
Xed: a new tool for eXtracting hidden structures from Electronic Documents

Karim Hadjar, Maurizio Rigamonti, Denis Lalanne and Rolf Ingold

DIUF, University of Fribourg

Chemin du Musée 3, 1700 Fribourg, Switzerland

{karim.hadjar, maurizio.rigamonti, denis.lalanne, rolf.ingold}@unifr.ch

Abstract

PDF became a very common format for exchanging

printable documents. Further, it can be easily generated

from the major documents formats, which make a huge

number of PDF documents available over the net.

However its use is limited to displaying and printing,

which considerably reduces the search and retrieval

capabilities. For this reason, additional tools have

recently appeared that allow to extract the textual content.

However their practical use is limited in the sense that the

text’s reading order is not necessary preserved, especially

when handling multi-column documents, or in presence

of complex layout. Our thesis is that those tools do not

consider the hidden layout and logical structures of

documents, which could greatly improve their results.

We propose a novel approach to overcome the

document content extraction, by merging a) low-level

extraction methods applied on PDF files with b) layout

analysis performed on a synthetically generated TIFF

image. The paper describes the various steps necessary to

achieve this task. Finally, we present a first experiment

on the restitution of the newspapers’ reading order which

shows encouraging results.

1. Introduction

Nowadays a huge number of documents are either

created or converted in PDF format. PDF became the

universal exchange format. The main advantage of this

format is its portability, viewing and printing abilities.

Although PDF allows to embed structural information,

usual PDF converters don’t use them. In fact, the

converters generating PDF documents produce them in an

automatic manner with the only goal of preserving the

presentation. These converters use only PDF’s low level

based features such as font types, size, color, text

position, etc. This tendency is mainly due to PDF’s

complex generation process. Nevertheless, PDF format

has few drawbacks related mainly for search and

extraction abilities. For instance, searching a word within

the second column of a multi-column document using the

search feature of Acrobat might be unsatisfactory; if the

same word is located in the first column or else where

outside the second column the Acrobat reader will return

them all in order of appearances ignoring user’s interest

search area. Also if a user searches for an article talking

about “dryness in California”, a newspaper cover page

containing an article about “dryness in Africa” and

another article about “California dream”, could be

returned, which would not satisfy the request. So there is

a need for extracting objects in a structured form and save

the document in XML format in order to allow indexing,

more accurate searching, and creating applications

dealing with versioning and meta data [17].

Many researches and products have been developed in

the past few years that are able to extract data from PDF

documents and put it either into text or into XML format.

There is an interesting research that deals with the

extraction of the logical structure of PDF files [15].

However, most of them do not include analysis features,

which permit to embed extra information related to

physical and logical document structure, which would

significantly enrich the original document. For this

reason, we believe that running traditional document

analysis algorithms on PDF documents will drastically

improve PDF’s content extraction. This will allow us to

develop high-level applications such as the restitution of

the reading order of a document, indexing, comparing,

archiving, versioning and extracting meta data.

In this paper we present a new tool named Xed

(eXtracting electronic documents) for automatic

extraction from PDF file. Xed extracts all the objects

from a PDF document including text, images, and

graphics. The output of the extracted objects is either in

SVG (Scalable Vector Graphics) [20] or an “in-house”

format described in appendix B. Xed also includes an

internal common representation format, which allows the

layout analysis methods to share their results with the

PDF extraction tools, such as agents would collaborate

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

through a black-board architecture. This collaboration

significantly enriches Xed extraction with traditional

analysis feature that highlights the physical structure and

even the logical structure in the forthcoming versions.

The main advantages of Xed are thus a) the adjunction of

traditional analysis features to the PDF format and b) the

improvement of the layout analysis results.

This paper is organized as follows: in section 2 we

briefly introduce the PDF format. Then we make a brief

survey of the state-of-the-art tools for PDF analysis in

section 3. Section 4 presents the analysis feature of Xed

and the restitution of the reading order algorithm. In

section 5 we present detailed information about Xed’s

architecture. Finally, section 6 brings up the conclusion

and future works.

