402

Laboratory Animals (1999) 33 (Suppl. 1)

Tyzzer EE (1917) A fatal disease of the Japanese waltzing
mouse caused by a spore-bearing bacillus (Bacillus
piliformis). Journal of Medical Research 37, 307-38

Waggie KS, Hansen CT, Ganaway JR, Spencer TS (1981) A
study of mouse strain susceptibility to Bacillus piliformis
(Tyzzer’s disease). The association of B-cell function and
resistance. Laboratory Animal Science 31, 139-42,

Van Andel RA, Hook Jr, RR, Franklin CL, Besch-Williford CL,
Van Rooijen N, Riley LK (1997) Effects of neutrophil,
natural killer cell, and macrophage depletion on murine
Clostridium piliforme infection. Infection and Immunity
65, 2725-31

Waggie KS, Thornburg LP, Wagner JE (1986) Experimentally
induced Tyzzer’s disease in the African white-tailed rat
(Mystromys albicaudatus). Laboratory Animal Science
36, 492-5

GV-SOLAS Working Group on Hygiene



Corynebacterium kutscheri: implications for animal experiments

$1:69

Corynebacterium kutscheri

Host species
e mouse, rat, (guineapig, hamster)

Organotropism

e respiratory tract (other organs)
e middle ear

o superficial tissue

o generalization

Clinical disease

e inapparent in most strains of immunocompetent
mice and rats

abscesses of superficial tissue with micro-
abscessation of various internal organs

e pneumonia in some strains of rats

Morbidity and mortality

e up to 100% of animals are infected

e 5-60% of susceptible strains show clinical signs
(Amao et al. 1993)

e N0 age or sex prevalence are known

Zoonotic potential
o C. kutscheri was isolated from umbilical cord and
other surface in an infant (Fitter et al. 1979)

Interference with research

Infection with this agent is usually subclinical in rats
and mice and results in disease expression only after
severe immunosuppression, by exposure to experi-
mental regimens, dietary deficiencies, or concurrent
infection with other agents

Physiology

o disease has been active in animals used in studies of
dietary deficiency (Zucker & Zucker 1954), gamma
irradiation (Schechmeister & Alder 1953), cortisone
administration (Takagaki et al. 1967), or by other
infectious disease, for example infectious ectrome-
lia (Lawrence 1957)

Immunology

e components of C. kutscheri may stimulate type-1
helper T-cells to produce IL-2 and IFN-gamma and
the enhanced cytokine production could contribute
to the non-specific resistance induced by this
bacterium (Kita et al. 1992)

Oncology
e a T-cell mitogen of C. kutscheri induced a
tumourlytic factor in mice (Kita et al. 1995)
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. H o hyperplastic lesions may be confused with neo-

C,trOb acter r Odgnt' um plasia because cytokinetics share several common

(formerly C. freundii 4280) features with neoplasia (Pullinger & Iversen 1960,
Barthold 1979)

Host species Immunology
e mouse o altered immune response in infected mice (Maggio-

. Price et al. 1998)
Organotropism

o large bowel

Clinical disease References

e pasty dark faeces and dehydration Barthold SW (1979] Autoradi hic eviokinetics of coloni
. . . . . artno. utoradiographic cytokinetics or colonic
o variable incidence of rectal prolapse in mice of all mucosal hyperplasia in mice. Cancer Research 39, 24-39

ages is indicative of infection (Brennan et al. 1965  parthold SW, Beck D (1980) Modification of early dimethyl-

and others) hydrazine carcinogenesis by colonic mucosal hyperplasia.
e increased morbidity and mortality in immuno- Cancer Research 40, 4451-5

compromised transgenic mice (Maggio-Price et al. ~ Barthold SW, Jonas AM (1977) Morphogenesis of early 1,2-

1998) dimethylhydrazine-induced lesion and latent reduction of

colonic carcinogenesis in mice by variant of Citrobacter
. . freundii. Cancer Research 37, 4352-60

Morbidity and mortality Barthold SW, Coleman GL, Bhatt PN, Osbaliston GW, Jonas
e usually low in an affected population AM (1976) The etiology of transmissible murine colonic
e mortality or runting is seen in weaning-age mice hyperplasia. Laboratory Animal Science 26, 889-94

Barthold SW, Coleman GL, Jacoby RO, Livstone EM, Jonas
AM (1978) Transmissible murine colonic hyperplasia.
Veterinary Pathology 15, 223

i i Brennan PC, Fritz TE, Flynn RJ, Poole CM (1965) Citrobacter

Zoonotic potential freundii associated with diarrhoea in laboratory mice.

e none Laboratory Animal Care 15, 266-75

Pulliger BD, Iversen S (1960) Mammary tumor incidence in
relation to age and number of litters in C3Hf and RIIIf
mice. British Journal of Cancer 14, 267-78

o diminished reproduction, and failure to thrive in
affected population

Interference with research

Physiolggy o Maggio-Price L, Nicholson KL, Kline KM, et al. (1998)
e experimental stress can precipitate more severe Diminished reproduction, failure to thrive, and altered
disease among infected mice immunologic function in a colony of T-cell receptor

transgenic mice: possible role of Citrobacter rodentium.
Laboratory Animal Science 48, 145-55

Oncology . . . Schauer DB, Zabel BA, Pedraza IF, O’'Hara CM, Steigerwald

e Cr odentmm-mdgced hyperplasm F:an alter the AG, Brenner DJ (1995) Genetic and biochemical charac-
large bowel chemical carcinogenesis (Barthold & terization of Citrobacter rodentium sp. nov. Journal of
Jonas 1977, Barthold & Beck 1980) Clinical Microbiology 33, 2064-8
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Mycoplasma pulmonis

Host species

e rat, mouse: some inbred mice strains are highly
resistant to disease, e.g. C57/BL (Cartner et al.
1996)

o rarely found in rabbits and guineapigs (Cassell &
Hill 1979)

Organotropism

e respiratory epithelium
o middle ear

e genital tract

Clinical disease

e common chronic respiratory infection in rats and
mice (Lindsey & Cassell 1973)

e acute bronchopneumonia in combination with

other pneumotropic infections or extrinsic factors

found in poorly managed conventional colonies

such as high NH; exposure (Broderson et al. 1976,

Schoeb et al. 1982) or nutritional deficiencies

sneezing, conjunctivitis, otitis media

e genital tract infections with reduction in fertility

arthritis after experimental infection of mice and

rats (Barden & Tully 1969, Cole et al. 1975, Cassell

& Hill 1979)

hydrocephalus after experimental infection of neo-

nate rats and hamsters (Kohn et al. 1977)

Morbidity and mortality

o both low under optimal husbandry conditions

e high morbidity and mortality in combination with
other pneumotropic infections or extrinsic factors

Interference with research

Oncology

o influence on carcinogenesis (increase or decrease in
tumour induction following exposure to carcino-
gen) (Cassell et al. 1986)

Physiology

e M. pulmonis infections in rats result in ‘neurogenic
inflammation’, an increased immunoreactivity of
substance P due to increased expression of NK1
receptors (McDonald et al. 1991, Bowden et al.
1994, Baluk et al. 1997, Norlander et al. 1997)

e M. pulmonis infection in the rat induces a degen-
erative loss of nerve fibres in the peribronchial area
(Nohr et al. 1996)

e M. pulmonis infection and interaction with the
tracheal epithelial cells triggers the expression of
peroxidase activity (Brennan & Feinstein 1969,
Moriguchi et al. 1989, Kinbara et al. 1992)

e M. pulmonis infection modulates experimentally-
induced arthritis in rats (Taurog et al. 1984)

e M. pulmonis induces alteration in epithelial ion
transport in tracheal epithelial cells of mice in vitro
(Lambert et al. 1998)
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respiratory tract: damage of airway epithelial and
alveolar epithelial cells, mucus secretion, in severe
cases bronchitis, bronchiectasis, emphysema and
abscesses in the lungs (Cassell et al. 1986)
elevated lung lysophospholipase activity after
experimental infection of rats (Laubach et al. 1978)
chronic mycoplasmal infections interfere with
gerontological studies, nutrition, toxicology and
behavioural research (Lindsey et al. 1971)

marked leukocytosis, mainly caused by increased
lymphocyte numbers (Cole et al. 1975)

Immunology

M. pulmonis activates the mitogenic activity of
both rat B and T-lymphocytes (Naot et al. 1979)
M. pulmonis infection augments splenic NK cell
activity in mice (Lai et al. 1987, Kamiyama et al.
1991)