2. PDF

PDF, acronym for Portable Document Format, is the

universal desktop publishing format. In fact, PDF came

after PostScript, which was the desktop publishing

revolution. PostScript is a page description language that

allows desktop printers to render complex text and

graphics images. Despite PostScript was the desktop

publishing revolution its drawbacks are: nearly

impossible to edit, bothersome incompatibilities between

dialects of PostScript, cross platform issues and risk of

errors since PostScript is a programming language. But

with the advent of networks and internet, there was a

need for a universal document exchange format and in

1992 PDF was created. The first goal of PDF was to view

computer file on screen outside of native application,

which is currently done by Acrobat reader. When PDF

was introduced, the faculty to render complex text and

graphics images on the screen and the printer was

straightforward. By this way a PDF document can be

viewed or printed on any platform and several mobile

devices with the same fidelity.

PDF files can be generated from nearly all standard

applications (Microsoft Word, Microsoft Excel,

Microsoft PowerPoint, Adobe Photoshop, Adobe

InDesign, Adobe Illustrator, Quark XPress, etc) by using

distiller and PDF writer. These files can contain many

types of components (images, fonts, drawings, etc) within

a single file; this has encouraged the graphic art

community to adopt PDF for file exchange. In most of the

cases the PDF files obtained are smaller than the native

file but it depends on the version of distiller and its

options. In fact, PDF compresses every object with

appropriate algorithm. Adobe has provided both a SDK

and the Adobe PDF library for programmers. Every PDF

specification is published and is publicly available on the

Adobe web site [1, 2, 3].

Since the perfect file format doesn’t exist, PDF has also

its drawbacks mainly for search and extraction. It is not

conceived for being editable; it can’t be neither edited

with a text editor nor indexed in a simple way. Another

disadvantage is that applications generating PDF

documents don’t use the various document structures,

even though this feature is included inside the source

format. In the following section we review the available

programs and libraries for extracting data from PDF files.

3. Tools for PDF analysis

Many programs and libraries permitting the extraction

of data are available on the net. Most of them are

commercial, except JPedal [14], which also exists in open

source.

In the following subsections, we review the major

state-of-the-art tools for PDF analysis followed by their

comparison.

3.1 JPedal

JPedal exists both in a commercial and open source

version. It is basically a library for Java development of

PDF applications. The Java packages allow the extraction

of text, images, annotations and forms. The JPedal web

site offers to end-users the possibility to submit PDF

documents and receive by e-mail the result of the

extraction in XML format. It is also possible to have the

extracted data sorted to reflect the reading order of the

submitted document.

3.2 SVG Imprint

MatterCast [16] provides a commercial product called

SVG Imprint. The suite consists of desktop applications

for single and batch conversions of PDF documents to

SVG. Besides the suite there is an SDK that enables the

integration of the conversion engine into server based

enterprise applications. The output in SVG retains the

exact layout and integrates all the fonts embedded in PDF

document. The raster images inside the PDF documents

are extracted as separate file.

3.3 Glance

Glance [7] provides a set of products and API all

dealing with PDF. The commercial products are

command line programs. Among these programs there is

pdimgcomp which is a PDF image compression,

conversion and extraction tool. Img2pdf and text2pdf

respectively convert images and text into PDF

documents. 3 heights is the inverse of img2pdf its output

is images either in TIFF or JPEG or BMP. CLE, which

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

stands for command line tool enhanced edition, includes

the following programs: all of them have either in input

or output PDF documents. The first one: pdcat useful for

concatenation. The second one: pdsplit deals with

splitting. The third one: pdsel allowing the selection of

pages. The fourth one: pdw permitting the extraction of

text in ASCII or Unicode. The last one: pdwebl useful for

adding link annotations.

3.4 BCL

BCL [5] provides three products BCL Drake, BCL

Freebird and BCL Jade, all of them have either in input or

output PDF documents. The first one is useful for

conversion into RTF for viewing and editing in Microsoft

Word. The second one is a plug-in for Adobe Acrobat

allowing the conversion into graphics (Tiff, Jpeg and

Bmp). The last one: the Acrobat plug-in BCL Jade allows

the extraction of text, tabular data and graphics of mouse

selection. BCL does not extract the images found inside

the page of a document; it only extracts the image of the

whole page.