M. pulmonis infection in mice is associated with
modification of gene expression of various cyto-
kines in the respiratory tract (Nishimoto et al.
1994, Faulkner et al. 1995)

M. pulmonis infection in rats and mice suppresses
the humoral antibody response to sheep red blood
cells (Aguila et al. 1988, Lai et al. 1989)

M. pulmonis possesses a chemo-attractant protein
for resting rat B-lymphocytes (Ross et al. 1992)
non-specific mitogenic effect upon lymphocytes
(Cassell et al. 1986)

suppression of interferon induction (Cassell et al.
1986)

since M. pulmonis and M. arthritidis can persist for
months and years in many organs (also spleen) a
diversity of effects on the immune system have
been described. Cassell et al. (1986) have postulated
three general mechanisms: (i) delay or prevention of
antigenic recognition, (ii) derangement of immune
regulations, or (iii) evasion of effector mechanisms
mice deficient in the fifth component of comple-
ment (C5) develop more severe arthritis after
artificial infection with M. pulmonis than immu-
nologically normal mice (Keystone et al. 1978)
mitogenic stimulation of lymphocytes is dependent
on the rat strain (Naot et al. 1984, Davis et al. 1985)

Interactions with other infectious agents

M. pulmonis exacerbates rat coronavirus infection
in rats (Schunk et al. 1995)

synergistic effects of M. pulmonis and viruses have
been demonstrated in vitro (Westerberg et al. 1972)

Reproductive physiology

genital tract: negative influences on in vitro and in
vivo fertilization, on fetal development and drop in
fertility (Fraser & Taylor-Robinson 1977, Brown &
Steiner 1996)

rats infected during the third trimester had severe
fetal losses, earlier infection caused fetal resorption
(Steiner & Brown 1993, Brown & Steiner 1996)

M. pulmonis infection causes male and female
infertility in rats and mice (Cassell et al. 1981,
Swenson, 1982)
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e M. pulmonis binds to and degrades sperm sulfoga-
lactosylglycerolipid in rats inducing infertility
(Lingwood et al. 1990)

e intrauterine infection of rat embryos (Juhr et al.
1988)

e M. pulmonis is not eradicated from fertilized eggs
by washing and may be transmitted during embryo
transfer or embryo freezing (Hill & Stalley 1991)

Teratology
e modification of teratogenesis of cyclophosphamide
(Juhr & Ratsch 1990)
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Helicobacter spp.

Host species

Helicobacter spp. have been isolated from many spe-

cies of laboratory animals. Different bacterial species

have been found, e.g. in mice, rats, hamsters. Various
isolates exist which have not yet been identified, and
it is expected that several additional species coloniz-
ing laboratory rodents will be described in the near
future.

e mouse: H. hepaticus (Fox et al. 1994), H. bilis (Fox
et al. 1995), H. muridarum (Lee et al. 1992), H.
rodentium (Shen et al. 1997), ‘Flexispira rappini’
(Schauer et al. 1993)

e rat: H. troglontum (Mendes et al. 1996),

H. muridarum (Lee et al. 1992), H. hepaticus,
H. bilis (Haines et al. 1998)

e hamster: H. cholecystus (Franklin et al. 1996),

H. cinaedi (Kiehlbauch et al. 1995)

Organotropism
e intestinal tract
o liver

Clinical disease

o chronic proliferative hepatitis (Fox et al. 1996,
Franklin et al. 1998)

increased risk of hepatic tumours (Ward et al. 1994,
Fox et al. 1996)

o inflammatory large bowel disease in immuno-
deficient mice (Ward et al. 1996, Cahill et al. 1997,
Shomer et al. 1997, Foltz et al. 1998) and rats
(Haines et al. 1998)

may induce gastritis (H. muridarum) (Phillips &
Lee 1983)

Pathology

o single to multiple yellow to grey foci in the liver
with coagulative necrosis of the hepatocytes and
variable infiltration of lymphocytes, macrophages
and neutrophils (Fox et al. 1996)

chronic active hepatitis in SCID mice (Franklin et
al. 1998)

o hepatoma and hepatocellular carcinoma in A/JCr
mice (Ward et al. 1994)

various degrees of typhlitis, colitis and proctitis and
rectal prolapse with severe proctitis in immunode-
ficient mice (Ward et al. 1996, Cahill et al. 1997,
Shomer et al. 1997)