3.5 Comparison

The above products can help produce or extract

features of PDF files, either with command line programs

or through programming. For instance Glance provides a

program named “pdw” which extracts the whole text

stored inside a PDF document. We applied this program

on the front page of the International Herald Tribune and

we obtained the output presented in figure 1 and 2.

X Y FontSize Width Angle FontName: Text

81.4 1113.7 9.0 50.5 0 BeBl: BAGHDAD:

81.4 1095.1 8.9 150.3 0 PoRo: Powell urges

 Iraqis to agree

 to a speedier

 timetable

81.4 1085.9 8.9 150.2 0 PoRo: toward self-

 government in

 Iraq, cau-

81.4 1076.6 8.9 59.8 0 PoRo: tioned Sunday

147.7 1076.6 8.9 34.0 0 PoRo: that the

188.1 1076.6 8.9 43.6 0 PoRo: process of

81.4 1067.3 8.9 150.2 0 PoRo: restoring

 sovereignty had

 to be carried

81.4 1058.1 8.9 150.2 0 PoRo: out in stages

 and might not

 be seen as

81.4 1048.8 8.9 150.2 0 PoRo: legitimate if the

 pace were

 overly rap-

81.4 1039.6 8.9 9.6 0 PoRo: id.

…

Figure 1. From the pdw output, the manually identified

first paragraph.

X Y FontSize Width Angle FontName: Text

725.4 1215.6 9.0 62.5 0 BeBl: STOCKHOLM:

796.7 1215.6 8.9 22.4 0 PoRo: After

823.9 1215.6 8.9 6.5 0 PoRo: a

835.3 1215.6 8.9 40.4 0 PoRo: passionate

725.4 1206.3 8.9 150.2 0 PoRo: campaign made

 uncertain to the

 last

725.4 1197.1 8.9 150.2 0 PoRo: moment by the

 assassination of

 Foreign

725.4 1187.8 8.9 33.4 0 PoRo: Minister

764.0 1187.8 8.9 51.4 0 PoRo: Anna Lindh,

820.6 1187.8 8.9 28.5 0 PoRo: Swedes

854.3 1187.8 8.9 21.3 0 PoRo: voted

725.4 1178.5 8.9 150.2 0 PoRo: overwhelmingly

 in a

 referendum to

 re-

725.4 1169.3 8.9 14.2 0 PoRo: ject

747.0 1169.3 8.9 50.8 0 PoRo: membership

803.0 1169.3 8.9 7.9 0 PoRo: in

818.2 1169.3 8.9 12.3 0 PoRo: the

837.9 1169.3 8.9 37.7 0 PoRo: European

725.4 1160.0 8.9 150.2 0 PoRo: single currency,

 according to

 final re-

725.4 1150.7 8.9 93.2 0 PoRo: sults tallied late

 Sunday.

733.8 1141.5 8.9 141.9 0 PoRo: The margin

 exceeded the

 expecta-

725.4 1132.2 8.9 19.2 0 PoRo: tions

753.4 1132.2 8.9 7.7 0 PoRo: of

769.9 1132.2 8.9 23.8 0 PoRo: many

800.2 1132.2 8.9 26.1 0 PoRo: people

835.1 1132.2 8.9 17.1 0 PoRo: here

861.0 1132.2 8.9 14.6 0 PoRo: and

725.4 1122.9 8.9 150.2 0 PoRo: provided a

 stunning defeat

 for Prime

725.4 1113.7 8.9 150.2 0 PoRo: Minister Goran

 Persson.

 Analysts said

725.4 1104.4 8.9 150.2 0 PoRo: the impact

 would be felt

 across Europe,

….

Figure 2. From the pdw output, the manually identified

second paragraph.

When analyzing the figures we notice that the first and

the second paragraph of text of the extracted data,

corresponds respectively to the bloc number 5 and 6 in

figure 3. This means that the reading order is not

respected. Figure 3 represents the re-constructed reading

order from the pdw output over the front page of the

International Herald Tribune newspaper.

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

Figure 3. The reading order of the International Herald

Tribune front page from the pdw output.

In order to evaluate the products listed above, we have

downloaded the trial version of BCL, Glance, Mattercast

and the java open source library JPedal.