Morbidity and mortality

e up to 100% of a colony affected

e only 10% of the infected mice show changes in the
liver

o infections are usually subclinical

e about 5% of the immunodeficient mice developed
rectal prolapse (Ward et al. 1996)
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Zoonotic potential
e not known (e.g. ‘Flexispira rappini’ has been
isolated from humans (Schauer et al. 1993)

Interference with research
o the consequences of infection have not been
completely characterized

Physiology
o infection changes serum enzyme values and bile
acids (Ward et al. 1994)

Toxicology

e infection may influence toxicologic studies which
are produced by hepatotoxic substances (Taylor
et al. 1995)

Oncology

e may influence experimental oncology (spontaneous
development of hepatomas; Fox et al. 1996, 1998)

o increased the incidence of induced hepatocellular
adenomas, accelerated the development of liver
tumours, and increased the multiplicity of the
lesions (Diwan et al. 1997)
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Pneumocystis carinii

Host species
e laboratory animals (Smulian & Walzer 1992)
o wide range of domestic animals, monkeys, humans

Organotropism

o lungs

e occasionally other organs or generalization to eyes,
skin, etc.

Clinical disease

e inapparent in immunocompetent hosts

o slowly progressive chronic pneumonia with weight
loss in immunocompromised host

Pathology

o slight infection: multifocal alveolar aggregates of
cysts and interstitial/perivascular non-purulent
infiltration (Walzer et al. 1980, Chen et al. 1990)
severe infection: consolidated lungs; extensive lung
areas involved with alveolar aggregates of cysts
(eosinophilic, honeycombed material), proliferation
of type II pneumocytes and severe interstitial
fibrosis

extrapulmonary manifestation of P. carinii infec-
tion by haematogenous or lymphatic spread is
possible; major sites are lymph nodes, bone mar-
row, liver, and spleen, characterized by eosinophilic
honeycombed material with inflammatory
response

multinucleated giant cells in murine P. carinii
pneumonia (Hanano et al. 1996)

Morbidity and mortality

o conventionally bred colonies may be persistently
infected because of subclinical nature in immuno-
competent hosts (Frenkel et al. 1966)

o high morbidity and mortality with chronic pro-
gressive pneumonia in immunosuppressed animals

Zoonotic relevance

e P. carinii is not universally transmissible between
mammalian species (Gigliotti et al. 1993)

e respiratory mode of transmission (Hughes 1982)

e most common opportunistic infection and leading
cause of morbidity and mortality in AIDS patients

Interference with research

Physiology

e P carinii pneumonia leads to alterations in com-
pliance and lung mechanisms (Brun-Pascaud et al.
1985, Stokes et al. 1986)

e P carinii may alter the amount and type of
surfactant produced: P. carinii pneumonia in rats
leads to a decrease in surfactant phospholipids in
bronchoalveolar lavage (Kernbaum et al. 1983,
Sheehan et al. 1986). P. carinii organisms can
directly inhibit secretion of phosphatidylcholin
from type II cells (Rice et al. 1993). Bronchoalveolar
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lavage phosphatidylglycerol is reduced in rats with
P. carinii pneumonia (Su et al. 1996). Surfactant
protein-A levels increase during P. carinii pneu-
monia in the rat (Phelps et al. 1996)

o attachment of P. carinii to alveolar macrophages
occurs by a fibronectin- and calcium-dependent
mechanism, but does not trigger a phagocytic
response (Pottratz & Martin 1990a,b). P. carinii
glycoprotein A binds macrophage mannose recep-
tors, thereby mediating binding and uptake of P.
carinii by alveolar macrophages (Ezekowitz et al.
1992, O'Riordan et al. 1995). Surfactant protein A
can function as a ligand between P. carinii and
alveolar macrophages (Williams et al. 1996)

e attachment of P. carinii to type I pneumocytes leads
to their degeneration and to proliferation of type II
pneumocytes

o following attachment of P. carinii to type I cells,
surface glycocalyx is decreased and alveolar-capil-
lary permeability is increased (Lanken et al. 1980,
Yoneda & Walzer 1980, 1981, 1984). As a conse-
quence of dysplasia and disruption of the epithe-
lium, underlying material gains access to the
alveolar space and impairs normal lung function

e P. carinii attachment increases expression of fibro-
nectin-binding integrins on cultured lung cells
(Pottratz et al. 1994)

e P. carinii and IFN-gamma induce rat alveolar
macrophages to produce nitric oxide (Sherman et al.
1992)

o the mitochondrial ATPase 6 gene is upregulated in
P. carinii-infected rat lungs (Asnicar et al. 1996)

e D carinii infection alters GTP-binding proteins in
the lung (Oz & Hughes 1997)

e P carinii inhibits cyclin-dependent kinase activity
in lung epithelial cells (Limper et al. 1998)

o fibrinogen expression is induced in the lung
epithelium during P. carinii pneumonia (Simpson-
Haidaris et al. 1998).