Six criteria have been used to compare the output

features provided by the products. Three of them are

relative to the extraction of text, graphics and images.

Two are relative to the format of output: XML or SVG.

And finally, the last criterion corresponds to the

restitution of the document reading order.

 A small corpus of PDF documents has been used. It

was composed of various newspapers, PowerPoint slides,

graphics, and papers. The test consisted in seeking

whether the criterion was supported or not. After testing

all the products we obtained the following table (table 1).

Table 1. The results of the comparison.

JP
p

ed
al

B
C

L

G
la

n
ce

S
V

G

Im
p

ri
n

t

Text

Graphics - - -

E
x

tr
ac

ti
o

n

Images

SVG - - -

XML - - -

Reading order - - -

Although all tested tools provided text and XML output

formats, only JPedal respects the reading order.

The reading order problem observed with existing tools

is certainly related to the intrinsic features of the PDF

format. In fact, PDF files are generated with the only goal

of restituting the document’s presentation accurately. To

do so, a structured internal representation is not

necessary, even if this feature is provided by the source

file format. We observed numerous amazing results in the

tools outputs. For instance, a single word missing in a

paragraph reappeared as an isolated word at the end of

the document. The reason we suspect to be behind such a

situation, is the internal representation of the text

processing system used to produce the document, in

which a last minute correction is probably represented as

an incremental change and thus appended to the end of

the file.

The general problem we have to deal with can be stated

as follows: the order in which text strings are recorded

within a PDF file has nothing to do, neither with the

reading order, nor with the order in which the text

appears on the two dimensional rendering plane (paper or

screen). Developers of extracting tools must be aware of

that. However, we believe that most of the current tools

try to solve the problem by defining complicated internal

sorting rules. Instead of using such abstract rules, we

believe that layout analysis algorithms, as developed for

many years by the document analysis community, can

provide additional useful information to guide this sorting

process, which we call topological sorting. The next

section presents this method and gives a detailed

illustration of that important step.

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

4. Layout structure analysis

Layout analysis is an essential part both in the field of

document image analysis and in recognition systems.

Among the different stages of layout analysis there is the

layout structure extraction. The goal of this stage is to

describe the structure of the layout in terms of topological

properties and also in terms of the function of each

region. The first one is known as physical layout structure

and the second one as logical layout structure.

There is no doubt that there is an improvement in this

field but this one is insufficient to consider layout

analysis domain as a solved problem. Complex layout

structures, such as newspapers are still imperfectly

analyzed [4, 8, 9] and still requires human interventions.

The algorithms are generally applied on scanned images

which are often of poor quality; such images may have

degradations such as noise, optical deformations and so

on. Furthermore they are often skewed. In our case, we

handle high quality images un-skewed and noise free

generated from PDF files.

In the literature a variety of proposed algorithms for

geometric layout analysis of document images are

proposed such as morphology or smearing based

approaches, projection profiles, texture-based analysis,

analysis of the background structure, and others [18]. We

notice that the first layout analysis methods were focused

on simple document structures [11]. Some recent works

show a great interest in complex layout analysis.

Currently known approaches rely on document models

[13] and interactive incremental learning which is one of

the main goals of the CIDRE1 project [10]. These

document models are either set up by hand or generated

automatically in a previous learning step that needs a lot

of ground-truthed data.

In the next subsections we explain all the methods used

in Xed. First we explain the layout analysis algorithms;

then we present the matching between the extracted

objects from the PDF document and the result of layout

analysis. Finally we review the topological sorting

algorithm with an example reading order restitution.

4.1 Layout analysis algorithms

In computer vision, the aim of image segmentation is to

separate the given image into homogenous region. Each

region is indicated by a meaningful property. In fact our

segmentation algorithm contains the following steps:

thread extraction, frame extraction, image text separation,

1
CIDRE stands for Cooperative and Interactive Document Reverse

Engineering and is supported by the Swiss National Fund for Scientific

Research, code 2000-059356.99-1.

text line extraction and line merging into blocks. Our

segmentation algorithm is modeled as a set of tools that

can be used separately.

A bottom-up approach based on connected components

is used for image, thread and frames extraction.