Immunology

o high risk for all congenitally immunodeficient
hosts and for experimental models of immuno-
suppression

o P carinii from different host species are immuno-
logically distinct (Gigliotti & Harmsen 1997)

o P carinii induces activating and inhibitory innate
cellular immune response mechanisms (Warschkau
et al. 1998)

o cellular immunity is important for protection
against P. carinii pneumonia (Furuta et al. 1984,
1985)

e P carinii-reactive CD4 + lymphocytes may con-
tribute to the host’s response via secretion of
macrophage-activating cytokines (IFN-gamma and
others) as well as by the production of signals that
induce foster expansion of the antibody-forming
pool of B-cells and cytotoxic CD8 + lymphocytes
(Beck et al. 1993)

e protective immunity against P. carinii is mediated
by CD4 + T-cells (reviewed by Hanano & Kauf-
mann 1998)
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neutrophils, alveolar type II epithelial cells, B-cells,
CD8 + lymphocytes, antibodies and cytokines,
such as IFN-gamma and TNF, participate in host
effector mechanisms against P. carinii (Masur &
Jones 1978, Von Behren & Pesanti 1978, Shear et al.
1989, Pesanti 1989, 1991, Chen et al. 1992, Beck
et al. 1996, Marcotte et al. 1996, Garvy et al. 1997,
Kolls et al. 1997)

e P. carinii induces TNF-alpha production from
monocyte and macrophage cultures with a peak
within 8h of incubation (Tamburrini et al. 1991)
P. carinii glycoprotein A stimulates IL-8 production
and inflammatory cell activation in alveolar
macrophages and cultured monocytes (Lipschik

et al. 1996)

o P. carinii induces expression of ICAM-1 and IL-6 in
lung epithelial cells (Yu & Limper 1997, Pottratz
et al. 1998)

Interactions with other infectious agents

e neutrophils in bacterial pneumonia may participate
in host effector mechanisms against P. carinii
(Pesanti 1982)
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Toxoplasma gondii
(description for intermediate hosts)

Host species

o cat (definitive host) (Jones 1973, Wong & Reming-
ton 1993)

o all laboratory and domestic animals, birds and
humans (intermediate hosts)

o differential host species susceptibility is reviewed
by Innes (1997)

Organotropism

e central nervous system (Jones 1973, Wong &
Remington 1993)

e muscle and other organs may also be involved

Clinical disease

e usually inapparent

e occasionally neurological symptoms and/or febrile
disease

Morbidity and mortality

o largely depending on the route of infection, parasite
strain and dose, and the immunologic state of the
host (Dubey & Frenkel 1973, Fernando 1982,
Suzuki et al. 1988)

clinical disease most likely in young animals or
immunocompromised hosts

resistance to acute infection and formation of cysts
in the brain of mice are genetically controlled
(Araujo et al. 1976, Williams et al. 1978)

in mice, differences in the gene(s) of MHC, within
the H-2D region, correlate with resistance or
susceptibility to development of Toxoplasma
encephalitis (Jones & Erb 1985, Suzuki et al. 1991,
Blackwell et al. 1993)

age, gender, and pregnancy influence susceptibility
to T. gondii infection in mice (Johnson et al. 1995,
Thouvenin et al. 1997, Walker et al. 1997).

Zoonotic relevance

e transmission to man from other intermediate hosts
only by ingestion of uncooked tissues containing
T. gondii (Dubey 1994)

Interference with research

Physiology

e mice infected with T. gondii exhibit ovarian
dysfunction with uterine atrophy and thyroidal
dysfunction (decline in serum thyroxine levels),
probably due to impaired release of hypothalamic
releasing hormones (Stahl et al. 1995a,b, Stahl et al.
1998)

e T. gondii infection increases toxicity of some drugs
(e.g. neostigmine) (Starec et al. 1997).