Connected components are also used for text line

extraction after the use of RLSA. The line merging into

blocks is done according to rules.

The input of our segmentation algorithm is a TIFF

image generated from PDF file, whereas the output is an

XML file. This XML describes the segmentation results

concerning different components such as threads, images,

frames, text lines extraction and line merging into blocks.

A sample of the XML segmentation output is illustrated

in figure 4. The corresponding DTD is presented in the

appendix A.

<?xml version="1.0" encoding="UTF-8"?>

<segmentation image="IHT_15_09_2003.tif">

 <Threads>

 <Thread x="827" y="955" w="3054" h="3" />

 <Thread x="339" y="1462" w="3981" h="3" />

 <Thread x="3022" y="2076" w="627" h="4" />

 <Thread x="339" y="2501" w="627" h="3" />

….

</Threads>

 <Images>

 <Image x="361" y="1054" w="419" h="318" />

 <Image x="1010" y="1566" w="1968" h="1429" />

….

</Images>

 <Texts>

 <Text x="413" y="15" w="8" h="1" />

 <Text x="1087" y="17" w="1" h="1" />

 <Text x="597" y="19" w="26" h="1" />

 <Text x="1631" y="19" w="5" h="1" />

….

</Texts>

 <Frames>

 <Frame x="1010" y="4114" w="627" h="1082" />

 </Frames>

<Blocks>

 <Block x="1010" y="4114" w="627" h="1082" />

 <Block x="339" y="207" w="1" h="53" />

 <Block x="1751" y="412" w="911" h="97" />

 <Block x="3029" y="546" w="68" h="63" />

 <Block x="1911" y="973" w="606" h="38" />

….

</Blocks>

</segmentation>

Figure 4. A sample of the XML segmentation output.

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

In the following section we review the matching of the

extracted objects from the PDF document with the layout

analysis results.

4.2 Matching Xed’s extracted objects with layout

analysis results

Before doing the matching of the extracted objects

from the PDF document with the layout analysis results,

we extract PDF objects. The goal of this extraction is to

obtain the various document content objects such as text,

graphics, image and other related information. This task

is delegated to Xed and is described in detail in the

following section.

After obtaining the extracted content and the output of

the layout analysis, we match them in the manner shown

in figure 5.

Figure 5. Topological sorting

Many applications, such as restitution of the words,

lines and blocks, can be built after structuring the content

and matching it with the output of layout analysis

algorithms. In this section we focus only on blocks.

The aim of the matching is to assign the set of text to

each block. This resembles applying an OCR. The steps

of the matching algorithm are the following:

1. For each extracted text element, compute its

bounding box,

2. Check if it intersects with an existing text block,

3. If it intersects a block, add the text to this block; if

not, the block is not correctly segmented and the

corresponding text element is added to an array of

non-resolved blocks.

The array of non-resolved blocks can be used to correct

the missing blocks.

Figure 6 illustrates the result of the matching algorithm.

Figure 6. The result of the matching algorithm

In the next section we describe the algorithm for

restituting the reading order.

4.3 The algorithm for restituting the reading order

After the matching of the blocks with the n

corresponding set of text, we reestablish the reading

order. In fact, we merge the blocks belonging to the same

article. This will help ordering the blocks correctly and

fully obtain the logical zones, such as articles in the

newspaper front page. Then, we sort them according to

their spatial coordinates and their relationships.

The merging algorithm is composed of 3 steps:

1. Compute the mean of the width of all the blocks. The

resulting value corresponds approximately to the width of

columns,

2. Extract the blocks exceeding the mean width (in

most of the case, they correspond to titles or subtitles),

3. For each of this block: a) fix the threshold to the

height of the block; b) seek in the south direction the

blocks that are nearer than the threshold and merge them

(see figure 7).

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

Figure 7. Merging blocks into articles

Finally, we sort the merged blocks to obtain the reading

order. First we sort all the blocks with the x criteria.

Second we resort all the blocks belonging to the same

column with the y criteria. The reference value of the axis

x and y is the centre of gravity of the block.

We finally obtain the reading order as illustrated in

figure 8.

Figure 8. The restitution of the reading order of IHT

frontpage

In the next section we review the architecture of Xed.