Pathology

e central nervous system: organisms intra- or extra-
cellular in the neuropil, within granulomatous
encephalitis, glial nodules or perivascular infiltra-
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tion; occasionally accompanied by meningitis
and/or scattered neuronal degeneration; occasion-
ally fibrinoid necrosis of vessel walls in association
with microthrombi in the centres of small necrotic
foci (Sasaki et al. 1981, Hay et al. 1984, Kittas et al.
1984, Ferguson & Hutchinson 1987, Ferguson et al.
1991)

e lesions in immunocompromised hosts may lack
inflammatory infiltrates and solely consist of small
necrotic foci and scattered cysts (Buxton 1980,
Johnson 1992)

e muscle and other organs may be involved with
necrotic foci, granulomas and pseudocysts

Immunology

e acute and chronic T. gondii infection modulate the
immune responses in mice (Nguyen et al. 1998)

o T. gondii is able to induce transient immune down-
regulation (Channon & Kasper 1996, Denkers et al.
1996, Khan et al. 1996)

o T. gondii-infected cells are resistant to multiple
inducers of apoptosis (Nash et al. 1998)

e gamma delta T-cells induce expression of heat
shock protein 65 in macrophages of mice infected
with T. gondii, thereby preventing the apoptosis of
infected macrophages (Hisaeda et al. 1997)

e intracellular T. gondii interferes with the MHC
class I and class II antigen presentation pathway of
murine macrophages (Luder et al. 1998)

e CD4+ and CD8 + T-lymphocytes appear to act in
concert to prevent reactivation of chronic T. gondii
infection (Brown & McLeod 1990, Araujo 1991,
Gazzinelli et al. 1992c¢)

e NK cell activity and production of IFN-gamma are
increased during the course of T. gondii infection in
mice; IFN-gamma plays a critical role in preventing
cyst rupture and toxoplasmic encephalitis (Hauser
et al. 1982, Suzuki et al. 1989, Sher et al. 1993,
Hunter et al. 1994a)

e cytokine levels are elevated in infected humans and
in murine models of toxoplasmosis. Overview
about immunopathology of T. gondii infection:
Beaman et al. 1992, Gazzinelli et al. 1993, Subauste
& Remington 1993, Hunter & Remington 1994,
Hunter et al. 1994b

o IL-12 is crucial for the generation of both innate
resistance mechanisms during the acute phase of
infection and T cell-dependent acquired immunity
during the chronic phase (Johnson & Sayles 1997)

e various other cytokines, such as IFN-beta, IL-1,
IL-4, IL-6, IL-10, TGF-beta, and TNF-alpha, are
implicated in the pathogenesis of T. gondii infec-
tion (Chang et al. 1990, Orellana et al. 1991,
Gazinelli et al. 1992b, Sher et al. 1993, Hunter et al.
1995a,b, Roberts et al. 1996, Bessieres et al. 1997,
Neyer et al. 1997, Deckert-Schluter et al. 1998,
Jebbari et al. 1998)

o inducible nitric oxide is essential for host control of
chronic T. gondii infection (Scharton-Kersten et al.
1997)

e innate resistance mechanisms during T. gondii
infection are reviewed by Alexander et al. (1997); T
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cell-mediated immunity during T. gondii infection
is reviewed by Denkers and Gazzinelli (1998)

Interactions with other infectious agents

e macrophage clearance and killing of Listeria

monocytogenes and Salmonella typhimurium are

decreased in mice infected with T. gondii (Wing

et al. 1983)

infection with murine leukaemia virus may lead to

reactivation of chronic T. gondii infection (Gazzi-

nelli et al. 1992a, Watanabe et al. 1993)

infection with murine cytomegalovirus results in

reactivation of Toxoplasma pneumonia (Goetz &

Pomeroy 1996)

o mice infected with T. gondii are resistant to
proliferation of Cryptococcus neoformans cells in
the brain (Aguirre et al. 1996)
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Encephalitozoon cuniculi

Host species

o rabbit (principal host), guineapig, hamster, rat,
mouse (Wilson 1979, Canning et al. 1986)

e dog, some wild and zoo animals

Organotropism

e brain/spinal cord
o kidney

o liver

Clinical disease

o usually inapparent (Schmidt & Shadduck 1983, Liu
et al. 1988, Tllanes et al. 1993)

e occasionally (most often seen in rabbits) neurolo-
gical disturbances such as torticollis, paralysis,
blindness, aggression

Pathology

e nervous system: multifocal parenchymal and
perivascular cell infiltrations, granulomas with
pseudocysts, occasional necrotic foci, occasional
meningeal lymphocytic infiltrates (Shadduck &
Pakes 1971, Cox & Gallichio 1978, Gannon 1980D,
Majeed & Zubaidy 1982)

kidneys: multifocal interstitial nephritis, occa-
sional granulomas with pseudocysts

liver: occasional granulomas

e in immunocompromised hosts possibly aggregates
of pseudocysts with minimal inflammatory reac-
tion in various organs

two to three weeks after intraperitoneal inocula-
tion, mice develop ascites

Morbidity and mortality

o because of the subclinical nature and multiple
routes of transmission, undetected infection can
persist in a colony with up to 95% infected animals
(Gannon 1980a)

morbidity and mortality depend on host strain,
generally very low with only single cases of clinical
disease in immunocompetent animals

different susceptibility to E. cuniculi in different
inbred strains of mice (Niederkorn et al. 1981)

Zoonotic relevance

e spores are excreted via urine, infection of humans is
possible. However, only rare cases of human disease
have been reported, and susceptibility of man to
E. cuniculi is not well known

Interference with research

Physiology

e rabbits infected with E. cuniculi have lower levels
of catecholamines than non-infected rabbits
(Levkut et al. 1997)
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Immunology

e uptake of E. cuniculi by host macrophages (Weidner
1975, Cox et al. 1979)

o T-cells may act by releasing lymphokines to
activate macrophages which can then kill the
parasite (Schmidt & Shadduck 1984)

e murine peritoneal macrophages can be activated
with LPS and IFN-gamma to kill E. cuniculi in vitro
(Didier & Shadduck 1994). Reactive nitrogen
intermediates may contribute to the parasite killing
(Didier 1995)

o during early stages of E. cuniculi infection, murine
spleen cells express significantly lower blastogenic
responses to T-cell mitogens than uninfected mice
(Didier & Shadduck 1988)

o depressed T-lymphocyte response to blastogenic
stimuli, together with hypergammaglobulinemia
(IgG, IgM) was found in neonatal dogs (Szabo &
Shadduck 1987). In rodents, transient suppression
of cell mediated immune responses and no evidence
of hypergammaglobulinemia was found, thus indi-
cating species specificity of immune effects

e rabbits infected with E. cuniculi show inconsistent
response to neural device biomaterial and are thus
inadequate test systems for tissue compatibility
testing of such materials (Ansbacher et al. 1988)

e immune response to the immunogen Brucella
abortus is altered (elevated IgM, depressed IgG) in
rabbits naturally infected with E. cuniculi (Cox
1977).

Interactions with other infectious agents

e mice infected with E. cuniculi are more resistant to
intracerebral inoculation with Chlamydia tracho-
matis than non-infected mice (Lepine & Sautter
1949)

Oncology

o infected rats which were injected with sarcoma
cells had a 50% longer survival time than controls
(Petri 1965)

e in infected mice, the growth of several transplant-
able tumours was reduced and the life-span of the
host was prolonged (Arison et al. 1966)
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Oxyurina (Pinworms)
(Syphacia obvelata, Syphacia muris,
Aspiculuris tetraptera)

Host species

e Syphacia obvelata: mainly mouse (also rat, ham-
ster, gerbil, wild rodents)

e Syphacia muris: mainly rat (also mouse, hamster,
gerbil, wild rodents)

e Aspiculuris tetraptera: mouse, rat (rarely), wild
rodents

Organotropism
e intestinal tract: Syphacia spp. primarily
caecum/rectum; Aspiculuris spp. primarily colon

Life cycle
Syphacia
o direct cycle which requires only 11-15 days. Gravid
females deposit their eggs in the perianal region.
The eggs become infectious within 6h
o three possible infectious routes:
o direct: by ingestion of embryonated eggs from the
perianal region
o indirect: by ingestion of food or water contami-
nated with embryonated eggs
o retroinfection: when eggs hatch in the perianal
region and the larvae migrate back into the colon
by way of the anus (Flynn 1973)

Aspiculuris

o direct cycle requires 23-25 days. Females lay their
eggs in the colon and the eggs leave the host on
faecal pellets. The eggs become infectious after 6-7
days at room temperature

e infection by ingestion of infectious eggs (Flynn
1973)