5. Architecture of Xed

After the discussion of the role of Xed in the algorithm

for restituting the reading order, this section presents how

the application operates to extract data from the PDF

document.

We propose an architecture that is composed of three

different phases: the reading, the extraction and the

analysis phase (see figure 9).

Figure 9. The phases of Xed

The reading phase is the low-level phase. It reads the

PDF file and it creates an equivalent tree. The aim of this

phase is to prepare the PDF data for the extraction. Every

object in the PDF file is represented in Xed with an

equivalent object, which contains exactly the same

information as the original. The main difference between

the original object and its double is the representation. In

fact, most of the PDF objects can be represented in

different manners: for example, a block of text can be

described either in a binary stream or in an encoded

binary stream. Similarly, a string has two different

formats: literal or hexadecimal. The reading phase

homogenizes the different representations of the PDF

data: Xed allows only a possible format for a specific

typology of object. As stated in the previous examples,

Xed decodes the encoded blocks and it represents strings

as characters.

The extraction phase follows the reading; it

reconstructs and restitutes the entire information

embedded in the PDF document. In order to catch up this

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

objective, the extraction phase creates an instance of the

PDF document. It works such as a PDF viewer but it

reproduces the document in an inner representation

instead of rendering it on the screen. In the rest of this

section, this inner representation is called abstract

document.

The abstract document is created page after page. First,

Xed loads the resources used to compose the page (color

spaces, images, fonts and extended graphical states) and

then it constructs the page. A page is composed of three

kinds of primitives: text, images and graphics (for

example, lines or paths). During this process, Xed

maintains a graphical state, which allows to determine the

current drawing position, the stroke style, the color and

other graphical properties of any object [1, 2, 3]. The

abstract document is essential because every object

depends on the graphical state at any moment. The object

itself does not contain all the information describing its

properties. For example, the rendering of a path depends

either on the shape or on the appearance. This latter

depends both of the color and the stroke, which are only

defined in the current graphical state. The aim of the

abstract document is to enrich and complete the

information explicitly contained in the original PDF

document.

The figure 10 resumes the construction of the abstract

document.

Figure 10. Abstract Document

The last phase, which follows the extraction phase,

consists in analyzing the abstract document in order to

transform it according to the applications needs. This is

the case of the method for rebuilding the reading order

described in the previous section.

Finally, Xed transforms the information collected in the

abstract document in a XML language. Xed is

implemented in Java and uses two different libraries,

which encapsulates respectively the reading and the

extraction phase. The analysis phase is embedded inside

the main application. The existing prototype can output a

result either in SVG language (Scalable Vector Graphics)

[20] or in a specific XML language. The corresponding

DTD is presented in the appendix B.

5.1 Using Xed

In order to illustrate the capabilities of Xed, this sub-

section presents the results of the information extraction

from a PDF file. The considered document is the front

page of the French newspaper “Le Monde”, published the

1st April 2003 and shown in figure 11.

Figure 11. The original PDF document

In this example, Xed extracts primitive objects (i.e. text,

graphics and images). The figures 12-14 show an

example of the output XML language.

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

<text
 x="266"

y="214"
length="167"
rotate="0"
fontname="L-SemiBold"
fontsize="54"
letterspacing="0.0"
fill="rgb(0.0,0.0,0.0)"
stroke="none" >
 Français

</text>

Figure 12. Text element

<image
filename="images/img1.png"
x="225.5"
y="22.59440000000002"
width="450.0985"
height="102.0794"
rotate="0" />

Figure 13. Image element

<path>
<subpath closepath="true">

 <moveto x="43.0"
 y="135.0" />
 <hline endx="816.0" />
 <vline endy="1.0" />
 <hline endx="-816.0" />

</subpath>

 <style stroke="none"
 fill="rgb(0.0,0.0,0.0)"
 fillrule="nonzero"
 strokewidth="1.0"
 strokelinecap="butt"
 strokelinejoin="miter"
 strokemiterlimit="10.0" />
<path/>

Figure 14. Path element

The output of Xed can be observed and validated

with xmillum, a framework for cooperative and

interactive analysis of document, that allows to visualize

and to edit document recognition results expressed in any

XML language [12, 19].

In this example, xmillum loads the data extracted from

the PDF document and then an XSLT stylesheet is

applied. In xmillum, the transformed XML data

associates a graphic representation to each element (text,

path and image). Figure 15 shows a screenshot of the

extracted data from PDF and visualized with xmillum.

Figure 15. Xed output shown in xmillum.

6. Conclusion

Extracting high-level document structures from PDF

files is a very challenging problem with many potential

practical applications. But, such an operation must rely

on reliable low-level extraction tools. In our opinion, this

problem has been largely underestimated so far.

In this paper we have described a novel approach: Xed

for improving this essential step. The originality of our

method consists in combing PDF symbol analysis with

traditional document image processing techniques. By

considering complex layout analysis results as input to

drive a topological sorting algorithm for text pieces, we

have brought a significant contribution to improve the

reliability of low level text extraction from PDF files.

Currently we are extracting words and lines from the

bounding boxes of the characters, substrings and words.

Our future work on Xed will focus on the improvement

of the functionality of Xed in order to fix some problems,

especially with words reconstitution. After that we will

focus in details on the logical structure of the extracted

document.

7. References

[1] Adobe Developer Support, The Compact Font Format

Specification, Technical Note #5176, Version 1.0, 16 March

2000, http://partenrs.adobe.com

[2] Adobe Developer Support, The Type 2 Charstring Format,

Technical Note #5177, 16 March 2000,

http://partenrs.adobe.com

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

[3] Adobe PDF reference,

http://partners.adobe.com/asn/tech/pdf/specifications.jsp

[4] A. Antanacopoulos, B. Gatos and D. Karatzas, “ICDAR

2003 Page Segmentation Competition”, ICDAR2003, Edinburgh

(Scotland), August 2003, pp. 688-692.

[5] BCL, http://www.bcltechnologies.com/document/index.asp

[6] R. Cattoni, T. Coianiz, S. Messelodi and C.M. Modena,

“Geometric layout analysis techniques for document image

understanding a review”, Technical report, IRST, Trento, Italy,

1998.

[7] Glance, http://www.pdf-tools.com/en/home.asp

[8] K. Hadjar, O. Hitz and R. Ingold, “Newspaper Page

Decomposition using a Split and Merge Approach”, ICDAR’01,

Seattle (USA), September 2001, pp. 1186-1189.

[9] K. Hadjar and R. Ingold, “Arabic Newspaper Page

Segmentation”, ICDAR’03, Edinburgh (Scotland), August 2003,

pp. 895-899.

[10] K. Hadjar, O. Hitz, L. Robadey and R. Ingold,

“Configuration REecognition Model for Complex Reverse

Engineering Methods: 2(CREM)”, DAS’02, Princeton, NJ

(USA), August 2002, pp. 469-479.

[11] R.M. Haralick, “Document image understanding:

Geometric and logical layout”, Proc. Internet. Conf. On

Computer Vision and Pattern Recognition, 1994, pp. 385-390.

[12] O. Hitz, L. Robadey and R. Ingold, “An architecture for

editing documents recognition results using xml technology”,

DAS’2000, Rio de Janeiro (Brazil), December 2000, pp. 385-

396.

[13] J. Hu, R. Kashi, D. Lopresti, G. Nagy and G. Wilfong,

“Why table ground truthing is hard”, ICDAR’01, Seattle (USA),

September 2001, pp. 129-133.

[14] JPEDAL, http://www.jpedal.org

[15] W.S. Lovegrove and D.F. Brailsford, “Document analysis

of PDF files: methods, results and implications”, Electronic

Publishing, Vol. 8(2 & 3), June & September 1995, pp. 207-220.

[16] MatterCast, http://www.mattercast.com/default.aspx

[17] B. Mohit, “Meta Data Extraction from PDF Research

Papers”,

http://www.sims.berkeley.edu/~behrangm/cs294/final/finalWrit

eup.pdf.

[18] G. Nagy, “Twenty Years of Document Image Analysis in

PAMI”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 22, No 1: January 2000, pp. 38-62.

[19] M. Rigamonti, O. Hitz and R. Ingold, “A Framework for

Cooperative and Interactive Analysis of Technical Documents”,

GREC 2003, Barcelona (Spain), July 2003, pp. 407-414.