Clinical disease

e subclinical

e symptoms are: poor condition, rough hair coats,
reduced growth rate, rectal prolapse (Hoag 1961,
Harwell & Boyd 1968, Jacobson & Reed 1974)
animals infected experimentally with S. muris grew
more slowly than uninfected animals (Wagner
1988)

infection with S. muris retards the growth of young
mice and accelerates the development of their
hepatic monooxygenase system (Mohn & Philipp
1981)

no clinical signs in experimentally infected animals
(Flynn 1973, Wescott 1982)

Pathology

o the prevalence of pinworms in an infected rodent
population depends on age, sex and host immune
status

e in enzootically infected colonies, weanlings
develop the greatest parasite loads, males are more
heavily parasitized than females
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Syphacia spp. numbers diminish with increasing
age of the host (Wescott 1982)

athymic (nu/nu) mice have increased susceptibility
(JTacobson & Reed 1974)

Mastomys coucha is more susceptible than the
BALB/c mouse (Higgins-Opitz et al. 1990)

in rats the infestation rates of S. muris were higher
in the WKY strain than in the SHR strain (Liibcke
et al. 1992)

increase in resistance to pinworm infection with
advancing age of rats (Wagner 1988)

pinworms of laboratory rodents are generally not
considered pathogens (Flynn 1973, Wescott 1982)

Morbidity and mortality

morbidity: low
mortality: none

Zoonotic potential

there are early reports that S. obvelata may occur in
people. These reports have not been accurately
confirmed. It is certain that the infection has no
known health significance (Flynn 1973, Ross et al.
1980, Kellogg et al. 1982, Wescott 1982)

Interference with research

infection with pinworms reduces the occurrence of
adjuvant-induced arthritis (Pearson & Taylor 1975)
infection alters the humoral response to non-
parasitic antigenetic stimuli. This indicates that
infection might modulate the immune system (Sato
et al. 1995)

infection with S. obvelata induces a proliferation of
T- and B-lymphocytes in spleen and lymph nodes
and occasional germinal centre formation (Beattie
et al. 1981)

athymic mice infected with pinworms develop a
lymphoproliferative disorder which eventually
leads to lymphoma (Beattie et al. 1980, Baird et al
1982)

animals infected with pinworms are not suitable for
growth studies (Wagner 1988)

infection with S. obvelata in mice causes a
significant reduction of activity in behavioural
studies (McNair & Timmons 1977)

in rats, intestinal transport of water and electrolytes
is significantly decreased due to pinworm infection
(Lubcke et al. 1992)

Notice

the eggs of pinworms survive for weeks in the
animal room environment (Flynn 1973, Klement
et al. 1996)
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Mites

Host species
e mouse, rat, hamster, guineapig, rabbit, etc.

Organotropism
e skin

Clinical disease

e varies according to host strain, sex, age, individual
differences in sensitivity and ectoparasite load
(Csiza & McMartin 1976, Dawson et al. 1986)

o scruffiness, pruritus, hair loss, scratch wounds,
ulcerative pyodermatitis

Morbidity and mortality

e up to 100% of a colony affected
e morbidity: variable

o mortality: low

Zoonotic potential
e some mites (e.g. Ornithonyssus bacoti) (Fox 1982)

Interference with research

Physiology

e Myocoptes musculinus reduces contact sensitivity
to oxazolone in mice (Laltoo & Kind 1979)

Pathology
e Myobia musculi causes secondary amyloidosis
(Galton 1963, Weissbroth 1982)

Immunology

e induce IgE response in mice (Laltoo et al. 1979) and
rats (Inagaki et al. 1985, Gilabert et al. 1990)

o dust mites and dust mite parts in feed and bedding

induce IgE and delayed-type hypersensitivity

response in mice (Nakano et al. 1989, Motegi et al.

1993)

induction of allergic reaction in mice (Weisbroth

et al. 1976)

Interactions with other infectious agents

o dust mite proteases augment influenza virus repli-
cation in ferrets (Akaike et al. 1994)

e serve as vectors for other infectious diseases such as
dermatophytes (Hajsig & Cuturic 1969), cotton rat
filariasis (Kershaw & Storey 1976) and epidemic
haemorrhagic fever virus (Zhang 1987)
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