[20] SVG: Scalable Vector Graphics,

http://www.w3.org/TR/SVG/

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

Appendix A

DTD of the layout analysis

<!ELEMENT segmentation (Threads, Images, Texts, Frames, Blocks)>
<!ATTLIST segmentation
 image CDATA #REQUIRED
>

<!ELEMENT Threads (Thread+)>
<!ELEMENT Thread EMPTY>
<!ATTLIST Thread
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 w CDATA #REQUIRED
 h CDATA #REQUIRED
>

<!ELEMENT Images (Image+)>
<!ELEMENT Image EMPTY>
<!ATTLIST Image
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 w CDATA #REQUIRED
 h CDATA #REQUIRED
>

<!ELEMENT Texts (Text+)>
<!ELEMENT Text EMPTY>
<!ATTLIST Text
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 w CDATA #REQUIRED
 h CDATA #REQUIRED
>

<!ELEMENT Frames (Frame+)>
<!ELEMENT Frame EMPTY>
<!ATTLIST Frame
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 w CDATA #REQUIRED
 h CDATA #REQUIRED
>

<!ELEMENT Blocks (Block+)>
<!ELEMENT Block EMPTY>
<!ATTLIST Block
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 w CDATA #REQUIRED
 h CDATA #REQUIRED
>

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

Appendix B

DTD of Xed primitives

<!ELEMENT XedDoc (text | image | path | font | clippingpath | mask)+>

<!ELEMENT text (#PCDATA)>
<!ATTLIST text

x CDATA #REQUIRED
 y CDATA #REQUIRED
 length CDATA #REQUIRED

rotate CDATA #IMPLIED
fontname CDATA #REQUIRED
fontsize CDATA #REQUIRED
letterspacing CDATA #IMPLIED
fill CDATA #IMPLIED
stroke CDATA #IMPLIED

>

<!ELEMENT image EMPTY>
<!ATTLIST image
 filename CDATA #REQUIRED
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 width CDATA #REQUIRED

height CDATA #REQUIRED
rotate CDATA #REQUIRED

>
<!ELEMENT path (subpath+, style)>
<!ELEMENT subpath(moveto, (moveto | lineto | hlineto | vlineto | cubicto)+,
closepath)>
<!ELEMENT moveto EMPTY>
<!ATTLIST moveto
 x CDATA #REQUIRED
 y CDATA #REQUIRED
>
<!ELEMENT lineto EMPTY>
<!ATTLIST lineto
 endx CDATA #REQUIRED
 endy CDATA #REQUIRED
>
<!ELEMENT hlineto EMPTY>
<!ATTLIST hlineto
 endx CDATA #REQUIRED
>
<!ELEMENT vlineto EMPTY>
<!ATTLIST vlineto
 endy CDATA #REQUIRED
>
<!ELEMENT cubicto EMPTY>
<!ATTLIST cubicto
 crt1x CDATA #REQUIRED
 crt1y CDATA #REQUIRED
 crt2x CDATA #REQUIRED
 crt2y CDATA #REQUIRED
 endx CDATA #REQUIRED
 endy CDATA #REQUIRED
>

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

<!ELEMENT closepath (0 | 1)>

<!ELEMENT style EMPTY>
<!ATTLIST style
 stroke CDATA #IMPLIED
 fill CDATA #IMPLIED
 fillrule CDATA #IMPLIED
 strokewidth CDATA #IMPLIED

strokelinecap CDATA #IMPLIED
strokelinejoin CDATA #IMPLIED
strokemiterlimit CDATA #IMPLIED

>

<!ELEMENT font EMPTY>
<!ATTLIST font
 family CDATA #REQUIRED
 weight CDATA #IMPLIED
 style CDATA #IMPLIED
>
<!ELEMENT clippingpath (path)>
<!ATTLIST clippingpath
 id CDATA #REQUIRED
>

<!ELEMENT mask (image)>
<!ATTLIST mask
 id CDATA #REQUIRED
>

Proceedings of the First International Workshop on Document Image Analysis for Libraries (DIAL’04)

0-7695-2088-X/04 $20.00 © 2004 IEEE

	footer1:

