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Large deviations and phase separation
in the two-dimensional Ising model. *

C.E. Pfister
Departement of mathematics E.P.F.-L.
CH-1015 Lausanne Switzerland

(15, VvVIiI, 1991}

1 Introduction.

In 1967 Minlos and Sinai published a remarkable paper on the Ising model [M.5.1].
Many important ideas, which were later on developed in Statistical Mechanics were
in germ in it. In their paper the phenomenon of phase sepatation or phase seg-
regation is explaired, at a mathematical level, on the basis of the first principles
of Statistical Mechanics. In 1988 Dobrushin, Kotecky and Shlosman [D.K.5] an-
nounced new important results: the phenomenclogical theory of Wulfl, which gives
the shape of the spatial region occupied by one phase immersed in the other one, is
derived within Statistical Mechanics.

This paper is based on a series of lectures delivered at Troisieme Cycle de la Physique
en Suisse Romande in February 1991, The aim of these lectures was to expose part
of the work of Minlos and Sinai by incorporating the main features of the recent
developments of Dobrushin, Kotecky and Shlosman. The mathematical aspects of
the problem were emphasized in the lectures and not the physical aspecis, which
are relevant, as the wetting phenomenon for example [F.P 2], I tried to get the main
results, but not in the sharpest form, in order to keep the analysis as simple as possi-
ble. In particular I chose to use a constraint ensemble where the magnetization does
not have a fixed value. (See (1.8) and comments at the end of the introduction.} One
lecture was devoted $o an exposition of the method of the cluster expansion, which
plays an important role in the analysis and which replaces ihe method of equations
for correlation functions used by Minlos and Sinai [M.5.2] (see section 3). Only the
two-dimensional Ising model at low temperature was treated in these lectures, since
the results of Dobrushin, Kotecky and Shlosman are restricted to this case.

Let us summarize the main points of the theory of Gibbs states and large deviations
of the magnetization for the iwo-dimensional Ising model. The free energy plk. B},
and the Gibbs states depend on two parameters, the external magnetic field & and
the inverse temperature 8, since the coupling constant J of the interaction can be
chosen equal to one without restricting the genmerality. {In this introduction the
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free energy is normalized as in Physics, by dividing the logarithm of the partitio
function by the inverse temperature. This normalizaiion is not used in the rest omm
the paper.) The Gibbs states describe the equilibrium states in the thermodynam;
lirmit. They are solutions of the D-L-R equations. For the two-dimensional Eha
model all solutions of these equations are known. The set of solutions of the U.r!%
equations is a convex set which has only one element for all nonzero values of h and
for A = 0 and G < f°, where 8%, is the critical inverse temperature. For h = 0 and
B > p° there are exactly two extremal solutions of the D-L-R equations, denoted
below by g% and g, all other solutions are g = ap* + (1 —a)p™, 0 < N 1 ‘m‘r
Gibbs states p* and p~ describe the pure phases, and the Bmwmcwm, n.:ﬂ + mm f.nv <
describes an equilibrium state which is a mixture of the two pure phases. M_Wmumtwm
a criterion for the umicity of the solution of the D-L-R equations, which is related
to a smoothness property of the function p(h,8). Let o{f) be the spin variable at
t € 72. We suppose that the random variables o(t) are distributed according to
the Gibbs measure u*(h, ) for some fixed values of the parameters b and 3. W&n
expectation value of o{t) is independent on ¢ and is written m*(k, ). Similazly we
define m~(k,3), which is the expeclation value of o{t) with respect to the Gibbs
measure 1~ (h, ). There is a unique solution of the D-L-R equations if and only if
mt(h, ) = m~(h, 3} and this happens if and only if the thermodynamical function
p(k,B) is differentiable with respect to the magnetic field at (k,4). Indeed, this
fenction is convex in h and the right derivative (left derivative) with respect H.o the
magnetic field is equal to m*(h, 8) (m~(h, 8)).

Let > = A{L) be a finite subset of 2%, which we suppose to be a square. The
cardinality of A(L) is JA] = L* An important variable is X(A),
1
X(A) = =S ot
PR wy
which is the mean magnetization inside the region A. The extremal Gibbs states ut

and g~ are ergodic measures with respect to the group of translations of the lattice
Z?. We have

. H +
mﬁ_émsg_g @
A similar result holds for the measure u~. The study of the distribution of the
random variable X(A) is related to the large deviations of the magnetization inside
A, ie. to the estimation of Prob({X{A) € A}) for some subset A. Let us suppose
that the random variables X(A) are distributed according to the measure p*(kh 2)
Then, these variables obey a large deviation principle with rate function [ T;m__h mw
(see e.g. [E}). The rate function is equal to _

I(mlh,B) = Blsup(m -t — p(h +¢,5)) + p(h, B)) = (1.3)
Emdia b= p{t, B)} + p(h, B) — m - k)

If A is an open set, then

. .. 1
I.WMW Imlh,8) < wﬁh:um ég Prob{{X(A(L)) € A}) (1.4)
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with the probability computed with the measure pt{k, 3). If A is closed set, then

1 %Mw MTSF:%V.V; :mﬁwmﬁ gn%g mﬁwunoﬁm.x‘fi.w:mhwu C.mv
The rate function is nonnegative and it is equal to the sum of the Legendre transform
of p and the affine funciion of m, p(A, BY—m -k Itis a convex function, and it is
essentially equal to the thermodynamical function associated with a constraint en-
semble with given specific magnetization m. On the other hand, pis associated with
an unconstraint ensemble. The results (1.4) and (1.5) are independent on the choice
of the Gibbs measure {for the same values of b and 8). The phase transition region
of the model in the (h,#)-plane corresponds to the region where several solutions
of the D-L-R equations exist. It is also characterized by the non-differentiability of
the fanction p(h, 3) with respect to the magnetic field k. This non-differentiability
of p implies, via the Legendre transform, the existence of a non trivial affine part
in the graph of the rate function. Let us choose h = 0 and 8 > 3°. Then plh, 5)
is non differentiable at h = 0 and the left-derivative of p at h = {} is equal to
m(0,8) = —m*(B) < 0 and the right-derivative is equal to m*(f#) > 0. In this
case the graph of the rate function has an horizontal part : I{m|0,8) = 0 for all
—m*{(B) < m < m*(B). Consequently the statements (1.4) and (1.5) become irivial
for any set A included in the interval [-m", 4+m*].

The summary above shows that the theory of Gibbs measures in the thermodynam-
ical limit is unadequate for describing the coexistence of phases in the sense that
any Gibbs measure is of the form

p=apt +{1-alp” 0<aX] {1.6)

The Qibbs measures are related to the equilibrium states of an unconstraint ensemble
(the value of the magnetization is not given a priori). A measure like p describes a
mixture of two. phases it & statistical sense only, the coeflicient o being the fraction
of the pure phase which is associated with the measure pt. In order to study the
coexistence of the phases we work with a system defined in & finite box and we
use a constraint ensemble with given magnetization. The physical situation which
is described in these lectures is the coexistence of the two phases when one of the
phase is attracted by the boundary of the box and the other one is repulsed. We
choose the + boundary condition, The above sesults on the large deviations of the
magnetization in the interval [-~m*, +m*] are trivial, because large deviations in the
presence of several phases is a less rare event than in the region of a single phase.
Indeed, the probability that

S a(t) =mlA] ,-m" <m < 4m {L.7)
teh
is now exp(Q(IA|Y/?)) and not anymore exp{O{[A[)) (see [S}). One main purpose of
these lectures is to show the relation between this behaviour of the large deviations
of the magnetization when there is coexistence of phases and the phenomenon of
phase separation. The two themes are intimately related, and in a mean field version
of the model it is easy to see that we have no phase separation, an equilibrium state
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with given magnetization is always an homogeneous state, and the above theory of
large deviations is not trivial. Notice that the rate function is not convex.

Let us consider the model in a finite square box A(L). We always choose the -+
boundary condition for the box. The parameters of the models are chosen so that
there is no magnetic field and the inverse temperature 3 is large encugh. Let o he
a configuration. We define

A(m) = Alm;e,co) = {01 |3 o(t) ~ m|A|| < co|A| - L7} (1.8)
teh

where —m*(8) < m < m*(8) (with m not teo small) and 0 < ¢ < 1/2. Al
configurations ¢ of A have a total magnetization of order Q(|A|} - m. We define
a constraint model by considering only configurations in 4. Therefore, for fnite
A(L), the equilibrium state of the constraint model is described by the conditional
measure gt ( - {A) where p} is the Gibbs measure in A with + boundary condition.
Our purpose is to find a set of typical configurations for kMASA - | A} for large values
of I, The main result, which were proven by Minlos and Sinai, is that there exists
a set of typical configurations which can be roughly described as follows. We can
pastition this set into subsets, each of these subsets being characterized by a spatial
region R, so that inside R and not too close to the boundary of the region R we
have typical configurations of the measure = (restricted to R) and in A\R, and
not too close to the boundary of A\R, we have typical configurations of the measure
#* (restricted to the region A\R}. The volume of the regions R is

-

vol(R) = V(m) + O(A[) , V(m) = al(m)|a] = sw BRUATY {1.9)

m*

Dobrushin, Kotecky and Shlosman give a better estimate of the volume of the regions
R, and show that the shape of R is given by the Wulff’s variational principle.
Before reviewing this principle let us state the resulis on the large deviations of the
magnetization, which are a direct consequence of these phase separation results:

Jim \MH...EF Mnowwasﬁb?ﬁ ¢,e0)) = 2(|W.| . alm))'/? {1.10)

Loo

where |W,| is a constant, which depends on 7 and which is equal to the volume of
the Walff crystal (see below), and a{m) is defined in (1.9). We have

. W
4 om =1 {1.11)

It is important to notice that in this case the result {1.30) depends on the choice
of the conditional Gibbs state and also on the shape of the box A. The result eg.
for periodic boundary conditions is different (see [D.K.8] and [Sh]). This is in fact
very natural since we have here a surface phenomenon and we cannot expect that
the boundary of A, or the boundary condition for this set, do not play & dominant
role. The phenomenon of wetting is of course important although we do net discuss
this topic. We only mention that the result (£.10) reflects the fact that there is a
repulsion of the negatively magnetized phase by the boundary of A, as a consequence
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of our choice of the boundary condition {[F.P.2]).

The Wulf’s theory predicts the shape of a crystal in equilibrium s.iw its vapor on
the basis of a simple variational argument. This is m.vrmnoﬁawomomun& MACTosCopic
theory. Let us consider only the two-dimensional version. We suppose that a ﬁOmm.E.m
shape of the crystal is described by a simple closed curve ¢ wu.& thai the .nnu.mn& is
inside ¢. Let n be a unit vector of R? and {n} the surface tension {per unit length)
of an interface perpendicular to n» and separating the crystal and the vapor. The
total surface free energy associated with the shape c is,

\ﬂ r(n(s))ds (1.12)

where n{s) is the unit normal vector exterior to ¢ at c(s). The mrwﬁm of the E...%ﬂ&
of volume V is given by the solution which Ewiﬁwwmm.ﬁ.wmv over "all sufficiently
nmmiwms simple curves V which are the boundaries of regions o.». volume e\... H 2n.rw<n
two fluid phases in coexistence, then the same argument applies. In particular if the
surface tension is isotropic (1.12) is proportional to the w.numw.r of ﬁ.&m curve ¢ and ?m
equilibrium shape is a disc, as a consequence of the classical umoﬁ@ﬁ.uﬁwn.un Emmgwwﬁ.
The variational problem to solve is a generalization of the n_.mmmnn& isoperimetric
problemn. When 7 is positive, which is the case here, we can intrepret ?.HwM as a
new length of ¢ (r-length). Let 7:R* - Rbea wo&tﬁ&% .rouuowmumoﬁ ?unfow. of
degree one. (We can always extend in this way the definition of the surface tension
to B2} We define the Wulff crystal

[2* € R : (ziz”) < r{w), forevery z € R} {1.13)
= {&"eR:r(z") <0}

3\1

The Lebesgue measure of the set W, is [W,|. For example éw.am t is the Euchidean
sorm, then |W,| = =, and when r(x) = [z:] + |23 then W, is a square of volume
4. In (1.13) { -} -) is the Euclidean scalar produci in A% and 7" is S:w Legendre
transform of 7. Let s € {0,1] — ¢(s) = (e1(s), c2{s)} € R? be a parametrized closed
curve {which is sufficiently regular). We define the Wulff functional by

()= [ L r(eh(8) —ci())ds (1.14)
and
vol{c} := W\”A&?vnw?v ~ ch{8)ea(s))ds {1.15)

Notice that vol(c) is the Lebesgue measure of the set enclosed v« ¢, when ¢ w.m a
simple closed curve. We have the following theorem, which generalized the classical
isoperimetric inequality, and which gives the solution of the variational problem:

{r()Y = 4|{W.1- vol(e) (1.16)

Equality holds if and only if ¢ is the boundary of a region which is obtained by a
dilatation and translation of the Wulff crystal. Inequality (1.16) has been proven
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several times under various conditions. Although inequality (1.16) plays an impor-
tant role in the analysis we do not prove it here. There is a d-dimensional version
of it. For this version there is a proof based on Brunn-Minkowski inequality (see
in particular [D], [T]}. Recently new proofs were published, see [F], [D.P]. A curve
&Enr realizes almost the minimum is ,m.rﬂoﬂ a Wulff crystal of volume vol(c) (see
e.g. [D.P]). This stability of the variational problem is best expressed by the gen-
eralized Bonnesen’s inequalities {see [D.K.5]). We use these inequalities only ai the
very end of the analysis.

A precise formulation of the resulis on the phase separation is given in theorems
9.2, 9.3, 9.4 and in the conclusion of section 3. Let us cutline the content of the
next sections. The typical configurations of the conditional probability uf{ - 14)
are described in terms of large contours and small contours. One needs an estimate
of the large deviations of the magnetization computed with the probability which
is obtained by conditioning the Gibbs measure g} with respect to the event that
there are only small coniours. To simplify the analysis the constraint ensemble is
defined by the event A, which specifies the magnetization up to a term of order
O{|A}- L7°). Therefore it is sufficient to prove Bernstein's inequality for these large
deviations. Such an inequality is derived in section 5, and follows easily from the
resulés of section 4. {From the resulis of section 4 one can get stronger resulls, and
prove local fimit theorems analogous to those obtained by Richter for independent
random variables [R].) There are two main estimates in the analysis of the fypical
configurations of the measure p}{ - |A). One of them is a lower bound for the
probability of the event A computed with the Gibbs measure u}. This estimate is
done in section 7. The second estimate is an upper bound for events described in
terms of geometrical objects called droplets. The droplets are defined in section 8,
and the estimate is established in the same section. It is essential that both esti-
mates are expressed in terms of surface tension, and for that purpose we iniroduce
an intermediate scale in the analysis, following an idea of Dobrushin, Kotecky and
Shlosman. The method of proof for these estimates differs from the one used by
Dobrushin, Kotecky and Shlosman. There is a convenient way of studying the sur-
face temsion, which is suggested by duality. It is known that the two-dimensional
Ising model is self-dual, and that the surface tension is equal to the mass-gap of
the two-point funciior of the same model at the dual inverse temperature. Dual-
ity and surface tension are the subjects of section 8, which also contains two basic
simple estimates, which are important for sections 7 and 8. One of these estimates
expresses the fact that a complicated large contour has a small probability and it
is proved by the cluster expansion. The second estimate is based on monotonicity
properties of the expectation value of the spin variables with respect to the size of
the system. This second estimate greatly simplifies the analysis. Moreover such an
approach is also possible for higher dimensions. Correlation inequalities are used
for proving the lower bound of section 7 by mimicking the method of reflection of
the theory of random walks, Here we use monotonicity properties of the two-point
function with respect to the position of the spins. What is really needed to know
about the surface tension corresponrds to prove in the dual model that the two-point
function has an Orastein-Zernicke behaviour. Section 9 contains the main theorems

and the conclusions of the analysis. A lemma due to Minlos and Sinai plays an
jmportant role, when we prove the separation of phases. man.ﬁow m.mm devoted to
some basic definitions and notations. The correlation inequalities which we use are
n:o.wnm there. The method of the cluster expansion is explained in section 3.

Remarks. .
1) In the definition of the constraint ensemble we allow some fluctuations of the

magnetization. As a consequence in the set of typical configurations we always have
some contours of intermediate size {which are still small confours for our definition.)
To study such contours, one must investigate the intermediate fluctuations of the
magnetization. This important subject is treated in 5.K.8}. .

2) In [D.K.8] the authors use a definition of contours, which is very particular. This
is not the case in these lectures, and our approach is better for generalizations.
However the geometry of the {large} contours is more complicated in our case (see
section 8). We could avoid these complications by using the definition of contours of
[D.K.5]. This brings a non trivial simplification at the expense of generality. This
simplified approach is discussed in section 10.

3) The main steps of the analysis are summarized below.

o Lemma 6.3 which gives the relation between the surface tension and the mass-
gap of the two-point function of the dual model.

» Theorem 7.1 which gives the lower bound on the probability of the set Afm;c, o).

o Theorem 8.2 which gives an estimate of the total volume (and the total tength)
of the large contours.

¢ The definition of the droplets and lernma 8.8 which gives an upper bound on
the probability of a family of droplets, This lemma is proved by using the
basic estimate of lemma 6.7.

o Theorem 8.4 which describes a typical set of configurations in ferms of droplets.

Acknowledgements. During the past three years 1 had several occasions to discuss
different aspects of these questions, in particular with Kotecky and Shlosman. Ialso
had a written version of their analysis of the surface iension, and I used some of
their results at one point (lemma 7.1}. I am very grateful for the many entlightening
discussions which I could share with Debrushin, Kotecky and Shlosman.
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2 Ising model, notations.

We set up the main notations in section 2.1 and recall some basic properties of the

model in 2.2, Finally we state in 2.3 the correlation inequalities which we use later
on.

2.1 Notations.
2.1.1 The lattice.
The model is defined on 72 or on some bounded part of 72,
= {t=00nt2): e L,i=1,2} (2.1)
Another lattice, the dual lattice is important. In our case the dual lattice is 72 |
= b= (1(1),22)) t()+1/2¢ F,i= 1,2} (2.2)

We also think of the lattice in a more geometrical way, as a cell-complex. The lattice

Let A be a bounded set of 72, We also use the notation A for the following subset
of L : all sites of A are the elements ¢ of A (as subset of Z*); all edges of A are the
edges of L, € = [t, t7] with £, #’ sites of A; all plaquettes of A are all plaquettes of L, p
, such thai 8p = {e1, ez, es, es} with all e; edges of A. We write A C L. With each
A © L we associate a dual subset A” of £* - all plaguettes of A* are the plaguettes
p*(t) of L™ whose centers ¢ € A ; all edges of A" are all edges of the boundaries of
these plaqueties; all sites of A” are all sites which are in the boundaries of the edges
of A*. A pathon 7% is an ordered sequence of sites and edges, to,€0,t1, 01,80
with &e; = {t;,t;_ 1}, all i. The site &y is the initial poini of the path and t, is the
final point. The path is self-avoiding if # ¢ forall i & j. It is closed if £y = ¢n.
A subset A ¢ 7% is connecled if for any pair of points £,1' € A, there is a path with
initial point ¢ and final point ¢ which contains only sites of A. A subset A C s
simply connected if the set of R? which is the union of all plagueties plEteA is
a simply connected set of R?. A subset I' of edges of L is connected if the set of R’
which is the union of the edges of I' is connected in R®. Pinally, for any finite set
A C 7* we set

is n.rm set of all elements of 77, called sites (0-dim. cells), all edges e, e = [£,¢] A={te?’ max|t(i) - t'(i)] < Lall '€ A} (2.6)
which are horizontal and vertical segments of R? with endpoints t € 72, #' € 77 and e
{1} — £{1)] + |2} ~ #(2)] = 1 {1-dim. cells}, and all plaguettes hickh
. s p , which are the i
2-dim. squares of unit area of R? with corners belonging to Z?. When we consider 212 The configurations.
the lattice with this structure we denote it by L. Similarly we introduce *, the A configuration o of the model is an element of the product space
dual cell -.complex. We have the important geometrical relats :
P 4 etrical relations : X = {1, wwﬂ. 2.7
¢ each site t of . 1s the center of a unique plaquette p~ of L*
que plaquetie p o When the model is defined on A the set of configurations is
+ each edge ¢ of L is crossed b i dge e” -
£ ossed by a unique edge e” of L X{A) = {~1,1}* (2.8)

» each plaquette p of L has a unigue site £* of L* as center.

The boundary of an edge e = [t,1'] is by definition &¢ = {t,t'}. We extend the notion
of boundazy for subseis v of edges. By definition §v, the boundary of 4, is the set
of sites which belong to an odd number of edges of v. The boundary of a plaquette

p is the set 6p formed by the four edges of its boundary {as set of &2 }. The sites
have no boundary.

The cardinality of a set A C 7* is denoted by |A]. We use two distances. The
distance d;,

2
di(t,t) = ) |6(3) - ¢'(3)]

An element of this set is usualy denoted by ¢ but sometimes we write oy when we
want to specify the set A. There is a natural action of 7? on the set X as group of
translations : to each t € 2%, T} is a map X — X,

(Tyo)(t') = o(t — ) (2.9)

where o{t) is the value of the configuration at ¢. For each subset A C 7% we introduce
F(A) as the o-algebra of X generated by the cylinder sets with bases in A. We write
F for F(Z?). By definition we can decide whether a configutation & belongs o some
cylinder set A with base A if and only if we know all its values o(f), £ € A

(2.3) Let A be a finite subset of 2. We say that we have specified a boundary condition for
Feml A when we have chosen one particular configuration ' € X. When & set A is given
and the Buclidean distance with & boundary condition (b.c) then we can extend uniquely any configuration o4
2 of X(A) to a configuration ¢ € X,
d ﬁqm.. - D E 112 1/2 )
2,8) = (L 10) - £)) (2.4) o(t) = oalt) ifLE A (2.10)
As usual the distance of a point ¢ to a set A is oft)=d'(t) ftgh
di(t, A) = inf d;{t,t") 1=1,2. 1
(& 4) HeA (h) s (2.5) Two boundary conditions are fundamental : the + boundary condition (4 b.c.} and
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the — boundary condition (— b.c). The + b.c. (resp. - b.c.) corresponds to the
choice of o{¢) = 1 (resp o(t) = ~1). Let A be given with + b.c. All configurations
o which are compatible with this b.c. (ie. oft) = 1, £ ¢ A) can be described
geometrically as follows : we consider the set

{tel’io(t)=-1}CA . (2.12)
and then the set

U »® (2.12)

tror(t)m= 1

where p* is the plaquette of L* with center £. As subset of R? the set {2.12) has
a boundary, which is composed of edges of L*. We decompose the boundary into
maximal connected components v;,...,v,. Connected sets of edges of L* are called
contours. All contours in a configuration are disjoint two by two and have no
boundary, §v; = @ for all i. This last property can be verified by noticing that
Hn U...Uvy,)is the boundary of the boundary of the set (2.12). We say that the
contour -y is closed if §v; = §. We define two notions of compatibility for contours -
a family 5 = {71,...,7,) of connected subsets of edges of A” is A™-compatible if

¢ by =@ forall:
¢ ; and -y; are disjoint, all ¢ £ j
A family y = (v;,...,7.) of connected subsets of edges of A" is A*-compatible if

* there is a configuration ¢ € X which is compatible with the + b.c. such that
the family + is exactly the set of contours of the configuration o

The A*-compatibility is introduced in order that there is a one-to-one correspon-
dence between all configurations o € X compatible with the + b.c. of A and all
At.compatible families of contours 7= (Y, ., ). On the other hand the notion
of A*.compatibility is puzely geometrical and does not refer to a configuration o or a
boundary condition. The following fact is very impartant, and can be checked easily
on examples : when A is a simply connected set, a family of contours v = {11y s Tn)
is A*-compatible if and only if it is A*-compatible. In general only the implication
At-compatibility = A*-compatibility is true. Similarly we introduce the notion of
A~ -compatibility.

Let v be a contour. Then there is a unique configuration e, which kas 7 as unigue
contour. We define the inferior of v , int~, as the set of all ¢ 73, o{t) = —1 and
di(t,v} > 1. Notice that inty is exactly the set of all ¢ € 72 with e(t) = ~1. In
general ity has several connected components see figure 1. The volume of + is the

cardinality of mly, voly = |inty]. We also use the notation inty for the closed
subset of R?

U »® (2.13)

tio(t)=—1

Notice that inty is a simply connected set.
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2.2 The model.
2.2.1 Definition.

The model is a spin model. For each £ € 7* we have a spin veriable which takes
the values + 1 or — 1. We also use the notation oft) for the spin variables. Thus
a{¢) may denote twe different but intimately related quantities : the value of a
configuration o at £ or the function "spin at t” defined on X and éwom.«m value at o
is the value of the configuration at ¢. In this case (1) is a random dwﬁwzm on .ﬁx .
F) indexed by {. The energy of a configuration is the sum of one-body wmﬁnmmnsomm
- h{t)a(t), k{1) € B, and two-body interactions — Jeo(t)o(t), d\{t, ') = M We
always consider the ferromagnetic case J > . On the other hand the magnetic field
h, t r+ h{t}), may be inhomogeneous, Lei A be some finite subset of Np,. ﬁmﬁ.Q. and
&' be two configurations € X. The energy in A of the configuration o given o' is by
definition

Hplolo"y = Hy(o)} + AH(ole’} = (2.14)
~J/2 M a{t)o(t’) — MUE&QE - vU a{t)o'(t)
LtEALEA tEA tEALEA

dy {4 =1 & (t)=1

Notice that ¢ +— Ha(o|e’) defines a function on X which depends only on ihe
part of the configuration in A. This function is thus F{A)-measurable and we may
consider that it is defined on X{A) when necessary. On the other hand, the ?bnrcm
o'+ Hy(olo'}yis F(A\A)-measurable. In the first part of the lectures we nomm.n.umn the
model as defined above, characterized by a coupling constant J and a magnetic field
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k. In this case we do not introduce explicitely the temperature. In the last part of
the lectures we consider the case where the magnetic field is zero. Here we introdyce
explicitely the inverse temperature § by setting J = F (i.e. by taking a coupling
constant J equal to one}. The corresponding expression (2.14} is interpreted as the
energy at inverse temperature 5.

2.2.2  The equilibrium states.

We study mainly finite volume Gibbs states. The theory of Gibbs states or Gibbs
measures is exposed in Georgit’s book [Ge| and in Sinai’s book [$i]. The two books
are different and complementary. We simply recall some basic facts.

On (X, F}) we define the counting measuze ), as reference measure. Let A be a finjte
subset of 7% and let ¢ be a configuration of X. Let

MNQQ:L exp(~Hp{o'|e)) if o'(t} = a(t), all t & A

#ale) = otherwise (2.15)
The factor Z°(A) is a normalization factor,
(A)= 3. exp(~Ha(ohloa)) (2.16)

o EX{A}

so that the sum of pf{c’) over all ¢’ is equal to one. We define a probability measuze

dui{o’) = pi(o')dMa') . (2.17)
and we often denote expectation value of f with respect to this measure by
()7 (8) = [ $o)ami(e) = 32 fo o) (2.18)
2'EX

The measure (2.17) is the finite Gibbs measure on A with b.c. 0. For any measurable
function f the function o — (f}7 (A) is F{Z?\A)}measurable. Moreover, if f is
F(A)-measurable, then the function ¢ — {f)” (A} is F(A\A)-measurable. It is easy
to verify that for any finite set {2 containing A& and for any F(A}-measurable function
f the conditional expectation value of f computed with pg, given F{Z®\A)}, is

E(fIF(Z\A) (o) = (£)7 (1) (2.19)
Definition :
A probability measure p on (X, F) is an equilibrium stete or Gibbs mea-
sure if for all finite subsets A of 7%, all bounded measurable functions f,

the conditional expectation value of f given F(Z*\A) with respect to p
is Ej(fIF(Z\A))(e) = {f} (A) p-as.

In our case, equation (2.19) holds for any F{A)-measurable function when p is
a Gibbs measure: the Gibbs measures of the Ising model have the local Merkov
property. A Gibbs measure g is translation invariant if

p(foTy) =p(f) all te?? (2.20)
Let £5(J, k) be the set of Gibbs measures of the model.

Theorem 2.1

For the two-dimensional Ising model with coupling constant J and homogencous
magnetic field b the following results hold:

1} The set £(J, k) is o conver set and all Gibbs measures are translation invari-
ant. Bither £(J, h) contains a unique element or all elements of £;5(J, b} are conver
combinations of two extremal elemenis pu* and p=. The latter sitwotion occurs if
and only if h = 0 and J > J,, sinh{2J,) = 1.

2) Let A, be any sequence of finite subsets of % with the properties ; a4} A, C
Ansz, B) for any finite set A C 2%, there exmists n(A) such thot A, D A for all
n > n(A). Let pi resp. py, be the finite Gibbs measures with + b.c. resp. — boe,
Then the Gibbs measures p* and = of 1) are the weak limits of pf_ and pi asn
tends to infinity.

3) If b = 0, then there are several Gibbs measures of and only if m*(J) =
pt{o(t)) > 0. When h=0, then p~(o{t)) = —pt{o{t)).

Remarks.

1) The first statement of theorem 2.1 is an important resuit of Aizenman {A] and
Higuchi [H]. It is not true for higher dimensions.

2} In general it is difficult to determine all extremal translation invariant Gibbs
measures. However, for ferromagnetic models, with spins taking their values in a
compact abelian metnizable group, all extremal iranslation invariant measures can
be classified in terms of the notion of symmetry breakdown in "generic” situations
[P£.2},

3) The statement of point 3} indicates that m”"(J} is an order parameter. The
value of m*(J) was given by Onsager.

2.3 Correlation inequalities.

We siate three lemmas which summarize the correlation inequalities which are used
in the next sections.

Lemma 2.1 {Griffiths’ inequalities, {Gr])

Let A be ¢ finite subset of I* and let o(A) = [{ic 4 o{t} {as random variable). Then
forany J >0, k(1) >0

{e(ANY (Al R) > ¢ (2.21)
and

(o(A)-e(BY (Al R) > (o AN (ALY - (o{ BT (A|J R) (2.22)

Let n(t) be the random variable equal to one if o(t} = 1 and 0 otherwise. It is an
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only if &1(t) < o3(t) for all t. A function f : X — R is increasing if

o1 S oy = flon) < flow) (2.23)
Let A be a finite subset of 7* and n{A) = [[,c4 n(t).

example of an increasing function. In general we say that oy < a9, 0y € X, if and

Lemma 2.2 (Fortuin-Kasteleyn-Ginibre inequalities, [F.K.G])

Let J >0 and h(t) be arbitrary. Then ¢ v {n(A)}" (A} is an increasing fuhetion of
a. The function h v (n(A))° (A|J, k) is an increasing function of h. Morcover,
{n{A)-n(B))" (A) = (n(A)})" (A} - (n(B))" (A) (2.24)

and

(A (A1) 2 (n(A)F (A7) AL C A, {2.25)

We introduce the notion of free boundary condition (£b.c.). Let A be some finite

subset of Z?. We define a measure on X{A) as before, but we replace Hy(o'le) by
MNbAO.VM

wi(on) = (T (M) exp(~Halh) (2.26)
with
(A= 3 exp(~Haloa)) (2.27)
oaEX{A) .

Expectation value of g with respect to uj is denoted by (g) {A). It follows from
lemma 2.1 that for any finite sets A, Ay, A, with Ay O A,

{o{ AN (A1) 2 {o(A)) (Az), A4 DA, (2.28)

whenever J > 0 and A{t} > 0. Let A{t} = h. Then for any sequence A, as in
theorem 2.1 point 2,

lim {o(A)} (An) = (o (A} (2.29)
exists. Therefore there exists a measure u¥ on X such that
(o A) = p!(a(A)) (2.30)

Moreover, p#f is a transiation invariant Gibbs measure.

Lemma 2.3 (Simon’s inequality [$im])

Let J >0, h=10. Lett; € I*, t; € 2% and lel B be a finile connected subset
of 22, such that 22\ B has two connected components, one containing t, the other
containing ty (B separates §y and t3). Then

{olt)o(t2))) < 3 (olta)o(t)) - (o(t)a(ts)) (2.31)

tel
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Finally, we mention some monotonicity properties of the two-point correlation func-
tion. These properties have been proven in [M.M]. Let u = {u;,u2) and v = {vy, v2)
be two points of ihe lattice. Let I be the half-line passing through v and o, with

end-point u.
Lemma 2.4
Af the thermodynamic limit we have
{o(w)o(v)) = {o(@)a(v))’ (2.32)

in the following three casés ;

» %5 = Uz, [T — uz| = 1 end the vertical line separating @ and u does not cut I

o Ty = uy, [&5 — us| = 1 and the horizontal line separating T and v does not cut
i

o |7 —wy} =1 and {55 — ua| = 1 and the diagonal line separating u and @ does
not cut [

In the next figure we have marked by e the points ¥ for which lemma 2.4 applies.

967



We have sums in (3.1} because we have in mind lattice models. But for a classical

n>1 n>1
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3 The cluster expansion. with
The claster expansion is one of the oldest tool of Statistical Mechanics, It was Gozr, . 2n) S (X} = {3.5)
introduced by Ursell {1927), Yvon (1933), Mayer and collaborators {1937). We L
expose the basic elements of this method in essentially the original form, following »Mvu il x kMU% x. g(Xi) - g(Xe)
Brydges lectures [Br]. ‘We do not discuss more recent approaches. The third volume - =t ,m.j.wu.mm . . -
of "Phase Transitions and Critical Phenomena” {1).(3] is devoted io this topics and vikimX
also related topics. Chapter 4 of Ruelle’s book [Ru] is aiso a good reference for our The average (-} is defined by (8.1).
purposes and we refer to the book of Glimm and Jaffe [G.J} and to the thesis of
Pordt [Po] for applications to Quantum Field Theory. Proof.
The exposition below is sufficient to handle many interesting models. We need only a Since (3.3) holds, we have
convergence theorem. In paragraph 3.1 we define the cluster expansion in an abstract 1
way and give in lemmas 3.1, 3.2 and 3.3 the general properties of the coefficients eXp AMU 3 Amavv = {3.6)
of the expansion. We have written this section having in mind applications for "
lattice systems. In the second part, sections 3.2 and 3.3, we treat the problem of the 14+ M 1 1 CO R RE Y 2 {gn 3] =
convergence of the expansion using the so-called "tree-graph bound”. We follow here kot K ny 2l T ne>i ! T
a paper by Cammarota {C] and Brydges’ lectures. We do not treat the most general 121 7l
case but give a sufficiently general exposition which covers the case of "polymer 1+ 3 i > H X O S {gna) - {gny)
_— - : . azt T oe=1 o >inr L k*
expansions”. Polymer expansion were introduced by Kunz in [K]. = i L
V=1
3.1 Definition of the cluster mun_um;#mmcﬁ. The sum in (3.6) over ny,...,n, can be evaluated in the following way: we con-
sider the term indexed by ny < ... < myp with ny = ... = Ay, R = ... =

Let  be some set, The elements of {1 are for example the positions of the particles Tomgbmas -+ s oy boobrngp 41 25 oo 2 T4, = Mg there are kl/myl.  m,! terms
of a one-component fluid or the contours of an Ising model and so on. For each in the sum which give the same contribution as this term. On the other hand there
integer n, n > 1, let g, be a symmetric function of n variables z,,...,z,, defined are (see [B])
on £} x -+- x § (n factors}). Since g, is symmetric we also use the notation g(X),
instead of g.(®y,...,2.), with X = {=,...,2,}. We suppose that for each n we n! . 1 (3.7)
have an average, (CP0) SR C S RRIET) L I

(gn) = 3 -+ 2 gnfme,. o, 20) (3.1} partitions of the set X = {z,..., 2.} of n elements with m; sets of n, elements,

rp €6} 2a €0

... m, sets of fim, 4., ,+1 ehements. Therefore (3.6) is equal to

: 1
system of n particles in a box A, {g,.} is given by 1+ ~ 3 {( XY (g( X)) = (3.8
n21 """ partitions of X
Ahzv F= .\b&ﬂp...‘\%amﬂa %:AHT.,J&:V mva ) _MﬂoMacvunpu
DD I D IR C1e VRN G)
Lemma 3.1 mt Bm%ww.hmk
X=X
If By comparing with
1
= 3 o > lgalm, o m)i < oo (3.3) “ 1
W nl Wmn NWU: 1+ m —{Ga) (3.9)
then the following identity is true -
m we gei formula {3.5).
1 1
exp | 3, Slga) =14 ) R (3.4)
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In Statistical Mechanics we study partition functions. Sometimes the partition func.
tion Z is an expression of the form

Z=1+4Y %AQL {3.10)
n>] 7

For example, in the theory of classical fluids, with aclivity z and in a box A, the
grand canonical partition function is

H.TWWM\bmap...bmasmﬂvﬂim‘%\?w.:;&:: (3.11)

where V{zy,...,z.) is the (potential) energy of the particles. The functions (7, are
given and we determine the functions g, recursively by the formulas (3.5) :

g:(x1) = Gh(m) (3.12)
gz, 22} + ¢1(21) - g1(22) = Gafz1, 72) (3.13)
galzy, T2, 2a) + ga(m1, w2) - 91 () + g2{21, 2a) - g (2) (3.14)

g2(@2, z3) - gl ) + g1z} - gil2g) - ulms) =
Qm??ﬂ?ﬁuv

We now give an explicit form of the function g, in a special case, which is sufficient
to treat problems with two-body interactions or hard-core conditions. Let § be an
unoriented graph. The set of vertices of G is V(G) and the set of edges of G is E(G) .
All graphs below are unoriented simple graphs {i.e. without loop and with at most
one edge between two different vertices}). We denote by G, the graph with n vertices
and with one edge e(i,7) between each pair of vertices i # j. (G, is called the
complete graph with n vertices). With each vertex k of G, we associate a variable z,
and we suppose that Gu{zq,...,2,) is given by the expression {we write e(3,7) € G,
instead of e(t,7) € E{G,))

Caley,.. zn) = [[2(z) [ 1+ walzi,2z;)) (3.15)
iwl eti)edn
where z(x} is a function of one vaziable and ¢{x,¥) is a symmetric function of
two variables. If we consider again the example of a classical fluid, with iwe-body
interactions ¥{z,y) between particles at z and y, then

exp(—fV(z1,.. . ,20) = (3.16)
II exp(-Byimnz)) = J1 (1 +@alaiz))
(i )ETn e{i.31€00
with
ea(mi, z;) = exp{—B(z, z;)) — 1 (3.17)

Let us consider the second factor in (3.15).By definition a partial graph ¢ of a graph
G is a graph with the same sef of vertices as G, V(') = V({7), and whose set of

edges is a subset of B{G), E(G') C E(G). We write G’ C § if ' is a partial graph of
G. We decompose any partial graph ' of G, in (3.15) into connected components
(1, - - -+ Cpy ench connected component being a connected graph, V(C;} C V(G') and
E(C:) € E{G"), so that

. VICInV{C) =0, i#75. . (3.18)
and

CQAGL = V(G , C@?ﬁ = E({') (3.19)
Let € be a connected component with V{C) = {1,... n}. We define

sy b1 i JVICH =1

PO= N Mesree walmanz) it VIO 2 2 (3:20)
and

F\Mﬁﬂw«..lﬂsw = ﬁﬂﬁuﬂv = MU wwﬁﬁv AwMMV

n“nmumdﬁn,wa

The function T is called Ursell function of order n or truncated function.

Lemma 3.2

Let G, be the complete graph on {1,... n}. For each verter i let z; be a variable
and let Go{zy,...,2,) be defined by (3.15), Then

gnfTt, .. T) = uuﬁemv.ﬁmm&w...;&;v {3.22)
i=1
with
Pz, .z = Y BO) (3.23)
n"nmuﬁnon“.om

and G(C) defined by (3.20).
Proof.

We compute

I O+ es(ziz) = > II ealziz;) (3.24)

e(i,j}E0n 9l (i 16T

Let X;,...,Xi be a partition of X = {1,...,n} into k subsets (1 < &k < n). We
group together all terms of the sum (3.24) which are represented by partial graphs
G' with k connected components C,.. .,k having as sets of vertices V{Ci) = X,

Then we sum over all possible partitions of X. Thus {3.24) is equal to

13 r n m.

Y Hex-%4 %
partitionsef X i=1 k=1 " X XXX
A=Xy+-+Xe XinX,=0

1<k<n Ui X=X

(X)) (X)) (325)
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We can identify % (X;) with g(X:} of (3.5) because the functions g, are uniquely
defined.

We emphasize that the n vertices of the graph @, in lemma 3.2 are in one-to-one
correspondence with the n verigbles @,..., 2z, independently of their values. Let
now fix the values of the variables z1,...,%,. We introduce & new graph with n
vertices which depends explicitely on the values of z4,..., Zn. The vertices of this
graph, Gz, .., 2,), are 1,...,n. The vertex i corresponds to the variable &,
and we have an edge e(i, ) between vertices i and j if and only if @z, z;) # 0.
Clearly, if in {3.22) the variables #; have given values, then only the connected partial
graphs of §T{=z4,...,%,) contribute to {3.23). Consequently, if GX{z1,...,2,) is not
connecied, then @ (z1,...,2,) = 0 for those values of ©1,..., 25,

Lemma 3.3

Let #,,...,#, be a sequence of n fired elements of Q, nof necessarily different.
Let GE(#1,...,8,) be the graph with n wvertices, the verlez 1 for the element &; of
the sequence, and whose edges are all edges (i, j) for which pu{#i,25) # 0. If
GT(z2y,..., &) is not connected, then

olizy = &1, .. @0 = &) = 0 (3.26)

We finish this section by an example, the Ising model, with no magnetic field. Notice
that the partition function Z is not given directly as

Z=1+3 ={G.} {3271
One of the nontrivial steps in the study of a model is often to write Z as in {3.27).
One method is to try to write Z as the partition function of a system of polymers.
In the case of the Ising model, at low temperature and in absence of a magnetic
field an expression like {3.27} for the partition function is well-known. Here the
basic objects are the contours which describe the configurations of the model.

Let A be a finite subset of £% with + b.c. We suppose that A is simply connected
so that each family of closed disjoint contours v = {m,..., 7.} on A", e, each
A*-compatible family of contours, is also a A*-compatible family of contours. The
main point here is that there is a one-to-one correspondence between the set of all
configurations ¢ compatible with the 4 b.c. for A and the set of all families of A™-
compatible contours in A*. This is important, because we can check locally whether
4 = (71,. %) is A*-compatible : we need only to check that §v =0 ¢ =1,...n,
and ;, ~; are disjoint for all £ # j. Because of this property we can write the
function 7, using the following (local) hard-core potential. Let ) be the set of all
closed contours in A*. The hard-core potential wa(y,¥') is defined on £ x ! by

0 if 7, disjoint

" o 2
p2(7,7) ~1 if N2y not disjoint (3.28)

The energy of & configuration, compatible with the + b.c., is equal to {up to a
constat)

/25 S etho(t) - 1) = 3 2hu(o)] (3.29)
s.rm..mm (mlg), ..., 1lc)) is the family Om.wz contours in ¢. Let .
() = exp(~2J}]) (3.30)

{we recall that {v]is the number of edges of v and represents its length). We define

i3

(%) i {7,....7%) is A -compatible

Gulms o) =1 otherwise (3.31)
We can express (3,, as
Galt1y 170 = M.H_NE TI( + %) (3.32)
i= i<y
and the partition function, up to a constant, 15 equal to
DI D IRED I AR (333

n>1 " oy eR €

From lemma 3.3 we see that a necessary condition for ¢T(v1,...,¥.} to be nonzero

is that
t ) is a connected subset (3.34)
im1
Indeed, if this is not the case we can partition the sequence +;,...,7, into two
subsequences v1, ..., e #0d Yeq1,. .., Y= {by labelling the contours conveniently) so

that each contour of the first subsequence is disjoint from each contour of the second
subsequence. This iraplies that the graph GT(y1,...,9n) is not connected.

3.2 The tree-graph bound.

We suppose that zq,...,z, have given fixed values. Let G7(x;,
defined in lernma 3.3. We have

Pl(zsr . zn) = 32 H(C)

where in {3.35) we sum over all connected partial graphs of GZ(x;,...,2.). There is
a distinguished class of connected partial graphs of GT(2y,...,2,) : the trees. A tree
1s a connected graph without closed path {cycle). The following three definitions
are equivalent, A tree is a connected graph such that if we delete one edge then the
resulting graph is not connected. A freeis & graph without cycle such that each time
we add one edge then the resulting graph has exactly one cycle. Finally a tree with »
vertices is a connected graph with n — 1 edges. This class of graphs is relatively easy
to handle and this is why in Statistical Mechanics a problem is often solved in the

..., %) be the graph

(3.35)
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"tree-graph approximation” which simply means that the sum (3.35) is restricted to
the trees (see the article of Domb in [D.G]). Qur goal is to have a theorem giving
sufficient conditions for the convergence of the cluster expansion. This is achieved
by proving the tree-graph bound on ¢ which we now explain in details,

Let C be a connected partial mn..m.vr of mm?: )y T, Ty _..wqum fixed values,
We associate with C a specific tree T = T(C) following a paper by Penrose [P]. The
graph C has n vertices 1,...,n, and we define a weight wit} for each vertex:

w(l) = ¢ (3.36)

and

_ |} minimal length of a path
w(k) = { in ¢ with endpoints 1 and k (3.37)

(the length of a path is the number of edges which compose the path). Since C is
connected, w(k) > 1 for k > 2. We construct a tree 7 by a two-siep construction.

e We delete all edges e(i, 5) of € with w(i) = w(j)

After that operation, we get a connected graph C' with the same weights. Moreover,
all edges ez, 7} of C’ are such that

[w(i) — w(i)l = 1 (3.38)

¢ Fach vertex i # 1 of (' is connected by an edge to one or more vertices j with
w(j) = w(i) — 1. We delete all these edges except the one with j minimal.

The resulting graph is still connected and clearly has no cycle because (3.38) holds.
It is the tree T(C). Notice that the weights wii} of 7 are equal to these of C.
Conversely, given a tree 7 and its weights, we can reconstruct all C such that
T(C) = . Itis not difficult to prove that among all graphs C C §7, with T(C) = T,
there is a maximal graph C*(7) with respect to the "partial graph” relation . This
maximal graph is obtained from 7 as follows. Let i be a vertex of the tree, with
weight w(z) and which is connnected with the vertex k, with weight w(k) = w(i) ~ 1
by an edge e(i, k). We add all edges e(i, ) of GT to the tree, with j > k and
w(j) = w(i}—1 and all edges (1, 7} of GT with w(j) = w(z). We do this construction
for all vertices. {Of course an edge is added only once.) We have

fc:17C)=TYy={Cc: Tcccc(iy (3.39)
and we can write
Palz, ) = 3 @) (3.40)
ccel:

€ connected

= ¥ (7 3 II ea(i, ;)
w "n,m,n - m_a 4 SENEBENE(T)

= S @Ty I (+eenz;))
T : bree e(i, )€

Food B (TINED

1

yol.
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The expression (3.40) indicates how we can mm@mﬁw@@ pTizy,. .., Tn). We estimate
the factor (e.g. using the stability of the potential}
3.41
I Ot eedzazs)) {3.41)
«(ij)e
. E(c{TINE(T} -

d then we must only consider a sum indexed by trees. This is ;m.w&rwcmzw MM;,
wwoimm the convergence of the cluster expansion (see lemma wmw Notice § M» ( .ﬁrw
3 articularly easy to estimate when —1 2 walzi, &h..v m 0, since we can _.,ﬂulm.mmw
MKME. (3.41) by one. In the case of a hard-core condition, where ,mu?:au..w = —} or
0. as in (3.28), the product (3.41) is zero, except when ¢<(T} =T In this case we
have

P 3.42
oz )= L #T) (3.42)

T tree ﬂﬁm., :
(=T

We shall use this result in the example at the end of the nrwmwwm. mo,”aedfmm_w
i ity is ] because we need to know the structure of &,
Jentity is in general not very usefu . . : .
MM wnwwmw% in order to write (3.42). Before stating wma.mcw 34, ;;:nr. gives the S,Mm
mwww bound, we recall that the incidence number ATV. of a vertex 1 is the number
Mm edges of the graph which have the vertex 7 as endpoint.

Lemma 3.4

1) Let ~1 < a(=z,3) S 0. Then

0 (- 2 3 BT (3.43)
nnﬁun‘m, mnn”._mn Ta)
2) Ifefz,y) =1 or 0, then
0< Alw%»iwﬁﬂ.ﬁﬁm.f.,&ﬁv Mﬁ:tu ﬁw.\»#v

3} The number T'(n; d(1),...,d(n}} of trees with vertices 1,...,n and incidence
numbers d(1),...,d{n) is equal fo

n-2 3.45
T(n; &:,:;&:znA&:L_:;&ilv (@49
Proof.

The bound n™~? is simply the number of trees with = vertices. Statement 3) is
Cayley formula. For a proof see e.g. {B].
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3.3  Convergence of the cluster expansion.

We use lemma 3.4 in order to prove the convergence of the cluster expansion. Since

we need only to consider the case of a hard-core potential in these lectures, we

consider this case, and to be specific we consider the cluster expansion for the Ising
. model at low temperature, Other situations are treated almost identically.

We fizst prove a lemma for the set £ of all contours on L*, the dual lattice. 'To each

7 € § we have a weight z(7) which can be complex. We suppose that there is an
upper bound

such that w(y) = w(v') for any contour 4 obtained by a translation of v.The hard-

core condition is expressed by the function #2(7,7") (see (3.28) and (3.32)). For any
7. there is a finite subset i(+y) such that

(7 and %' not disjoint) = (7' Ni(y) # 0}

(3.47)
For the 2-dim. Ising model () is the set Z2 N+, and (7)< i
Lemma 3.5
Under the above condition, if
Ci= 3 wly)exp(lify)]) < oo (3.48)
oy
{where t* is any site of the dual lattice L*) then
3 Y Yl o)l T () < (n— 1)t 0 (3.49)
T Ya k=1
Proof.
By lemma 3.4 we have
2 el I o)t < (3.50)
LA T k=1
2 XXX I tealv ) T ()l
TCO 3t 12 e e(ijleT k=]
The last sum in {3.50) is over all trees of the complete graph with n vertices 1,. .. n.

Let 7 be a fixed tree with incidence numbers d(1},...,d(n}. The summation is done

in the following order. We first sum over all 7, k > 2 such that d{71x) = 1. Such
values of k correspond to extremities of the tree 7. Let 3, denote the sum over
all v which contain » fixed point #*. Since the upper bound en |z(y)], w(y), is
independent on the position of the contour v,

Do P fw()] (3.51)

H.P.A
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s independent on the fixed point #*. Let k > 2 be such that dik} =1 mﬁmmﬂ&h 7 UM
M& (unique) vertex which is conmected to k in T. We have v; Ny, # @ and we ge
by summing over ¥ a contribution which is smaller than

i) 327, ) = File)) 25, B o)

We do the summation for all & with d(k) = 1 and then delete mnoEMx Muo m.mMaw
ontaining such points, We get a new tree 7' and we sum over all ¥; suc that j =2
n:& j is an extremity of 77. The summation over ; gives a contribution bounde
al

by

(3.52)

i) 2, )P () (3.53)

where d{j) is the incidence number of 7 for the initial tree 7 and 7 is the unique
vertex connected to j in the new tree 7'. Therefore,

i+ Vi i )l £ {3.54)
QW. Mu“ te m _ﬁuﬁ)\z Quw_ M“HMM W AJ‘ Z =
i) () TS, Fn 4 ()
M,: ()l 3 VMMNM# _ 3; *
The sum over the trees is easy since
(n — 2} 3.55)
T(n,d(1),...,d{n)) = Gy =) (dm) ~ 1 (

(m— 1)
< [0 -~ D (@) = 1)
From {3.54} and {3.55), we get by summing oves d{i} the bound (n — 1)} O" for
(3.50).

Theorem 3.1

Let A be o simply connected finite subsel of 7 ﬁ,& A* be the dual of A (as cell
complex) and let the hypothesis of lemma 3.5 be satisfied,

; 3.56)
Y winexp(li{y)) £ € (
L
ith nstant C < 1. . o
“ .Cn M.Ma partition function for the Ising model, with + b.c. 13 given by
Ay =1+ T4 T 8 I (3.57)

nzt oA YA k=l

n

= exp Muw MU M.J\ ﬁwgr...‘ﬂ:vm&qrw

n>l nCA* A el

The series in the arqgument of the ezponential function is absolulely convergent. [t
is the cluster ezpansion of In ZT{A).
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2) If z(v) = 2(%") for all ¥ which are obtained by a translation of v, and #f for
each p Ay is a square, Apyy D A, such that eventually any finite subset A C 72 is

However, since in (3.3) §, is the completie graph with n vertices, it is not .&mmgx
to show that in the identity (3.42), only the trees which are chains starting at 1

in Ay, then contribute to wI{1,..., 7). Since there are (n — 1)! such chains we get
lim e In ZH(A,) = (3.58 1 r noy DT (3.63)
oo |A, 1 2] i  (858) 2 pppallmis® = 3 et
N B n>1 "
1 e - ..
> o M MU cr Mﬁw?r ) [T 2(me) as it should be ! Notice that the convergence radius of the cluster expansion is one
L3 SRR ST T Sl i Tu k=1

and the series is absolutely convergent. If for each -, 2{y) is a function of some
parameter §, 8 v 2(y|8), which is analytic in 8 for 8 € D, some domain in D, then
the function defined by (9.58) is analytic in 8, § € D. In the above formula ¢* is
any point of the dual laitice.

Remark
Part 2} of Theorem 3.1 is still true if the sequence A, tends to Z? in the sense of
van Hove when p tends to infinity (see [Ruj p. 14).

Proof.

The condition

2 explliMDI=( ) < 3 exp(li{y)Hwiy)] < 1

I yat*

(3.59)

leads immediately to the absolute convergence of the cluster expansion. Indeed
from lemma 3.5, we see that condition (3.3) of lemma 3.1 is verified. Part 2)isa
consequence of the absolute convergence.

We finish the section by an example for the readers which are not familiar with the
cluster expansion. Let Z =1+ z. We can think of Z as the partition function of a
system of particles with hard-core interaction only, activity z, in a zero-dimensional
space | Applying the results above, we have

M n
1dhz=exp|y, Mw.mﬁwﬁ_ co,n)z (3.60)
nxi
for |z| sufficiently small. Here pZ(1,...,n) is given by
Pl m= Y #C) (3.61)
C:connected
CCln
with G, the complete graph with n vertices. The function $(C) is
#(C) = (~1)F (3.62)

It is instructive to write down explicitely some terms of the cluster expansion. Al
ready for n = 4, ¢1(1,2,3,4) is a sum of 38 terms. On the other hand, the mumber
of connected C, C C Gy, which are trees is only 16. The condition (' < 1is equivalent
to {z|-e = 1. Thus, from theorem 3.1, the cluster expansion converges for |z} < 1/e.

since there is a "non-physical” singularity at 2 = —1, The physical values of z are
positive, and for those values Z is analytic.
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4 The phase of small contours.

In this section we study the Ising model at low temperature,with + b.c. and when
we take into account only the spin configurations in which all contours have a given
maximal size. The phase obtained in this way is called the phase of small contours.
When we restrict the size of the contours appearing in the positively magnetized
phase of the Ising model, then it is possible to continue analytically the correspond-
ing free energy in the magnetic field k up te some negative value 4" depending on
the maximal size of the allowed contours. On the other hand, we know that this
is not possible for the Ising model : the free energy has an essential singularity at
h =0 {1.1], {.2]. The phase of small contours has a positive magnetization for neg-
ative values of the magnetic field A, ~A* < h < 0. For these values of the magnetic
field this phase has been proposed as a possible metastable phase by Capocaccia,
Cassandro and Olivieri [C.C.0], and it is essentially the unstable phase introduced
by Zahradnik in its formulation of Pirogov-Sinai theory [Z]. Our main purpose here
is to get a precise estimation of A*. Fromi such an information we get useful results
on large deviations of the magnetization in this phase at A = 0. This is the subject
of section 5.

4.1 Ising model with an inhomogeneous magnetic field.

We consider the model with coupling constant J and inhomogeneous magnetic field
h. The inverse temperature is not introduced explicitely. It is convenient to normal-
ize the Hamiltonian according to the boundary condition which is chosen. Let A be
some finite subset of 72 which is simply connected, and et us comsider the + b.c.
for A ie. ot} = 1ift ¢ A. We normalize the Hamiltonian so that the configuration

in the interior of another contour. For outer signed contours the type depends only
on the b.c. I we have 4+ b.c., resp. — b.c., then an ouler signed contour is of type
—, resp. +.

We define a function (7} for signed contour :

i) = | P =201y = 28 g RE)) . v of type — w)
exp (~2J]7 + 2 it h(t)) , - of type -+

We can write

inu:vu% s

A>1 T Vel k=
. compatible

n

£lve) (4.4)

respectively

It

Z7(A)

TS D N | (25 (43)

R mi e

All contours in (4.4} and {4.5) are signed contours and the notion of compatibility
is the A*-compatibility, resp. the A~ -compatibility. Notice that the weight £(y)
depends explicitely on the type of the contour, and therefore we cannot apply directly
ihe method of the cluster expansion, since the notion of compatibility is not local.
The way to solve this difficulty has been indicated by Minlos and Sinai. In (4.4)
{or in (4.5)) we resum over all contours which are not outer contours. A simple
computation leads to the identity

o(t) = 1 has energy zero, Z5A) =14 MU ww M Mn.m ¢{m) - 2™ (intye) (4.6)
Hf =-Jj2 Y (o()e(t) ~ 1)~ 3 h(£)(o(t) — 1) (4.1) R
) i A compatible

dy{tt)=1

¥ we have — b.c. we normalize the energy so that

and a similar expression holds for Z7(A). Since all contours are outer contours they
have the same type. We write the product in (4.6) as

Hy = —J/2 (e(t)af{t) — 1) ~ > Rt} e(t) + 1) 4.2 i e T Z b .
. e P> “2) I €3 27 Gotn) = 1 Zo - 2 (47)
dy(8.47)=1 k=l ket Tk
The corresponding partition functions are Z*(A) and Z-(A). and put
Z{(int

Let v be a (low-temperature) contour and let o, be the configuration on 72 which ) 2= €} - i (4.8)
is specified by <y, and the + b.c. At the end of section 2.1.2. we have defined inty ¥
and inly. We recall that Inby is the set of all ¢ such that o, (t) = —1 and the volume so that we get for {4.6)
of 7, vol{7}, is equal to the cardinality of int~ . All spins at ¢t € Intv\inty have the n
same value in any configuration which has v as one of its contours. We say that ~ ZHAY =1+ MU i 5 11 =(7#) - Z*(inty) {4.9)
is of type +, resp. type —, if the value of these spins is + 1, resp. — 1. The type of n!

a contour depends on the whole spin configuration and the choice of the boundary
condition. The pair, which is constituted by a closed contour and the type of the
contour, is a signed contour. We say thal v is an outer contour if it is not contained

n>l * L R L k=1
- outer contours
compatible
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.mmnnm Z*(inty,) is the partition function of a system with + b.c. we can express it
. - - . U ’ H
in terms of outer contours inside intvy;, as in (4.9). Iterating this procedure we get

1 n
ZHAY =14 . M m =) (4.10)

I
n>] e HLeeetnl k=1
- contours of type.
compatible

where in {4.10} only contours of
. ype — occur and the compatibility condition ;
purely geometrical and local. A similar expression holds for Z "(A). v condition i

The isoperimetric inequality on the lattice is
[r}? 2 16 - vol(y)

Definition :

(4.11)

Let s be some positive number. A contour is s-small (or small if the

value of ¢ is fixed) whenever vol(y) < 5% T
I ented by ) {7) < 2% The class of s-small contours

An important property of this definition is that 2 contour v is small if it is contained

n rm wm—ﬁﬂﬂuoﬂ Oum. a sm E confour H.ﬁ» ¥ contour et
1 . L.} Lt . be a MEW.H.— .

(N < exp(~2Redly] + 2 A vol()) (4.12)
k*vol(+) .
< exp|-2Re |1 - ——F
p e WReJ 7l
< exp [ —2Res (1 - KOOI
4ReJ
<

h* s
exp | —2ReJ [ 1 —~
mﬁ »m&v:m

Theorem 4.1

MMMV.Mmﬁﬁm wm.w.VbP be the coupling constant of the 2-dimensional Ising model. Let
e an tnhomogeneous magnetic field and et :
s -small contours 7, i.e. vol{y) < s%. hmw AP E), s €N, be the class of ol
h*s P .
R =0< 1, A= sup h(t) . {4.13)

N.M. .N > L._.o.. Ldo g \&. M P -
— 7 €
,..ﬂmm 1§ qven in Mm then ﬁmnm rhm“mm ETpANSION \Q_ s-small contlours

1 n
Mﬂ M M ctr M ﬁMAQH,...q;ﬂlvHMNAQ&V A#M%w

nzl T EN(s) v21€0{s) e &i(s) fe=1
T Ht’

is absolutely convergent. All contours are of ]
. type + .- -
+) boundary condition. . (reer e have = fresp

Remarks.
1) I A is a simply connected finite subset and (A, 5) is the set of all s- small

contours in A, then under the same hypothesis

N+A>‘hv = exp MU Ml, MU M £Mﬂ4f...,4=v%«MNAQwv AA.HMV

n21 i e8{A,5) €A, 2} k=l

where in {4.15) we sum over all small contours of {ype —.

2} We can still apply {4.15) in the following situation. Let A be a bounded
set. For each connected component of A we have either + b.c. or — b.c, and the
Hamiltonian is normalized so that the configaration with no contour has energy
zero. We suppose that

o there is a one-to-one correspondence between the set of all allowed configu-
cations in A compatible with the boundary condition on A and the set of all
families of A*-compatible s-small contours.

The corresponding partition function is denoted by Z(A,s) and

ORI D 3L D M ﬁm?_...,,‘,vw;i (4.16)

nzl T EfAs)  veE0(AL)

3) The same theorem holds if we replace the definition of s-small contour by
the following one: a confour 7 is s-small if any connected component of ity has a
volume smaller than s2. This generalization is used in section 8.

Proof.

We apply the results of section 3. Let K > 0 be large encugh so that
oK)= 5 | exp(=Khl)-exp(li(:)) (417)

- y€N(s)
yaEt

is convergent. Notice that

/4 < il < i (4.18)

The function a K) behaves essentially like exp(—4K) for large K. We verily condi-
tion {3.48) of lemma 3.5 with a constant € smaller than one, so that we can apply
theorem 3.1. It is sufficient to find a function w(y), invariant by trassiation, such
that

3T wl{y)expli(y)i <t (4.19)
o yef{s}
LEL
The proof of the existence of w(y} is done inductively. We say that v € Qi(s) is
of class one if its interior cannot contain any contour. We say that v is of class
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two when its interior can confain only contours of class one. Inductively we define
contours of class ¢. Let K be large enough so that o(K) < 1 and ME) < 1, with

MK) = m,,wim%imﬁ {4.20)
We choose’ Ko > K and so that i ’
L A (4.21)
dReJ 1-X(K,)  1- MKo)
We define
Jp re= WNMWMM.& (4.22)

Lemma 4.1

Let J and b satisfy the conditions of theorem §.1. Let v be a contour of class smaller
or equal to q. We suppose that

ST = xR L 1A S 2hvalla) (423
with

h, s

g <Y (4.24)
so that

l{7[R)] < exp(—Kolvi) (4.25)
Then for all contours 4 of class (g + 1) we have

i2{#1h)] < exp(—Kol4]) {4.26)
and

M) = exp(F(31)) , 1S(31A)] < 2hgrsvol(5) (4.27)

=(710) “ e .
with

hort =A™+ MKo) - by (4.28)

and ({.24) holds with hyyy instead of h,.
Proof.

Let A be a bounded simply connected set and let ZF(AlR) be the partition function
for contours of class < ¢ with + boundary ncbm_sou_ for A. Al contours appearing

i
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Vol.

in the expression of ZF{A]k} are of type —. Since a{ Kg) < 1 the cluster expansion
of N+A>_S is w&mowﬁ#m@ convergent. We estimate the quotient

Z7(Alh) (4.29)
ZF(A0)
EIPIET MR SRS GH syl - 11 %,Wev

21 ™ &su“mnw n_.uumAn =1 =t

H z is a complex number, then
1

W&\ et dt| < |alel
o

We have by hypothesis {4.23) and the isoperimetric inequality

! H—N z{yelh) - m 2 1el®)] =

=

p Felh)

m it 1T 52550
m (IO} M Eis?ﬁm o)l <

111

k=1

(4.30)

1

le® ~

(4.31)

| <

3

|2 {70} _AM 2k vol(vi)) QQAMU 2h vol{v)) <

n

m Jz(7elOY m [y exp{Zhgvol{7i})

k=% Rl

By hypothesis (4.24) and the identity z(7]0) = £(7%[0)

(4.32)

hy s
27410) exp(2hgvol() k)
expl~2ReJ(1 ~ "))
exp(-Koll)

and therefore we get (following the proof of lemma 3.5)

exp | ~2ReJ ﬁm -

IAIA

ML ML) MU el (s, ol TT 2Ol) = JT (0}l < (4.33)
dV.w PES k=1
&nmum.u nmw»mhc
vl MU lor (sl TT P2 (70 exp(Zhavol(n)) =
npl T 4_. k=1
n.quaMa class<q
hol A7 3 ol Ko)" =
nxl
holATIM Ko}
Exactly the same result holds for the — b.c. Using the identiy
ZF(A0) = Z7(Al0) (4.34)



-

host = B(L+ XKo) 4+ + (MIo))T) > (4.41)

and therefore the bound (4.25) holds for all small contours. The cluster €Xpansion
15 absolutely convergent.

4.2 Remarks on the phase of small contours.

In this section we always suppose that A is a finite set with the property

s there is a one-to-one correspondence between the set of all allowed configu-
rations in A compatible with the boundary condition on A and the set of all
families of A*-compatible s-small contours,
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we can write for any contour -y of class q + 1, say of type +,(since int(vy) is simply The partition function of the phase of small nongm.mm is denoted by NTK..”&.. Since
connected) A is not necessarily & connected set we may have different boundary nosm.n..uo:m on

e the different connected components of A. However, these boundary conditions are
(1)} = |é(v)- z Tﬂmi:&% {4.35) either + b.c. or — b.c. The set of small contours in A is denoted by S.Tw,.&. I the
Z~{int(y)}h) hypothesis of theorem 4.1 are fulfilled, then we have a cluster expansion for Z{A)
) = J&(v)- _Nimuxi_S Nuﬁmi‘_\xe_ ) (see remark 2 following theorem 4.1} :
Z¥(mt()[0) Z-Gini(7)IA) M )
< exp{—2ReJly| + 2(A" + kM Ko))vol(y)) Z(A,s)=exp | T - S Y Wi ) | (442)
Th . a3t T en(Ae) rmER(AL) k=1
us we hav . . o
e where in (4.42) the type of the contours is +, resp. —, if the contour is contained n
horr = B + B A{Ky) {4.36) a component of A with — b.c., resp. + b.c. The free energy of the phase, P.(A), is
and given by the formula )
W kM) i) 437 exp(|AIE(A)) = Z(A, 8) :
4ReJ * 4ReJ =0T ’ (4.57) The statistical properties of the phase of small contours are described by the measure
= 8+ _PMEo) { -} (A, ) which is obtained by conditioning the Gibbs measure defined on A with
B 1 = A(Ko) respect to the set of configurations which contain only s-small contours,
= &
1. Let « be a small contour of type .
Formula {4.26) foliows since by hypothesis .
= gy Zlinty) (4.44)
MReJ(1 ~ ) > Ko (4.38) “0) =) Zram)
b exp Al Lerainty ﬁ&v 27 (inty) —
Theorem 4.1 can now be proved without difficulty. For contours of class 1 we have exp | =2 | Jhl+ nmmmMﬁJAFI ® exp ﬁ+ Prginty _iwwv Z+(inty)
[z} = lé(n)] < mxwmimmmb‘w 4 2h*vol(y)) (4.39) POTRE SR Z (inty)
sh” exp | ~2 | Jivl + TEIN
< exp(—2ReJpy[(1 - ;=) P it Z+(inty)
and the hypothesis of lemma 4.1 are fulfilled with Ay = 4. Thus for all contours of where 2~ 1esp. Z% are the partition functions for the Hamiltonian
class 2 the hypothesis of lemma 4.1 are fulfilled with H o= ) M (a(t)o(t) — 1) = S h{t)o(t) {4.45)
—_ b : 1
by = A1+ MKp)) > &y (4.40) ,__;M_Tuw
By induction the hypothesis of lemma 4.1 are fufilled for contours of class g+ 1 with

with — b.c., resp. + b.c. A similar expression holds for contours of type -+.

Lemmasa 4.2

Let J > 0, h real and K = 2J{1 — 87). If the hypothesis of theorem 4.1 are Fulfilled

and if K 15 so large such that
3 Ip%|3Fe=(F 1P <)

[Zall

(4.46)

then there exists o function x, independent on the magnetic field b and of A, 50 that

d?P,(A)

| (4.47)
dh3

L< x{K)
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For large K, we have

x(K) = Ofexp(~4K) (4.48)
Proof.

We compute for a contour of type —

M.M = —2inty\inty] -z + (4.49)
- +
ot inty|h) z — {t mty|h) -z

AM () fintalh) AM (0) Gl
and

s (4.50)

dz — - *

— ¢ —2|inty\int t ity k) — ot intv|k

T |inty\, QW+A,%M4QA vv (iniv|R) A“mvm: (£)) (inty|k)

+2 3 % (lo(th o) (intylh) - (a(t); a{t)}* (inty|n))

t€inty ¢ €inty

where

{o(t); o(t)) = {o(t) - o(t)) — (a(t)) - {a(t'}} {4.51)
Therefore

dz

|1 < 212] - voly (4.52)
and

&z " 4

mmmww < biz|{vely)® < lzilv] (4.53)

The free energy P,(A) is given by the series in {4.42} divided by |A]. We may derive
it term by term since {4.46) holds. The lemma follows easily from the estimate
{4.25) of lemma 4.1 and (4.46).

2. We give an expression of the expectation value of the local observable o{ A), when
the cluster expansion is convergent. We consider for example the state { - ¥ (A, 5)
of the phase of small contours with + b.c. We use a simple trick, which we learn
from Kunz and Souillard. We define

—1  if ¢t €mby
orlt) =14 4 if ¢ ¢ Tty (4.54)

Let A be given. We introduce new weights for the (signed) contours,

7} = [T ow(t¥e(n) {4.55)

ted

with £(v) given by (4.3). We can write the numerator of (o(ANT (A, 3) as

Nﬁ?&n:M% 3 WQSL (4.56)

H .
Natice that we have £(7) = €'(v) if Animly = §. The weiglits are modified only
locally. We have also a convergent cluster expansion with the new weights. Therefore

(o))" (A5) = (4.57)

exp v.u.“l_ D ORETID D CIPRE Y MMNA.E - NSLV

N k=1
n>l
- smmnll smmall

In the expression (4.57) all terms cancel in the sum unless there is a such that
Aninty # 9. From (4.57) we see immediately that in the phase of small contours
the expectation value {¢{A4)}" (A, s) is analytic in the magnetic field. When there is
no magnectic field we have a similar expression for {o{A)}* (A), but in this case we
do not need the restriciion that the contours are small. It is very easy to compare
the ratio of the expectation values computed with or without this restriction, since
all terms in (4.57) appear in the analogous expression for {a{ AN (A

Lemma 4.3

Let A be a simply connected set, and let A be a finite subset of A. If there is no
magnetic field and if J s large enough, then

Ho(ANT (A, 9) = {o( AN (A)] < |AIO (exp(—87 L)) - (o( A))* (A) (4.58)
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5 Anestimate of the large deviations of the mag- Let M(AY = E (Lies o(t)).
netization in the phase of sinall contours. o Fz/(JAJC(A)) € T and —z/(JAIC(A)) € 1, then
2
We study the total magnetization in the phase of small contours for a system in a box — MM > v < Tex AE I!m..l..lv {5.6)
A. The results presented here are based on lemma 4.2. We show how Chebyshev's . E mw.u..qo& MY z=}) < Zexp 2|A|C(A) /-
inequality allows to control the large deviations and leads to Bernstein’s inequality.
5.1 Chebyshev’s inequality and large deviations. o If 2/{|A|C(A)) €1 or 2/{|AJC(A)) €1, then

Let o{t) be a real-valued random variable indexed by t € A, A a finite set. The E
expectation value for these random variables is denoted by E(-). The generating
function of the cumulants of the random variables is P{Alp),

v with p* = min{|p], p2}

A 2
(50 - M) 2 23) 5 2exp (7o 4 BTy ) 6

2
teh

exp (IALP(Alu)) = E A%; S o(2))

{5.1)
teA

Proof.
In the rest of the paragraph we suppose that this fanction is well-defined and finite

We estimate
in some interval containing g = 0 as interior point. For those values of & we can

5.8
define & new probability law for the random variables o(t), by setting for an event Q1 = ﬁnowﬁmqﬁi - M(3) 2 =}) ©8)
4
E (Aexp(s Teea o(2)) If 4 > 0, then we get by Chebyshev’s inequality
E(Aln) = : (5.2)
t
E{exp(st Tiea o(t))) Q1 < exp(—p(M(A) + z))-E A@ka Q?vvv {5.9)
Of course E(+[x = 0) = E(-). By formal differentiation with respect to p, we get the teA
identities = exp(—p{M{A}+ =)+ [A[P(Alp))
A1 PUAIR) = E(S o(6) ) (53) We may wite
i reh P(AID) + = P{Al = 0)- (3:10)
and P(Alp) = P(A{D) gl =0)p
& ? + :msmzﬁzx = p') - pl
[Alo—P(Alp) = E AM o(t) - E(3 QE_E ] >0 (5.4) du?
&.: tEA tEA

for some g', 0 < p' < p. Here P{A[D) =0 and tﬁ%ﬁﬂzt = (3} = M{A). Thus
which are the mean value and the variance of the random variables with respect to

the new probability law indexed by p. Q; < exp(—pz + /2P IAC(A)) (5.11)
We look for the best choice of . In the first case the best choice is p = z/(|AIC{A))

Lemma 5.1 and in the second case the best choice is yp. Similarly we estimate

5.12
Let oft}, t € A, be a family of real-valued random variables indered by the elements ! Q: = Prob({} o(t) - M(A) < -=}) (5.12)
of the finite set A. Let P(Ajg) be defined on the interval [ = {101, 1£2], which contains , rek
the point p = 0. We suppose that P(A|u) is of class CHI) and that < exp(—p{M(A) - 2)}-E Amwwtm QEVV b0
fEA
d i
sup 3 PAle) < O(A) < o {5.5) and we get

Q2 < explpz + 1/27|A|C(A)) (5.13)
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The best choice of p in the first case is ~z/(JA|{C'(A)) and in the second case, ju =
#1.

independent on A and s, such that for 8 > By the following stetements are true,

e [fe/T(B) < 488/s, then

We apply lemma 5.1 to the random variables ¢(#) of the Ising model when E( ) is the €

expectation value corresponding to the probability measure of the phase of s-small Prob | {| M a(t) — {a(8)) (A, s} > €fAl} ] < 2exp As, — WD_V {5.19)
. o . . - . x(P)

contours without magnetic field. We express the results by introducing explicitely tEA

the inverse temperature 3 : We replace J hy 3 which is equivalent to choose the
coupling constant of the two-body interaction equal to one. Let A be & subset of
Z*. For cach connected component of A we have either + b.c. or — b.c. The only
hypothesis on A, as in section 4.2, is that there is a bijection between the set of
configurations of the model, compatible with the boundary conditions on A, and
the set of all A"~ compatible families of small contours in A*. This hypothesis allows
to use the method of the cluster expansion and to apply lemma 4.2. The expectation
value E(-} is (- ) (A, s) and the expectation value E(-|z) is ( - Y(A; s|p), which is the
expectation value in the phase of small contours with J = S and b = p#. We estimate

Prob ({1 2 o(6) - {o(t)) (A, )] m_é

tEA

(5.14)

If 3 is large enough, then we can continue analytically the function P(A,p} from
i =0 up to gl < p*, with
4
=By et (5.15)
s
where 8 is some fixed number. The constant C'{A) of lemma 5.1 is estimated using
lemma 4.2,

o [fe/%(B) > 438/s, then
Prob ({3 a(t) - {o(0)) (A,5)] > %i <

2exp TM@E 1- w%vv

S L)

(5.20)

All probabilities are computed with the measure { - ) {A, s).

Remarks. -
1) The same results hold if we choose the other definition of small contours

mentioned in remark 3 following theorem 4.1. . ,

2} In the next sections we apply the second part of this theorem when Tww = L2,
¢= L% and e = Cy/L°, with ¢ = 1 — a. Let & be some fixed number, 0 < # < 1. K
1< ¢ < 1/2, then there exist B and Ly such that for all # > Gy and L > Lo,

Prob ({1 o(t)~ (o10) (0} > G/ ) < (5.21)

teh
2exp (—4C,188'L)

C(a) = x(8) (5.16) [{1/2 < ¢ < 1, then there exist B and Lo(8) such that for all 8 > Bg and L > Lo(8),
- Prob ? S o(t) — (o(£)) (A, )] = G/ - _év < (5.22)
X(8) = Ofexp(-8(1 - 6")8)) (5.17) e
For any ¢ we have 2 exp $uﬂmwvh#_3v
b {5.18)

IAIC(A) — x(8)

and the value of this quotient is smaller or greater than #*, depending on the value
of 3. Notice that for large 7 it is always greater than u*

Theorem 5.1

Let A be a bounded set. For each connected component of A we have either + b.c. or
~ b.c. and we suppose that there is o one-to-one correspondence befween the sel of
configurations of the model, compatible with the boundary condition for A, and the set
of all A*- compatible families of small contours in A*. Let {+ } (A, s) be the measure
of the phase of s-small contours at inverse temperature 8 and without magnetic field.
Let §, 0 < @ < 1 be given and let 5(B) be the function of (5.17). There exists 3,
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6 Surface tension.

The main topic of this section is the study of the surface tension for the 2 dim.
Ising model. The surface tension is a basic thermodynamical quantity when there
1s coexistence of several phases. It determines in particular the shape of 2 macro-
scopic droplet of one pliase in presence of the other phase” The surface tension
iz non zero only in the coexistence region of the phase diagram. Consequently we
always suppose that there is no magnetic field in this and subsequent sections. We
introduce explicitely the inverse temperature g and choose J = 1 for the coupling
constant of the model. The main tools which we use are correlation inequalities and
duality. The notion of duality was introduced by Krammer and Wannier and used
to determine the critical temperature of the Ising model. In this form the duality
is the statement that some properties of the two-dimensional Ising model below the
critical temperature are related to other properties at high-lemperature. Later on
Wegner [W] introduced the modern notion of duality for spin systems defined on
a cell-complex. In these lectures we need only Krammer-Wannier duality which is
defined in section 6.1. We define the surface tension in section 6.2 and proves its
existence in section 6.3. The last section 6.4 contains two estimates on probabilities
of events, which are expressed in terms of large contours. The estimates in 6.4.1
and 6.4.2 are basic estimates for sections 7 and 8.

6.1 Duality transformation.

Let A be some finite box with + b.c. We define Z*(A) as in section 4, by normalizing
the energy so that the configuration ¢(¢) = 1 has energy zero. The configurations
compatible with + b.c. are uniquely described by sets v of closed contours, which
are A*-compatible (see section 2.1.2). Here we do not introduce the signed contours
because we have no magnetic field. The partition function is

ZrNy = 3 exp(-23 bl
¥ TEY
A% —compatible

(6.1)

Lemma 8.1

Let A be simply connected, Then any family of A" -compatible confours is A*-
compatible and vice-versa,
Proof.

Let ¥ be a A*-compatible family. We first consider the outer contours of 5, say
Vis- -2 Yp- We construct a spin configuration &. Since A is simply connected inty; N

SaY Ypti,- - Y- We define 6(t) = o{t) for all ¢ € inty;\ Uj_,, inty; and we change
the sign of o(t) for all £ € Uj__, inty;. Iterating this procedure we finally get the
configuration &.

Given A, we construct A* as in section 2.1.1. On this set we define the Ising model
with free boundary condition (f-blc.} by -

H. =-1/2 ¥ o(t)o(t)
ttEAl
dy (¢,27)=1

(6.2)

The inverse temperature of this model is 5°. The high-temperature ezpansion for
the partition funcition of this model is equal to

X II exp(@a(t)e(th) =

spin conf {2’}
dy (¢,£7)=1

MU T1(cosk B~ + o{t)o(t') sink 8*) =

(cosh B) 3" T[(1 + o(t)o (') tanh 87)
We expand the product in {6.3). Each term of the expansion is labelled by a set of
edges on A™, which we decompose into connected components vy, 71, .... If a term
is such that the corresponding components 7;,... have no boundary (see section

2.1.1), then each spin variable of the term occurs an even number of times. Since
o(t)* = 1, the contribution of this term to {6.3) is

(tanh mJM.. Fnil

(6.3)

(6.4)

The summation over the configurations is trivial in this case and equal to 2471 Al
other terms do not contribute to the sum because at leasi one spin variable occurs
an odd number of times. Let us normalize the partition function

NMQ’;WEJ - MU
5
compstible on A®

(tanh g*)e: ! (6.5)

Here the motion of compatibility is the A*-compatibility. We can state the duality
theorem of Krammer-Wannier.

Theorem 6.1

Let A be a finite set of I* which is simply connected. Let A™ be the dual set of A and
let Z*(A|B), resp. Z7(A*]B*), be the normalized partition functions defined above.
If 8 and B* arein duality ie. if

A = inty;, and we can define a configuration o which is compatible with the 4 b.c. tanh §* = ™% (6.6}
by setting o(t) = +1if t gmiy, i=1,...pand ot} = ~1if t € inby;, i = 1,...p

The value of & is 6(t) = o(t) for all £ ¢ inty;, i = 1,...p. Then we consider the then

contours, if any, which are in the interior of v;. If there is no contour then the value ZHA) = Z7(A) {6.7}

of the configuration & is &{1) = o{t) for ¢t € Inty;. H there are some contours in
intyr, 58Y Ypi1, - -, % then we consider the outer contours among these contours,

The theorem is a direct corollary of lemma 6.1
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Figure 2: the n-boundary condition

6.2 Surface tension.

Physically the surface tension is the contribution to the free energy coming from
the coexistence of phases. We refer to the review [PL1] for more informations, in
particular on the relations between surface tension, structure of interfaces and non
translation invariant Gibbs states,

Let us consider a box A(L, M) on 7?2,

ML My={t =(t,,;): ~L<t; £ L, M <t < M} (6.8)

with a new kind of boundary condition : n - b.c., where n is a unit vector of R®.
Let I{n) be the siraight line of R? passing through (1/2,1/2) and perpendicular to
n. The n - b.c, is

o(t) = +1 if £t ¢ A(L, M), t above or on l{n)

~1if t ¢ A(L, M), t below I(n) (6.9)

The idea behind this choice of boundary condition is simple. Let us suppose for
simplicity that [(n) passes through two points a and b of the dual lattice as in figure
2. We consider the ground states of the model in A(L, M). They are characterized
as follows. Let A be a line on 7? passing through a and b and of minimal length. All
spins above A have value + 1 and all spins below A have value — 1. If the energy
of the ground state for the + b.c. is zero, then the energy of the ground states
in A(L, M) for the n - b.c. is —2|A|. In general, there are several ground states,
because there are several lines A of minimal length. We expect that the typical

H.P.A

b L

Vol.

64, 1991 Pfister

configurations for the n - b.c. are locally those of the + phase or — phase with
some ” interface” separating these regions, as A separates the spins ¢(t) = 1 and
o{t) = ~1in a ground-state configuration. It is easy to prove that all configurations
in ML, M) with n - b.c. are in one-to-one correspondence with a set of disjoint

contours such that

¢ there is a unique contour, say A, which is ngt closed and going from a to b

¢ all other contours are closed.

Let

FYL M) = ~InZ*{AL, M) (6.10)
be the free energy of the model in A(L, M) with 4 b.c.. Then

FHL,M) = f-|AL, M)} + gt - |8A(L, M)| + BT (L, M) (6.11)

where f is the bulk free energy which is independent on the choice of the boundary
condition, gt is a surface free energy which depends strongly on the choice of the
boundary condition, A* is a correction term, and [8A(L, M} is the length of the
boundary of A(L, M). The important fact is that

Jim _z%%”@im_ﬂ? M) =0 (6.12)
Similarly we have

FL,M)=f ML, M)+ g™ - |A(L, MY + A~ {L, M) (6.13)
However, by symmetry

g~ =g" and R(L, M) =hY (L, M) (6.14)
On the other kand if we choose the n-b.c.

FYML M) = f- ML M) + g™ - |BML, M)+ RYL, M) {6.15)

We do not expect that g" is equal to g* or g7, but since g* = g~ we expect that
the difference between g™ and g* is due only to the presence of the interface which
is induced by the n - b.c. This is precisely what is called the surface tension, and
we define

-1 ZHA(L, MY}
r(n|A(L, M) = ) In ZT (ML M) {6.16)
(ds is the Fuclidean distance) and
r(n) = Jim r(nlA(L, M)) (6.17)
M 100

Notice that we do not divide (6.16) by 1/3. The limits L - co and M — oo in
(6.17) can be taken in any order (see {F.P.1}). This is 2 non irivial fact because the
interface is not rigid in dimension two, but fluctuates,

997
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6.3 Existence of the surface tension.

In this paragraph we prove that r(n)1s well-defined. This is done via a basic identity
which relates 7{n} o the mass-gap of the two-point function of the model at the
dual temperature. For this reason, we consider more closely the two-point correlation
function and more generally even-point correlation functions of the model with free
boundary condition.

It is convenient to introduce a contour medel. Let A be some (finite) subset of the
lattice and let A* be the dual set of A. A configuration of the model is a family of
disjeint contours ¥ = {71,..., %), not necessarily closed. We put

Lemma 6.2

Let A be a subset of 72 and let A be its dual set. Let A C A" be an even subset of
A". Then the correlation function (¢(A)) (A"} of the Ising model on A* with free
b.c. is expressed in the contour model by

(o(A) (A) = Z(A' - Y wiy)Z(A%])

fy=A

(6.24)

sy = & (6.18) We wﬁmwmﬁam the notion of massgap a(m) for _mwn ﬁ.,a?womn.w. function. let m be
vEy some unit vector of R and let I*{m) be the straight lne passing through (1/2,1/2)
if 7 is a configuration. The weight of a configuration is WMMMMM MWMMMNMMMOWHw.nHW“:MmMN hwumwbwww m,mﬂmw that I"(m) contains at least two
w(y) = ,mu@gw gyt (6.19) Jim (o(A) (A7) = (o(4)) (6.25)

Let 7' be a configuration. We put exists, because Aibvvm {A*) is a monotonous function of A”,
A= 3 wly) (6.20) (AN (A1) < (o(A)Y (A7) Af C A (6.26)

b=l
YUy computible
and Z(A"} = Z(A*|0). The notion of compatibility means here that the contours of
~ U’ are disjoint two by two.

We study the even-correlation funciions of the model with free boundary condition
defined on A*. Let A be a subset of sites of A, [4] even. Let ¢(A) = [l,cq0(t}). We
consider the numerator of (e{A4)) {(A),

Let go be the point (1/2,1/2) and ¢ be another point of the dual lattice on I"(m}.
The massgap a{m) is by definition :
1

fim - In {o{go)o{a)}’

6.27
dz{g.a)-r00 mumﬂc, Qv A v

QTSV =
Let ¢ be a point of Z2 and of I"(m), which is at a minimal distance from go. We
can write q; = go + p1 with p, € % Let p, be the point obtained by mulliplying
the coordinates of p; by the positive integer r. We set ¢, = go + pr. We have

__In(ela)alg))
o(A)ex /2 e{tio(t 6.21 a{m) = lim - 6.28)
%:_Mmo;w (A)exp | £/ ﬁ,me.F (elf) ( ) (m) ree rdy{go. ¢1) (
aeem = lim -G{r)
Up to a constant factor, (cosh g~ )Wedaesh, oklsites) (691) js equal to T
“ By Griffiths’ inequalities and translation invariance the function G is subadditive,
> wpZ(Ay) (6.22)
bk Glry + r2) € G{m ) + Glra) (6.29)
) N , Indeed,
The proof of (8.22) is similar to the proof of {6.5). Notice that Zf(A") = Z{A).
Thus (o(g0)7(@rar)) = (0{20)0(g )o@ )0 @it )} (6.30)
(oA () = 2877 % w(pZ(AT) (6.23) > (ol - (0130001
som i = {olg)o(a)) - (o(go)o{e, )}
Remark. Therefore the mass-gap o{m) is well-defined,
If |A] is odd, then (o(A)} (A*) = 0 because the number of points of §v is always .1, e
even, 50 that there is no v with v = 4. If A" is not connected, and if in a connected mmwo MQT.V = mwm MQT.V (6.31)

component of A there is an odd number of points of 4, then again {e(AN (A") =0.



1000

Pfister

and in particular for any »
1
a(m) < ~G(r) (6.32)

Lemma 6.3

h&w be some unit vector of R, such that the line I{n)} confains at least two points
of I7. Let n* be a unit vector of R* such that I"(n*) = I{n). Then

T(n) = a(n) (6.33)
For any p, q on the dual lattice
(o(p)ola)y < exp(—da(p,q) - afny,)) (6.34)

E.rnﬂm ng . 18 the unit veclor giving the direction of the straight line passing through
p and g.

Proof.
We follow the proof of [B.L.P.1]. The definition of (r) is given in {6.17). Let us

suppose, that the points ¢, are defined as above and that g., = —p, + ¢5. We also
suppose that the points o and b in figure 2 are ¢_; and q;. We set

>H“>”mw“ihAﬁwm~.¢|gAnwmgw Amwmu
and
Av={t:—rl <t; <rD,-TM <t, <vM} (6.36)
We prove that
. 1 Zm(A)
Lim — L Lo = *
A Tl "t 2h,) ) (637
We can write, using lemma 6.2,
™A, ) .
7y = leela) () (6.38)
By Griffiths’ inequalities
(0(g-r)r(a ) (A2) < (olg-r)o(a.))! (6.39)
50 that
. 1 Z7(A.)
hminf — i o> *
i ) n 77 2 afn”) {6.40)
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On the other hand if 5 € N, we have

T un
(o(gero(gr))’ (ALY = { I olag-unlolan)) (AL) (6.41)
A e r 1
: > I {olae-naola) (AL .
im—rdd
= exp{— MU Gli, 7, 8))
Thus, for any r' =7 4+, 0 <t < s,
~In (olgor)ola ) (A2) < —Tn (lg-r)o(grse))? (A7) (6.42)
~tn folar-ela ) (83) + TGl 9)
and
i - ! n Dol ) (A
lim sup }ifévw {otg_r)olg )} (AD) < (6.43)
1 & Gl,r,s)
fim — Tk L AEAS
11Hm.o 2r mﬂm+u Auﬁﬂia. qu
Let ¢ > O be given. Then from (6.26) there exists § > 0 such that
Hotgo(aunn) (83) - {olaalolacnn)) 15 e (6.44)

provided dolgis, OAS,) 2 6 and Auﬂﬁ?dzmnﬁb > & Since AQAQLQAET:LV.‘ =
AQS&QE?VVH and Ain&qﬁcvvm > 0 we get for small ¢

" 1
m sup —
..-.L.anmu ﬁ_mummifﬂuv
1
— i tn (o { g )o 5 0te
iy i totae(a)’ + 0()
Since ¢ is arbitrarily small we have proven the existence of 7(n) for a special sequence
of boxes. We do not prove here that the limits L — 0o and M — oo in {6.17) can
be done in any manner . The proof (for a similar case) is given in [F.P.1] and uses
again in an essential way Griffiths’ inequalities. The second statement of lemma 6.3
is simply {6.32).

In {o(g-)o(g)) (A7) < (6.45)

Lemma 6.4

There evists a constant (1 such that for any L, M, and unit vectors n, n
Ir{n|ALL, MY — 7{n" AL, M) £ Chlpln, »") {6.46)

where @{n,n'} is the interior angle between n and n'.
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Proof.

By inspection, the difference of energy of any spin configuration in A{L, M) com-
puted with the n- b.c. and the n'-b.c. is smaller than

Cilg{n, )} - L - - (6.47)

with C] independent on L, M and the configuration. From {6.47) the result follows
easily.

Lemma 6.5

For any unit vector n the limit

m%w r(nlA(L, M)) = 7(n) (6.48)

ezists and is ¢ continuous function of n.

If we extend T as a funcition defined on R? by setting
r(z) = [elr(z/le]) (6.49)
then 7 43 4 norm for 8 > 3,
Proof.
Lemma 6.4 allows to define 7{n) for any = by continuity using the fact that for a

monmo, set of n 7(n) exists (lemma 6.3) The second part of lemma 6.5 is & consequence
of Griffiths’ inequalities. Let z; and z; be two fixed vectors of R?. We have

(o()o(er + ) 2 (o(O)(z:)Y - (o(or)o(z +22)) (6.50)
= {o(0)o(z)} - (o(0)or(wa))
Let r be some positive niumber. Then

1

Tz + wg) = Jim IHF (o{0)er(ray + q&quu < (6.51)
Bim {WF {a{0)a{rz )T + _.mlawol.wg {o(0)o(rz )} =
T(®1) + T(i2)

For the positivity of 7{x) see comment 3} below.

Comments.

1) The surface tension of the two-dimensional case is related to the behavior
of a random line. We can study by the same method the surface tension of the
three-dimensional model. Here the role of the contour model is played by the Z,-
gauge model which is a model of random surfaces. Such models are more difficult to

analyze, however since Griffiths’ inequalities are still valid the proof of the existence
of the surface tension is essentially the same as the one given above [PL3],

2) If we want fo study with more details the surface tension then we must analyze
the statistical properties of the random line A passing through o and b {see figure
2 ). When a and b are on the same horizontal line this analysis has been done by
Gallavotti [G] and extended in {B.L.P.2] asid in {B.F]. When ¢ and b are not on" the
same horizontal or vertical line then a similar analysis can be done, but this is more
difficult, This analysis is part of the work of Dobrushin, Kotecky, Shlosman . In
section 7, we need one result of their analysis, which is quoted in lemma 7.1

3} We mention that it can be proven that the surface tension r(n) = 7(n|8) is
pon negative and positive if and only if # > f., where 8, is the critical point of the
model which is given by the self-duality relation tanh 3. = exp(—28,). (See {L.P]
and the review [PL1]. The proof in [L.P] is given for a special case, but can be
extended to the general case using (6.51) and the monotonicily properties of the
two-point function.)

6.4 Two basic estimates.

We discuss two types of estimates, which play an essential role in the next sections
6.4.1.

We consider the following situation, Let 4* be some closed contour, which is fixed.
Let + be another closed contour which contains 7" as a connected subset. Any
contour v of this type can be uniquely decomposed into v° and a family of closed
disjoint contours 7, .., 7 such that each 7; has at least one site in common with
4", but has no edge in common with v*. Conversely 5~ and any family {m,. -, %)
with the above propetties define a contour 4, which is the union of 4* and of the
contours 7. We denote by C{7*) the set of all such contours. We also denote by
C(v"lg) the subset of C{7*) with |} £ ¢ for all 5. We define

Probi(C(r)) = Y. Probf(y) (6.52)
TEC(Y")

and similarly Prob}(C{y"(q})-

Lemma 6.6

Let A be a simply connected and finite set. Let C(y*) and C(7"|q) be as above. Then
for B large encugh
Prob{C{y")) = {6.53)
Prob}(C{7'lg)) - exp(l1"10a (e7772))
with the function Oy (e} such that

wnmu |04 (7)) - €*9 < Const (6.54)
it
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Proof. Remark.
Let 7= (7', 7, 7s) be an element of C(x°). Then T o e o ol il of syl comows (172 sueh
Probf(7) = exp Tmmm%: 3 Ial)) mm%mw (6.55) that 2 277 Then
’ - Prob{{Cly, )} = : {6.59)
— x, . " . . . »
e e ey S T PRI o) xpl(3 DO ()

tours : each spin configuration is in one-to-one correspondence with the set of com-
patible families of contours (8y,...,4,) such that (v,#y,...,8,} is still a compatible
family. If we take the union of these sets over all possible 5 = (n1,...,m), & arbi-
trary, then we get a set £{v*} of configurations which is in one-to-one correspondence
with the set of families of contours (m, ..., M, #1,...,6,) such that

® 71,...,7 are disjoint two by two,

o the union of ¥*, 11, ..., 1 is a single contour v

o {7,61,...,8.} is a A"-compatible family of contours.

Nofice that necessarily {m,... %, 61,...,8,) Is & A"-compatible family of closed
contours. The partition function which we get by swmming over the configurations
of £(v*} is denoted by NS ). Similarly Z{y"lq)} is the partition function which
we get by summing over the configurations of £(+) with all contours u such that
in] < gq. We have

Prob}(C(7")) = exp(— " g
€y p(—2681y"]) Zr (6.56)

and we can apply a cluster expansion for de.

NAQJ = MU mlu_&d:...mluhm_..iNmQ»wdT...,dxv " ﬂmu.c
(-}
exyp MU M MH ﬁWAyT . ;v ~28)2] - .ﬂium;:_
A i) Awefie)

where Q(~*) is the family of possible contours appearing in the configurations of

E{x*). {A contour X is in (7"} if and only if the union of v* and X forms a single

contour or ¥* and A are disjoint.} We have a similar expression for NS lg). Tt is

easy to take the ratio of NAQ ) and Z{7*lq) : all terms in the arguments of the

M,Nr@ozmmﬁi functions cancel except those which contain at least one 5 with |3| > ¢.
us

Z(v)

Foriy ~ P 108 (75 (6.58)

In this case the set (") appearing in (6.57) is replaced by Q{~],...,7;). A contour
Misin Q75 ..,y } if and only if X is disjoint from ~],...,y, or there exists a ]
0 that the union of ) and «; is a closed contour, which is disjoint from ali contours

Qu " .._, Wm p.
6.4.2.
We introduce two notions.

1. Let A be an open contour and let A be a subset of the boundary of A, A C SA.
We say that

e ) is reductible at A if we can decompose A into X', such that ) = 6X, and a
closed contour -y with the property that M1y C Aand AU+ = A If A is not
reductible at A it is called irreductible ot A.

Remark.
If each poiné of A has incidence number one, then A is necessarily irreductible at A.

2. Let ) be a contour with boundary §) = {t;,t;}. We say that X has a decompo-
sition with cufting points ty,.. ., t,y i the following conditions are verified:

e there are # open comtours Ay, ..., A, with &% = {7 .4} = 1,...,n and all

points £; are distinct
L] .uf.D\/T: n“?wmw and ..yu.DvJ. H@RTIQM > 1
o A= AU e A,

e ); is irreductible at 7, forall ¢ = 2,.

Remark.
The last condition is important. It prevents to have overcounting problems in the
proof below.
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We also have a decomposition with cutling potnts for closed contours. The first three
conditions are the same, with the obvious modifications in order to take into account
that now t4 = #,,. The last condition reads

*

» A; is irreductible at ¢7, for all i = 2,...,n — 1, and X, is irreductible at nw
~Mﬁllwuuﬂw. “ - - - .

Notice that there is no irreductibility condition on ;. As in section 6.3. we define

Z{AYA) = M.;. m?mwrmdmi (6.60)

byl rEY HU‘
YUA comp.
i 1

Lemma 6.7 |
Let tg,t5,. .. b, ben + 1 distinct points and let X = (Ay,. .., An) be a decomposition Ly
with cutling points t],...,3,_, of the open contour X such that §X = {t;,1:}. Then

(Z(A™ ). 3 Z(A*]A)(tanh 3 < (6.61) g

A x={as 47,

ty, .ty g cutting points
I {ettioatot) (a°18°) < I {otts 2doten) (8
k=1 =1

where in the last expression we have laken the thermodynamic imit. The same result
holds if A is closed, 1.e. 1 = £2.

Proof.
»m
Let A = A(A,...,A,) be given. We suppose that A;,..., )\, are kept fixed for the — mm
moment. From {6.23) we have
t

S (tanh BYMZ(A M, . ) € (6.62) o

* .

ZHA Qe M85 (E) (A (hay- 2, M) :

where Z/{A"(Az,...,A.)) is the partition function of the Ising model with free b.c.
defined on the set A*();,..., A, ), which is obtained (as set of sites} by removing all
sites of Ag,..., A, except the point t;. By Griffiths’ inequalities

ey F A FPTTERY
{o(t)o () (AR, Aa)) < ?.chlﬁwuvwﬁke ) (6.63) Figure 3: Decomposition of A into four open eontours A;, Az, g, Ay with cutting
< Ao{tg)o{t))) points 1,1y, ts, 14,
Therefore, we can put forward in the sum the factor (o{t3)o(#))Y (A*) which is
independent on Ay, ..., \,. Let us sum over A,
STZH(A(Ag, -, A ) tanh gT)Pal (6.64)

Az
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when Az, ..., A, are fixed. Let {4,...,%,) be a configuration of contours contribut.
ing to ZF(A*(Xa,..., An)). All these contours are disjoint two by two and one of
them at most may touch only at ¢ the contour formed by the union of Az, ..., A,.
For any A, occering in (6.64) we can interpret the union of m,...,7, and X; as a
set of high-temperature contours contributing to

ZHA Qg A (o (e (B (AR, 5 M)

I one of the conlours ¥ touches A; we suppose that this is the contour ¥;. Thus we
have p — 1 closed contours, 7s,...,7, and one open contour A,, which is the anion
of Az and 7. In that case the open contour A} is reductible at #;. Therefore the
contour A, cannot occur in the sum (6.64), since all contours X, in this sum are
irreductible at ¢;. Thus we can bound (6.64) by {6.65),

M NMA.P*AVNu Cay v.:vv:\m.ﬁm:@nv_»uw m
A
Nm;,,:“r R W ) | AQQUQQMVY« (A" (. A) <

Z7A Q- )M o () (85)) (A7)

By repeating this argument we get the proof of the lemma. For the second part of
the lemma we have a similar proof, except that in the first step, and therefore in the
subsequent steps, A™(Aa,..., A,) contains also the site £, The presence of a spin at
tp modifies the proof only in the last step when we sum over A.. This is why we
require that A, is irreductible at {£._¢,{o}.

(6.65)

(6.66)

Remark.

Lemma 8.7 can of course easily be generalized to the case where we have several
disjoint contours, each having a decomposition with cutting points. In section 8 we
also have to consider the following situation: two (or more) closed contours have a
decomposition with cutting points, say A = (A1, Az, A3) with cutting peints £], 43,13,
and § = (6,,8,,8;) with cutting points s}, s}, s; but they are not disjoint: A and ¢
must go though a fixed common point p*. Then summing over all decompositions
{the cutting poinis are also fixed), we still get the upper bound

{a(s7)o(s3)) - (o(sp)a(s3)) - {o(a3)o(s1)) -
{o(te (i)} - (olina(ts)) - (a(t)e (e

Indeed, we can sum first over the decompositions of A. The argument of the above
proof is valid. Then we must sum over the decompositions of . Let us suppose that

7" is not one of the cutting peint of 4, and that p* belongs to #;. We sum over 8,
and then we sum over 8,

Y~ ZH(A"(8:,65))(tanh 37}

(7

(6.67)

(6.68)

Since p” was a point of the contour X, the set A*(#2,8;) contains the point p*. Let
{71, ,7p) be a configuration of contours contributing to Z/{A"(6,,8;)). All these
contours are disjoint two by two and one of them at mosi may touch 8, at p*, and
one of them at most may touch the contour #; at s}. It is possible that the same

H.P.4
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contour touches the contour &, at s3 and at p*. For any #; we can interpret the
union of ¥1,...,7, and 8, as a set of high-temperature contours contributing to

ZH(A(8:)) (a(s3)o(s3))T (A*(Fs,))

If one or two contours ¥ touch #; we suppose that these are the contours v, or ¥s.
In this case we have p — 1 or p — 2 closed contours, 74,..., %, A =20r k = 3, and
one open contour &, which is the union of 83 and the contours 4y or 7;. The open
contour &, is reductible at {s3,p*}. But, since the contours A; and #; had the point
p* in common, the contour #; is irreductible at p* and at 53 by definition. Thus we
can apply the argument of the proof of lemma 6.7. If p* is one cutling point, say s,
then we use the fact thal &; is necessarily irreductible at p*.

(6.69)
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when As,..., A, are fixed. Let {v;,...,7,) bea configuration of contours contribyt. contour touches the contour §; at s} and at p*. For any &; we can .Eam.nﬁwﬁ the
ing to ZHA(A,, ..., An}). AH these contours are disjoint two by two and one of anion of 71, - .-, 7y and 87 as a set of high-temperature contours contributing to
them at most may touch only at € the contour formed by the wnion of Aoy i)

’ : : EER T Frax * =S 6.69
For any A; occuring in (6.64) we can interpret the union of Yii---aYp and Ay ag g Z7(A"(85)) (e(s3)o(s3)) (A7(6s, ) ( )
set of wwmw.amawaaimmm contours contributing to . If one or two contours ¥ touch #; we suppose that these are the contours v or 7.
- * M " : _ — tours \?...Q.rﬂ”mmﬁ.\ﬂ”w.w;&
25 A Aayorn, A P enfia Doy A, In this case we have p — 1 or p — 2 closed con y Terer o Y

(A0 NHett)ed (A0 ) Am,mmv one open contour 8, which is the union of &, and the contours 7, or y,. The owms

If one of the contours -y touches A, we suppose that this is the contour v,. Thus we contour 8} is reductible at {33, }. Bui, since the contours A; and mN. W.Em, the point
have p — 1 closed contours, ¥s,...,7, and one open contour Ay, which is the uniop #* in conmon, the contour @; is irreductible at p” and at s} by definition. Thus we

of &; and 1. In that case the open contour ), is reductible at 7. Therefore the
contour A, cannot occur in the sum {6.64), since all contours X, in this sum are
irreductible at ¢;. Thus we can hound (6.64) by (6.65)

)

Y2 (A, M) Ntanh 1)t < (6.66)
Az

Z (A (s, A HeARDABN (A, 20)) <

ZHA sy, AP {a(8)o ()Y (A%)

By repeating this argument we get the proof of the lemma. For the second pari of
the lemma we have a similar proof, except that in the first step, and therefore in the
subsequent steps, A™(X;,..., A} contains also the site £5. The presence of a spin at
to modifies the proof only in the last step when we sum over An. This is why we
require that A, is irreductible at {#, ;,4}.

Remark.

Lemma 6.7 can of course easily be generalized fo the case where we have several
disjoint contours, each having a decomposition with cutting points. In section 8 we
also have to consider the following situation: two (or more) closed contours have a
decomposition with cutting points, say A = {A1, A2, As) with cutting points 7,15, 65,
and § = (8,,8,, 03} with cutling points s3,s}, 5] but they are not disjoint: A and &
must go though a fixed common point p*. Then summing over all decompositions
(the cutting points are also fixed), we still get the upper bound

{e(shie ()Y - (a(sshalsa)) - (o(sy)e () - (6.67)
{o(t)a ()Y - (olt5)o (B30 - (o(ty)o(t))

Indeed, we can sum first over the decompositions of A, The argumnent of the above
proof is valid. Then we must sum over the decompositions of §. Let us suppose that
P is not one of the cutting point of 9, and that p* belongs to 8,. We sum over 6,
and then we sum over 4,

N Z (A8, 8:))(tank 7)1 (6.68)
&

Since p* was a point of the contour A, the set A*(#,,65) contains the point p*. Let
(71, -, ¥s) be a configuration of contours contributing to Z7(A"(82,83)). All these
contours are disjoint two by two and one of them at most may touch &, at p°, and
one of them at most may touch the contour 6, at 8. It is possible that the same

can apply the argument of the proof of lemma 6.7. If p* is one cuiting point, say 33,
then we use the fact that §; is necessarily irreductible at p*.
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7  Lower bound on the probability of a large
deviation of the magnetization.

We prove a lower bound for the probability of the event A(m) = A{m;c, cp)

A(m;c,co) = {0 : | vquEcamE { < cofA]- L7} (7.1)
te

where A is a square box, |Al = L?, with + b.c. and m is some fixed number,
—m{(B) < m < m"(B) (7.2)

{m"(B) is the spontaneous magnetization in the + phase). The parameter ¢ is such
that

0<ec<1/2 (1.3

The probability is computed with the measure { - }* (A). We intreduce an inter-
mediate scale in the analysis, which allows to bound the probability of the event
A{m}in terms of the surface tension. This essential idea of Dobrushin, Kotecky and
Shlosman gives an improvement of the work of Minlos ard Sinai. Notice that we
do not fix the total magnetization here. This is very natural from the point of view
of Physics and simplifies slightly the mathematical analysis. Let W, be the Wulff
crystal,

2
We={zeR: (nfz} =3 n; < r(n)} (7.4}
dm}
The volume of W, (in R*) is [W,|. By a dilatation of W, we construct a Wulff
droplet W,.{m) of total volume

Vim) = T Al = alm)ial (75)

The value of the Wulff functional for the Wulff droplet is T = T*{m) and is equal
to

(T*(m))* = 4IWs| - V(m) (7.6)

Remark.

We suppose that the Walfl droplet W, (m) can be put inside the square box of
volume jA]. Tt could happen that for small values of m satisfying (7.2) the Wulff
droplet could not be put inside the square box, In this case we could take a box
which has the Wulff shape and a volume L2 in order that the results of this section
remain true. Indeed, if the square box cannot contain the Wulff droplet W.(m),
then the constant T*{m) must be modified in theorem 7.1 {the value of the constant
is larger). We do not consider this possibility in these lectures.

Theorem 7.1

Let —m*(B) < m < m*(B), 0 < c < 1/2 and cp > 0. Lef € be given, 0 < ¢ < 1.
Then there exist (e, co, ), L{e, co, ¢} such that for all 8 > Ble,cp e), L > Lie, eq,¢)

- Prob{A(m)) = . {7

Prob ({1 Sott) - minf | < a1} >

tEA
(1~ e)exp (~T*(m)(1 + Oleo - L7°)))

where T"(m) is the value of the Wulff functional for a Wullf droplet of total volume
V(m) = (m" —m)/2m" - |A].

Proof.

1. The rest of the section is devoted to the proof of the theorem. In a first step
we get a lower bound on Prob{A(m)) by choosing suitably a subset of A(m), and
by estimating its probability (see {7.22). Let I'(m} be the contour defined by the
configuration ot} = ~1if t € intW,(m) and o{t) = 1if t € intW,(m). {We suppose
that W.{m} is "in the middle” of A). The contour I'(m} is a simple closed line on
A*. We approximate T'(m) by a convex polygon P{m) in R* whose vertices are
sites of I'{m} and the Euclidean length of the edges of the polygon 1s &L with
és < o, The value of & is chosen later. The vertices of the polygon are denoted
by t1,...,tn. For each edge we construct a square box, whose sides are horizontal
and vertical, and which iz divided by the edge in two parts of equal volume, the
extrentities of the edge being on the sides of the box (see figure 4).

Let I' be a closed contour passing through £;,...,ty and eniirely inside the boxes
which we have constructed. We also suppose that there is some constant such that
the length of T satisfies |I'] < const - L. (The value of the constant is specified later
on ). Let B(T) be the set of configurations which have the contour ' and such that
all other contours ¥ have a volume smaller than L*7~9, ie. they are s-small with
g = [0

Prob{A(m)) = MﬂU Prob( A(m} - B(I')) (7.8)

Mm Prob{A(m)|B(I'}) - Prob(B(I))

where the sums are restricted fo the contours I' above.
Prob{A(m)|B(T)) = (7.9}
1 Prob [ {] 3 a(t)~ mIA}| 2 colAl- L}B(T)

tEA

The volume of T is such that

[V(m) — vol{T}| < |T(m)|2al?™" < 4LéoL ™ = 4égiAl- L™ (7.10)
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for some fixed &, 3 and L being large enough. Therefore
Prob(4(m}) > (1 — 1/Zexp{~2c8¢" - L)) Prob( B) (7.15)
where B = UrB(TI'). We can replace in {7.15} the set B by a subset of B, which we
. R — - ¢hoose as follows. Let us consider the part of I'(m) inside one of the small boxes, .
A N which we introduced above, say the box denoted by A{k), which contains the points
ket i and try3. Let ug, resp. vy, be the sites of I'{m ) N A(k) which are at a distance L*
u " L from ty, Tesp. {py1, 0 < 6 <1 —c. We cut F{m) at u;, and v, and remove the pari
\rlh_ of ['(m) between ui and vy, Let 4, be an open contour, entirely inside A{k) and
{ _.l._ such that &y, = {us, v}, and not touching the remaining part of ['{(m). Moreover
k we suppose that |y < const - L*°. We glue together 7 and the remaining part
ALK) of T{m} at u; and v, and repeat this operation for each box. In this way we get
a closed comtour, passing through t,,...,¢y. The set of all closed contours passing
through ¢4,..., tn, which are constructed as above, is denoted by H. Then
Prob(B) > Y Prob(B(T)) {7.16)
Ted
and
e ~l -usir) _2
Figure & Part of the polygon P(m) and the square boxes. Prob(B(T')) AN A\Cv € a”éww.iw: exp EWW bl {7.17)
AHI..,MU compatible -
Therefore, if T is fixed,
N If we remove the constraint |} small, then we get Probf{T). Probi(I') can be
2oty —miAl = | ot)- (S o)IBT)) (A) (7.11) wmkten
“ - . Prob}(T') = e (n(I))* (A)(1 + O(=~01H)) (7.18)
+ ({2 o(t)B(T)) (4)-miA] with
teA
1
and D)= J[ ={t), n{t)= m? + (1)) (7.19)
+ t:
. ) NG TSt
MQQ:mAJv (A) = m™(iA| — vol(T')) — m"vol(T'} + O(L} (7.12} ,
teA since for any subset Q, Z7(Q) = Z~ ({1} by symmeiry. Therefore we divide and
The term O(L) = O{1/L){A| takes into account the boundary effects, which are of multiply by
order O(L) since |I'| < const - L, and the fact that all contonrs except T' are small,
which gives a correction of order O(exp(—88L'~°)) (see section 4). From (7.10), 3 exp | ~283  |nl {7.20}
(7.11) and (7.12) we get for any configuration o ¢ A(m), o nn
+ (F\1) compatible
o et)~{ 2B ()2 (7.13) and we have
tEh teh
|Al(co/ L — Bm™&/L° — O(1/L)) = 1/2{Aleg - L7° Prob(B(T)) > (7.21)
provided we choose & small enough. Theorem 5.1 implies that exp A|0Amn%h_£vv -Prob{(F) >
_ eapi-e ~ 20811 + -
Prob { {| Y o(t) = mlAl | 2 alAl L7|B(D)} ) < (7.14) (1 - Ofexp(=86L179) ™M (n(M)" (A) 2
teh 1 — Ofexp(—88L <))} e *FH (n(T nlp )it
Sexp(~1/9eu0' - L) (1 - Ofexp( 0) e (n(D) " T (rt
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The first inequality is proven by usi i
y using the cluster expansion and the | ine i
consequence of F.K.G. inequalities. In (7.21) T is ihe part of I'(m e

toall T € H. Since I' = (T, yy,...,yn) we get } which is common

Prob{B(T)) > - - L=e =280 ()t
;me (BT) = (1-Ofexp(-88L" )} T (nTN*. (7.9
2 *
. m A " P ?S\Lv%v
the index * means that we sum only over the allowed contours i
2. We must bound from below the sum
Mq o280 n{y)* (7.23)

Sm_mnm 7 is & contour inside of a square box as in figure 4 | Iyl < comst - L1-¢. W,
observe that the sum in (7.23), when we remove the constraint on the noﬂnoc.nm Qn

is equal (essentially) to a two-point function of the dual model., Let O be
square box containing . We consider

" o280
22,7 ()t (@) (7.24)

and at the end of the estimation, we take the Lmit 1 7. We have

some big

AV () = 2 )
(n()7 () = 70D A (7.25)

Mw.mna the partition ?nmasﬂ of the numerator differs from Z(9°|y) of {6.20) b
the fact that some mwnﬁ_.uam of contours appeating in {6.20) do not appear rnno.q
namely those families which contain an odd number of closed contours mﬁnocm&amu

¥. However, the cluster expansion gives
Z@h) (7:29)

with O(e™%"™") independent on 9 and 4. Thus
e M (@) 2

(7.27)
exp (—O(e=FE ™)) . §™* o= 281 )
u&uA A vv Mx‘ A NADQ
and
* -2 200 1) _
MUQ ZQ) (7.28)
T m;“m:_ﬁm‘mﬁia Y e Zh)
owﬁocmﬁ_“su—mq NAS v nnnw_m—&.Man Nﬁb*v
{o(u)a(v)) (2°) ~ -2 22 17)
Vi) - T eI
forbidden

where v and v are the extremities of 7.

3. The problem now is to get an upper bound of the following type

zZ(Qa
5 e ZE < touioto) (@) (7.29)
mO—MM&Mﬂ:

with € < 1, so that we can estimate (7.28) in terms of {o{u)e(e))’ (1), The
forbidden comtours y are divided into different classes and each class is estimated
mﬁuwgﬁ.&% Among the forbidden contours 7y there are those which have a length
[} > const - L', From lemma 6.3 we know that

{e{w)o(e) (Q) < exp{~7{u,v)) (7.30)

where T{u,v) = dy(u,v)a{nl,) = BO(L'"), n,, being the unit vector giving the
direction of the straight line through u and v. If the constant in |y} > const . L=
is large enough then the contribution of these contours is negligible.

4. The other forbidden contours 7 have a length {7| < const - L'™* and must touch
the boundary of the small box, denoted by A, or must touch T. Let

C = T |yl < const - I by = T:aww (7.31)

Let v € C and G{v) be the set of all shortest paths in v from u to v. Such paths
are simple and we choose one of them, denoted by g{~v). We bist all simple paths
v € C. We define g{7) as the path of G{7) which is the first one in the list. Ouce
gly) is chosen, we can describe uniguely the contour 4 by v = {gim,....m) where
M. .. M are closed disjoint contours such that the union of g and any o is a
connected set and g and 7; have no common edge. In other words the union of g
and the contours n; is an open contour with boundary points u and v. This is the
type of decomposition considered in section 6.4.1. Clonversely, given a simple open
contour g with endpoints u and v, and a family of closed contours 7, we say that
{g:m1, ..., ) is weakly-admissible if the union of g and the contours % is an elemnent
of €, and we say that (gim,...,7) s strongly-admissible if the union of g and the
contours 1 is a contour 7' € C such that g(v) = g.

5. We consider the contours v = {g;ny,...,7) which contain at least one contour
n such that |p| > In L. The estimation below is done in the spirit of section 6.4.1.
Let O* be the subset of € of all {g;91,...,m) with |} < Inlk ¢ = L... k. We
define 2 map © on C with values in C*. Let 7 = (g9, -2 Moy Mot -+ (T} € C with
i<laL,i=1,.. . kand|p]>Wwlj=k+1, .. ,q¢ By definition

Oy} == (g, - 7) (7.32)

In order that © be well-defined, we must verify that ', which is the union of ¢ and
s,.. ., 7% has the decomposition {g;m,. .. 7). Since v is an element of C, 4 is
also an element of C, and thus {g;%,..., 7} is weakly- admissible. Moreover, since
we have removed some conbours 7,

G{7) > Gi7') (7.33)
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But g is an element of G(v) and also of G(v'). We must have oY) =

(im, -, m) is stromgly admissible and © is well-defined. Let 4~ & g and therefore

o 35(n) : the largest value of s such that g{s} is a point of 5

C*. Then
3 o281l Z(Sry) < gince 7 is closed, thereis a path on 5 going from 51 10 &; with length smaller than
¥€0- (v )iy Zay = (7.34) 1/2in L. Therefore we must have
) mé_g_.ﬂw.md Al ’ sy — 81| < 1/2In L : (7.37)
() il ) DJ AR T
1ot . (@ jy) otherwise we could make the path g shorter. The next question which we consider
el 7 bw ) v 2B ] Z{{ ) is the existence of cutting points for -y (see section 6.4.2). If there is no » in the de-
(@) {nfsttl) Z(Q|v7) compuosition of y such that s1(%) < s and s2(7) 2 5, then we can decompose ¥ with a
. i int at g(s). The next estimation is useful when we look {or such a situation.
where in (7.34) we sum over all cutting poi e e
no " .y ; L N . . . . : N
that the union of 1 and g .. n empty families (77, ..., 7;) with Il > In L, such (Not all v € C" have cutting points.) This estimation is similar to the estimation

-1 is a contour y € O7Hy"N\v*. The last factor (7.36). Let I be some interval of [0,lg]]. Let v = (& Tis- e o2 T3 Mhtdr - - > Tq) Where

in {7.34) is smaller than one since 7" € 9. Therefore the last sum i

estimated usi n (7.3 we have distinguished in the notation the contours n such that sy{y) or s(g) €1,
ated using the method of the cluster expansion, (7.34) can be which are denoted by fusi, ..., % For each y we define ¥ = (g; 71, ..., 7k ). We have
1
- _ : ; _agi SLE
am ! A.Mu : P (=28l +- + ) = {7.33) 3 e .MB_% . (738)

comp.,fn] ¥ ()=

connected Lo ¥

v 1 -8t —20m Z (1T}

i n Mg 10 -Tlg Fmketl VAL
o b=t i:M;u;t AU sxmmé_a_ -1< e~ 200 mmﬁﬂs_% exp ::Q?Lu&
i[>t L, conn. to g -
exp AQ:.& . mém?bd -1 We have used the inequality
Z() = Z{(Wh) (7.39)

MN.MuOQ _m.‘._ < Axv_mmnh\ °, we mﬁw @{_ ﬁOﬁzdumHﬁ:.m A‘N.W&v A.ﬂ.@@u ﬂz&, summy over -y 1= Owﬂmﬁﬂu expan L
— ] 3 u
.Dm NM-& ».7

Y e~28hi Z{ry)

<
FEC\E* Z{1+) (7.36) 7. We first consider the contours 7 € C” such that dy{g{v),8A) < InL. The
exp (O(L1=¢ . o~2BInby} _ e 2y estimation below is done using the reflection principle of the theory of random
A P A A € vv wv ’ MU e 7] ANAS_.\.« ) < walks and the results of section 6.4.2. Let A be the set of points of A which are at a
wa AOTmTe —3p1el i .mh: ) distance less than 21n L from the boundary of A. There exists for each v an interval
P "€ vv - Hv Ae(u)a(v)) (07) 1 of length In L, such tliat all points 9(s), s € L, arein A. Let ¢ be the middle point

of T and £ = g{s'). Let 7 be the contour constructed in the preceding paragraph
with the above interval 1. Then t is a cutting point for §. Let us suppose that £1s
as in figure 5. Let ! be the horizontal line through ¢ Let p and u™ be the points of

6. It remains to consider onl
the { * .
y contours 7 € C* such that figure 5 on the vertical line through «, such that da{u’,p) = dz(p, ). Finally let @

¢ cither the distance of g(7) to the boundary of A is less than In L, be the point obtained by a symmetry of axis I. We have dg{¥, ) > dy{u”, u}), and
b b n N " .
e or 7 touches I A. the line through »* and v has a slope equal to one. By the results of section 6.4.2
we get
Let us examine with more detai =
ils the st = Z{5
The hne g going from u to v WM mmhwwmzoﬂwwwmm.nowﬂﬁ Y= (g0, ) € C. D o~ 2P% Nmﬁxﬁﬂv < {o(w)a(t)) - (o(t)ato)y (7.40)
0, . arametrize it with unit speed 7
0,1g1] > g(s). Let 7 be some closed contour in the decomposition of 4 %Mmmmmmbw =
. — f f
* 5:(n): the smallest : . = {a(@o(t)) - (o{t)olv])
est value of s such that g(2) is 2 point of < Aiﬂvqﬁev%ﬁ
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vomﬁm . b mw., mohwmlw is al a corner of the square passing through v« and

oint % » ¥, 47 and @ are on the same vertical line, and d { g8 u and v. The
point & is obtained from u by a reflection of axis I, 2(4,p) = dy(p,u"). The
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where we have used the symmetry properties of the two-point function in the ther-
modynamic kmit and Qriffiths’ inequality. The monotonicity properties of the cor-
relation functions {lemma 2.4) imply that

(oo = (olw)a(e)f (1.41)
(o(s)o(v))! .

for all points s of the polygonal line 1 of figure 5. Simon’s inequality and {7.41)
imply

(A%

(el@efe) < MMESQA&K.?EQ?% (7.42)
< (olwow) -3 le(@als)
1]
Therelore
oo 20
W,.m 7 - (743)

di{g(v),A)SIn L

O(L*<In ) - exp (0(e™)in L) - exp (~O(L) - (oo (@)Y

since }A] = O(L'1n L) and we can choose the line 1 so that dq(s, @) < O(L%} for
each point s of the line I.

8. Finally we consider the case when 7 touches TFAA. Let v =(g;m,....m)and
let ! be the part of T 1 A containing the point u. We order lineazly the points of [,
starting with . Let £{7) be the point of [, belonging to 7 and which is the first one
in [ We first suppose that ¢(v)} is a point of g{v} = g, and we denote by g(~) the
part of g going from u to #(y}). We decompose uniquely v into (y1,7) where 1y i8
the union of 7 and all contours 7 of v with gl31(n)) € §. The contour 7, (as set of
edges) is 72 = Y\y1. We fix y, and sum over yz. We get

> %%E_W}uswﬁsmmwm 1) _ _
=t

MU G|ub3n_ NAS\W\«»V . m!nuwﬁu Nﬁﬂwm‘wm U \xww

s () Z{& 1)

Hr}=t
The last quotient is estimated using the cluster expansion,

Z{n U )

B 7.45
23 (1.4
1 n
expl -5 Y @A) Tl =
nz1 " 3 =1

Afr g0

exp (Imi0le™)) (746)

Pfister 1015
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Therefore we get {see (6.23)) the upper bound

{o(t)r(w)) () -exp (~(28 = O(e™®))|m]) < (7.47)
{o(u)a(2)) (27) - exp (—(28 ~ O(e™)}im])

since t = t{y) and -; is"an open contour with §(v;) = {£,2}" Then we sum over all
71 and all ¢(v). Thus we can bound (7.44) by

O(e™%) - (o(w)o(v)) (7.48)

The last case is when £ = ¢(+) € g(-). In this case there exists a urique %, say u;, of
7= (g,m,...,9) such that ()} € 5. Let g{7) be a shortest path from ¢ to w in .
We choose this path as follows. Starting al ¢, this path is first in 7 until it reaches
a point of g, say ¢, of parameter s*, g{s") = £. If there are several possibilities
we choose a path with s minimal. From ¢* the path is given by the part of g going
from £ to u. If there are still several paths satisfying the above requirements then
we choose the first one in a list of all paths from ¢ to u. We define 7: as the union
of (v} and all contours  of v which are different from 5, and with s1{n) < s*. The
contour 7, {as set of edges) is 43 = y\¥:. The contour 4 is uniquely decomposed
into {71,7z) and we can repeat the above argument. (See remark of 6.4.1.)

9. Let ¢ > 0. Then there exist L{¢) and B(¢), such that for L > L{e), 3 > Ble)

- .
Prob(A(m)) > (1 — e)e™ T {n(T)}" T] {o{un)o (v}’ (7.49)
K1
By F.K.G. inequalities
(@) 2 I () =exp{~[Fi0(?)) (7.50)
eedges of T'

with n{e*}) = n{t)n(t'), e* = {¢,#'} being the edge dual to e. Notice that [} =
O(Le**). We finish the proof of theorem 7.1 by using lemma 7.1.

Lemma 7.1 ([D.K.S])

For B high enough

1
{o(w)a(v)) =e )0 o (7.51)
Summarizing all the results, we have
Prob{A{m)) > (7.52)
N
(1~ )exp(= 3 rlur, ve)) exp (- (28 + O(e™)) - O(1°*7)) (7.53)

k=1

Since the points fy, teys, U, U are on the same straight line

N
F(P(m) = 35 (b taes) = 3 (s, ) + BO() (7.54)
k=1 Je==1
- But . )
[T* = 7(Pm))] < &O(L )8 < coO(L' )3 (7.55)

and we may choose & > 0, as small as we want, so that I — ¢ > ¢+ &, This ends the
proof of theorem 7.1,

Remark.

Lemma 7.1 expresses the fact that the two-point function at high temperature has
an Ornstein-Zernicke behaviour. It would be sufficient for our purpose to have a
constant « instead of 1/2 in this lemma.
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Vol-

8 Droplets.

o L
The model is defined on A, a square of volume L7 in 7. We have + b.c. and \\\
no magnetic field. This hypothesis holds for the whole section, Prob{E) is the .
probability of the event E computed with the measure (-3 {A). We distinguish

7
in each configuration between small contours and large contours. In section 8.1 we \\ \ \ \Nkmh 7
define these notions and = set of configurations F such that . —\ | % &\
2]
7 7

v

S

(E - A(m))"
{A(m))*
In the rest of the section we give another description of the set E, introducing “\\

the notion of droplet. We partition the set E into subsets E(51,...,5) indexed =t , L
by geometrical objects, called droplets. A droplet is defined at the scale [ with Zz . \\_\\

e < b <1-c¢ it has a volume, aud the length of its boundary is measured by the 2 \
Waulff functional. We estimate the probability of E(5y,...,5,) in terms of the Wulff §
functional. The introduction of an intermediate scale is essential for this estimation. 7

7
7

>1-0 T;easv (8.1)

\

bt

8.1 A typical set of configurations for a large deviation of
the magnetization.

We define the notion of large contours. We proceed in several steps. We first
make concrete the idea that a "complicated” contout is not important because its
probability is small.

1. Let v be some arbitrary closed contour, and o, be the unique configuration which
has only this contour. The subset of R?, which is the union of all plaquettes p*(t),

v

N

t € 2%, such that o,(t) = ~1, is bounded. The complement of this set in RZ hes a T
unique connected component of infinite volume. The exterior enveloppe e() of v is g \\
the boundary of this infinite component. It is a connected subset of <. The exterior
enveloppe e{y) divides the plane inio several connected components. Each bounded 77 \
component has a boundary which is a simple closed contour, called cycle. We can ]
]

as sels of edges, are disjoint. By definition Inte;(%) is the bounded closed set of 2

whose boundary is the cycle e;(y), and & @

decompose ey} into cycles () = {e1{7),..., ex(7)). The contours e;(y) and €567}, \ \\N§

Inty := C Inte;(y) (8.2)
&; ¢ycles
of e{~}
e i i i i and
Fotie that Taby docs mot coincide with the st 7, but e hare Figure 6: Decomposition of -y into the mﬁm:ww mm<Mwo»wﬂm e w%m »wwmncMrMMmeMo nd
. terior enveloppe has three large cycles and ten small cycles.
Inty Dinty , vol(Inty) > vol(y) and |e(y)] < | (8.3) £. The exterior envelopp

contours £. Compare with figure 7.

2. We decompose uniguely v into €01, 7p and £, .. ¢, where e = e(7) is the
exterior enveloppe and the contours 5 and ¢ are closed disjoint contours, which have
al least one point, but no edge, in common with e {see figure 6). This is the kind
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of decomposition of section 6.4.1. By definition |n;| < In L and #l>InL. We write In & configuration the small contours are denoted by ¥i,. . ., ¥n and the large contours
¥ =v{eim, - Ui €14 .., &g). We define a map Fy, on the set of contours -

Flvlem, . . omibey ... 8) = He My 1) (8.4)

From lemma 6.6 and the remark following its proof we get

Lemma 8.1
For large 3,
wmowﬁﬁmmﬁvme"...,ﬁw:»uﬂwmvm Am.g

k
exp AM;U_%;_V.Q:EM& Prob{(Fi{%1), ..., Fi())

3. The intersection points of the exterior enveloppe ¢ and the closed contours 5 or
§ are necessarily corner points of e and of 7 or ¢. This implies that the subsets Inty
and Intf are disjoint two by two. Therefore if v = e m, .o e b, 1&g}, then

Inty = IntFy(v) (8.6)

because we do not modify the exterior enveloppe by the map 5y, but we have
intFy(v) D mty (8.7

Indeed, inty, as set of A2, is composed of the closure of the set
Inty\ [{ Ity | JInté; (8.8}
s &;

and of subsets of Inty; or Inté;. By the mapping Fy we do not modify the structure
of v inside Intr; and if remove the sets Intf;, then we can only increase

inty.
4. We recall that the set A(m) is

Afm) = { : |3 o(t) - miAl| € colA]- 1) (8.9)

teA

with ¢ a parameter, 0 < ¢ < 1/2.

Definition:

A contour 7 is small if all connected components of int F1{y} have a
volume < L g = 1 c. All other contours are large.

by Tisee o T The isoperimetric inequality on the lattice is
16 - voliy) < 1l (8.10)

Therefore all large contours have a length Jarger or equal to WNQ. Zosn_m that all
connected components of inty have a volume smaller than .h % when < is a small
contour. For small contours we can apply the results of sections 4 and 5.

We estimate the total length of ihe large contours.

Lemma 8,2

For B and L large enough,

Prob {{total length of the large contours is equal x}} < (8.11}
gla)exp(—z(23 — In4))
where g{z) is the number of solutions of 1 € oy < --- = o <z, o4 € N and

vk o=, k arbitrary. For large z

g{z) ~ fww.e. exp Aw:,\m\qmv (8.12)

Proof.

k -
Let g(z, k) be the number of solutions of 1 < o < +-- < o <o, Sl m=xk

fixed. Lei T4,..., T, be the k large contours of a configuration. We have at most
: (8.13)
wayﬂ - %;M\\D

large contours, The number of contours, which have a length |T] and contain a fixed
point of L* is smaller than 3. Therefore

Prob ({3 [T =2}] < 3 gle, kle Po37(L})* (8.14)
i k=1
< 3% gl ke tiege( 1
< mm.av exp Alaﬂmm -3 - 1/2L7%-In Sv
< qfz)exp(-2(28 ~ n4))

provided that L is large enough.

As a corollary of lemma 8.2 we have
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from a{m).
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Theorem 8.1 Lemma 8.3
Let § > 0 and ¢y = (a(m) - [W. )2 - 877 + §, with a(m) = (m" = m)/2m". Then Let T = {Ty,..., T4} be fized and such that
Jor B and L large enough 1
|a(L) — a{m)| > mmHWIﬁwn I ) (8.24)
- Prob AM i) > nuh_&?svv,m exp(--F6L) T {B.15) i 2m(F)
‘ with cp and c the constants appearing in the definition of A(m) and ¢; > 0. We alse
Proef. suppose that T |Ti] € e3L, ¢y being the constant given in theorem 8.1. Let B(T) be
the set of all configurations having the collection [ of large contours. Let 8 be o
We recall that T is defined by constant, 0 < 8 < 1. Then
and
provided that B and L are large encugh.
Vim) = a(m)L? (8.17)
Therefore Proof.
T = 2a(m) - W, V2L (8.18) Let A(L) be the set
We have AD) = A\{t € A:di(t,UT) < 1} {8.26)
Prob AMU Ty = afﬁiwv = {8.19) Let o be the configaration in A compatible with the + b.c. and having exactly the
: contours of I'. We choose the o b.c. for the set A(I'). Then
Prob { 4 ol = Prob{¥; [Ti| = z) .
e {m)l M_ il == Prob{A{m)) Prob(A{m)IB{L)} = {A(m))" {A{L}) (8.27)
But by theorem 7.1 The index * means that the configurations in A{l'} have only small noumoﬁm and
: ition i i ith s = L*. We hav
Prob(A(m)) > (1 — ¢} exp(~T"(1 + O(cal ™)) (8.20) that the boundary condition is . Theorem 5.1 applies with s N
where 0 < ¢ < 1, and € can be chosen as small as we want provided that 3 and L To(t) - mlA| = AMU olt) — Maﬁvv (M) {8.28)
are large enocugh. By lemma 8.2 e teA tEA
Prob AM ;| = Hv < exp{~2z(f — In5)) (8.21) + AAM qu (ALY~ s_zv
; tEA
provided that # and L are large enough. The condition on the total length of large On the other hand
confours implies .
28z > 2e,8L = T* + 2861 (8.22) MQS (A(D) = (8:29)
te
d hence the lemma is proved. 3
e feies Hhe Tomma is prove me(B)(A] - «(D)IA]) — m*(B)a(D)IAl + O(FiA| =
A small contour cannot surround a large contour, and the type of T; is uniquely . 1
determined by the collection of large contours of the configuration. Let I be the set m(B)IAI(1 = 2o L)) + Of hzﬁ
of all large contours of a configuration o. Then o) is defined by the identity The term O(1/) takes into account the error we make when we replace Aq.é&v: (A(LY)
Yo vol(Fs)— 3 vol{Iy) = a(l) - |4] (8.23) by {o(t)}" (infinite volume limit) and then {o{t)}" by m*(8). The errot is of the or-
R fipEt der of the length of the boundary of A(L), which is O(L) since T2iT}| < e, L. Notice

that we have

mlA] = m (B)1 - 2a{m))|Al (8.30)
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Consequently, for any o € A(m),

2 o) {2 qEv (A(L))

e tEA

> eal70|A] (8.31)
if L is large enough. The lemma follows from thecrem 5.1.

ém.nwm now state the first main resslt on the typical configurations of a }
deviation of the magnetization in the Gibbs state {+)*. This theorem is anal s
o the gm.omma of Minlos and Sinai p.365 in [M.S.1]. However, our definition &omocm
contours is different and we do not fix the exact value of mﬂmv magnetization o

Theeorem 8.2

Let m, —m*(#) < m < m*(3) be given. Let L{o) = (Ty{o),...,Tulo)) be the

collection of all large contours in a configuration o, Let

A{m) = {o: o{t) —m colAb- L<
{ _W {t) - mlA]| < colA]- L7} (8.32)
and

E={s: T I0)| € erl, |(L) - a{m)] < cel} (8.33)

1

The constant ¢, is

ez = (afm) - |[W,)'/?. 37" + 5 (8.34)
and ofL') is defined in (8.23). If

[ 1
42 gt glolm) WD (Bm (B (5.35)

with x > 1, then forany &, 0 < & < | and # ]
1 1 sk 1 ’ !
ot ol £ K » there exist L(87), B(8") such

Prob(E|A{m)) > 1 — exp(~36L} — exp(—-T"1/2(¢'x — 1)) (8.36)

The probability in (8.36} is computed with the (libbs measure { -} (A} of an Ising

model in A, with + b.c., couplin = 1
, €. g constant J = 1, ne magnetic field and at
temperature 8. The constant T* = 2(a{m) - _ﬁﬂ_vw\u - L. ! feld and at inverse

Proof.

We estimate the complementary event £°,
Prob (E°|A{m}) <
Prob (30114 > ezL|A(m)) +
Prob (32 I < cal, [afL) = afm)] > efl ™| A(m)) <
exp(—A8L)+ Y Prob(B(D)|A(m))

LY RS0k
le( ) ~ax{m} [ ey L~

(8.37)
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Now
Prob( B(I'
Prob(B(D)|A(m)) = Prob(Alm)|B(E)) - i (8.38)
and - B )
AE - MML ABHL - am* > T e (8.39)

Therefore the theorem follows from lemma 8.3 and theorem 7.1.

8.2 Large contours and droplets.

We consider configurations of the set E of theorem 8.2. The total length of large
contours is bounded by ¢; - L and the total volume of large contours is at least

Tovel(l) = a(D)Al (8.40)
> (a(m)—ca- LNA]

It
=
3
St
————
s
!

E
Elr
&
s —

We study the geometrical structure of the large contours of E and define the notion
of droplet. We proceed in several steps.

1. We distinguish between small cycles and large cycles in the decomposition of a
lazge contour I' into an exterior enveloppe and closed contours. By definiiion a small
cycle ¢; is such that the volume of Inte; is smaller than L withe<b<a=1—c
(We cannot choose b too small for entropy reasons.)

Lemma 8.4
In a configuration o € E the total volume of all small cycles is smaller than

LI} (epf2 + 2L/ L) (8.41)
Proof.

We enumerate in some way all small cycles. We collect the cycles into families.
There is oaly one family if the total volume of the small cycles is less than 20% .
Otherwise the first family contains alf cycles €5, 7 =1,...,m, such that

m-1
Y vol(Inte;} < * (8.42)
=
and
L® <% " vol(late;) < 2L (8.43)

Gt
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Then we define a second family and so on. H there are more than one family, the
total sum of the lengths of the cycles in a family is larger than 4% as a consequence
of the isoperimetric inequality (the last family may be an excepiion). Thus there
are at most {1/4 - c;L'~* -+ 1) families of small cycles, so that the total volume of
small cycles 15 smaller than

2LP(1f4 - op LY 4 217 {8.44)

2. Up to this point we have described the contours from the "outside”, using as basic
geometrical object the exterior enveloppe. Now we describe the large contours from
the "inside”. This new description is done for the contours T' such that Fy(T) =
since F{T'} is the important part of the contour. We introduce the notions of inner
component and of inner boundary. Let T' = (e;m,...,m), and let e; be one large
cycle of the exterior enveloppe e of T. Let {e;;m1,...,1.) be the part of I' which is
composed of the cycle ¢; and all contours 7 with a point in common with e;, i.e. all
contours n with p € Inte;. Since |5/ <Inl

vol{Inty) < (In L)? (8.45)
We have

Inte;\ [} Inty; | € intT (8.46)

fzl

and we decompose the set

Inte;\ | Intay; (8.47)

i=1

inte connected components. A connected component is large (small) if its volume
is larger than L (smaller than L%*). The large components are denoted by I; =
DT}, and are called inner components. We extend this notion to an arbitrary large
contour and define an inner boundary.

* An inner component of I is by definition an inner component of Fy(T).

& An inner boundary is the boundary of an inner component.

Lemma 8.5

In a configuration o € E the total volume of the inner components is greater than

Vim) {1~ N@%ﬁ ~O0(3i7% Lv (8.48)
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Proof.

Let T'y, ..., Tk be the large contours of the configuration o € £. We have

Yovel(l) = DAl (8.49)
= V(m)f1- m%ﬁml ,
and
Intl'; = Int Fy(T) , vol{IntT;) > vol(T:) (8.50)
Therefore

Mdo_ﬁnﬁﬂm =z MSVKM ) > Vi(m) A Mﬁ.w..wmw,w‘mv (8.51)

The total volume of small components of a contour T'; = Fi(T;) is estimated like the
total volume of small cycles, and is smaller than

L 1o (f2 4 2L4D) = Vim) { 25 4 22 (8.52
@ VA OTam) | Lia(m) 52)
The total volume of the sets Inty is smaller than
: Inl
L e Vim) | 2 :
< _Eu 3?, Ly =Vim) ooty T (8.53)
Thus, the total volume of the inner components is greater than
N\vﬁu Mbuv
() — .
HM_,dowa () Vim) Lam) + huﬁﬂsvv (8.54)
€2 Hmm h
- Vim) Tmﬁ:& L

C4

iV

Remark.

An inner component of a contour I' is a connecied component of intFy(I'). Each
large contour has at least one inner component, since by definition 18t Fy(T) has a
connected component with a volume larger than L

3. In this paragraph we give a more precise description of an inner boundary §0.
By definition §D is the boundary of an inner component D, which is inside Inte,
where e is a large cycle of the exterior enveloppe. We consider ¢ as a unit-speed
parametrized curve s’ € [0, [el] — e{s’), where |e} is the length of e. The orientation
of the curve is counterclockwise so that each Inty C Inte are at the left of the curve.
We also consider 6D as » unit-speed parametrized curve s € {0,]00]] v §D{s).
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Contrary to the cycle e, this curve may have points of multiplicity two. {A point ¢
has multiplicity two if there exist s; and s; # s, such that §D(s;) = 6D(s;) = ¢ )
In order to specify the parametrization we always make a left turn at each vomb.*.
of multiplicity two, and the orientation is counterclockwise. This implies that each
Inty, which is connected to the component D, is at the right of the curve §I. Th

m.m._...wawﬁmmmmou is uniquely fixed by choosing the starting point. The curve is .mcw
a simple curve since points of multiplicity wo may exist. (However such points are
never crossing points, and by & slight perturbation at those points we get a simple
curve,) The inner boundary is decomposed into maximal connected sets of edges
of the ..wﬁm&om enveloppe, and maximal connected sets of edges of the noﬂoﬁmwd

} maximal connected set of last type is necessarily a subset of a single contour d.
since the contours n are disjoint, We always have at least one connected set of mammh
of the exterior enveloppe, since {60 > 4L° and |5| < InL. Let us sappose that
8D{0) = e(0). Let us also suppose that sy is the first time such that §D(s, + 1) is
not a point of e. Up to that time, both parametrized curves §D and e are the same

At that time we make a left turn if we follow 5D, and a right turn if we follow m.
Let us follow §D and let s, be the first time greater than s; such that §D{s9) is w
point of e, §D(3;) = e(s}). (We may have 5, = 5.} All edges between s; and s, are
edges of & single contour 7, and the set Inty is in the intetior of the parametrized
curve which is given by the curve e(s’) with 5] = s; < &' < s and then by §D(s)
with 83 > 8 > 3;. (We go backward along 6.} From that it follows that two
components of the inner boundary which are composed of edges of contours 7 are
necessarily subsets of two different contours 5. In other words, the intersection of
the inner boundary and of a contour 7 is always a subset of the form

{6D(s)is1 < 3 < 33} (8.55)

4. We describe the relative position of the inner coraponents in a contour I'. Let

= (e;m,...,m) with || < InL. Let Iy,..., I}, be the inner components of T.
We decompose (the set of R?)

P
It | ] D; . {(8.56}
i=1
into connected components. Let {B:,..., By) be the closures of these components
We add to this collection all points of the exterior enveloppe e which belong to :qm
different inner boundaries (see figure 7). The resulling collection is (B;,..., B )
¢ 2 ¢, and these sets are called blocks. We consider the intersections of these v_mohwmv
with the inner boundaries, and we decomposed these sets into maximal connected
sets, which we call gluing sets. We have two kinds of gluing sets. We have the gluing
sets, which are composed of a single point of the exterior enveloppe where two cycles
meet. We have gluing sets, which are intersections of inner boundaries and contours
5. Indeed, if a coniour 5 has a nonempty intersection with a block B then

Inty C B (8.57)
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hecause
»
Intt\ | J D; > | J1ntn (8.58)
i=1 n

and Int7 is a connected subset of R?. We construct a graph. The vertices of the graph
are in one-to-one correspondence with the inmer components and the blocks. We
have edges between an inner component and a block, if the block has a nonempty
intersection with the inmer boundary of the inner component. We draw between
these vertices as many edges as there are gluing sets in the intersection.

Lemma 8.6

The above graph is a tree

Proof.

We first prove that the graph is simple, i.e. there is at most one edge between two
vertices. Let us suppose the converse. Then there is an inner component, say D,
amd a block, say B, such that BN 6D has (at least) two gluing sets. Let u be a
point of one gluing set, and v be a point of the other gluing set. We can find in R?
a simple closed curve going from u to v inside the inner component, and then back
40 in the block. Let A be the bounded set encircled by this path. We go along the
inner boundary §D from u to v by a path inside A. This path necessarily contains
an edge of the exterior enveloppe, since the gluing seis are disjoint. On the other
hand the set A is in InsT. This a contradiction. The graph is a connected graph,
because T' is a connected set. Let us suppose that we have a cycle in the graph. Let
Py, ..., Pn be the vertices which represent the blocks, and gy,. .., ¢, be the verlices
which represent the inner components of this cycle. Going around the cycle we go
through g1,01, 92, P2, - - - » Gn. P and then to gr. All vertices of the cycle are different.
As above we construct in H? a closed simple curve entirely contained in the union
of the sets represented by the vertices of the cycle, and we get & contradiction since
this curve encircles an edge of the exterior enveloppe.

We call external blocks the blocks which are represented by vertices of incidence
aumber one in the graph, and we call internal blocks the other blocks.

5. We now describe a large contour I' = Fy(T') by taking as basic geometrical objects
the inner boundaries of T. The inner components of T are Dy(I'),..., D(T), and
the inner boundaries of T are §D4(T), ..., 5 D{T"). We decompose the contour I'into
o= (60T, 60T AL An) The contours A,..., A, are closed contours
and disjoint two by two. There are contours A, which are connected {o & unigue inner
boundary, and which we call ezternal contours. They are the parts of T inside the
external blocks, There are contours A, which are connected to at least two disjoint
inner boundaties, and which we call infernal contours. The internal contours are the
pasts of I which are inside the internal blocks. Since the external contours do not
play a special role, it is better to consider them together with the inner boundaries
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to which they are connected.

Definition:

A bare droplet of a contour T is a closed connected set of edges of L.~
7 which is the union of an inner boundary 5D of the contour Fy(T'} and all
external closed contours X of Fy(T') which are connected to §D. A bare

\. droplet is given by T = (805 M, .., Xp).
A \

l||®~ 6. We define the droplets. Let D = (§D;Ay,..., A;) be a bare droplet. We make
a coarse graining description of D, following an idea of Dobrushin, Kotecky and
Shiosman. To each D we associate a unique sequence of points in the following way.
We introduce some total order for the sites of A*. Let us choose a parametrization
of 8D so that D{0) is the first point, for the order in A7, with the property that
{6D(0), 6 D(1)] is an edge of the exierior enveloppe, Let &g = 8D(1} be the initial
point of the sequence which we are defining. The next point ¢; is chosen as follows.
Let ¢; be some small fixed number. Let s be the first value of the parameter such
that

&
o

da(6D(1),6D(s")) > L - 5 (8.59)
w7

\ 1{8D{s'),6D(s' +1)] is an edge of the exterior enveloppe, then £, := 6§ D{s'). If not,
\ N we define £; 1= §D(s), with 5; the first value of the parameter which is greater than
\\ s and such that [6D(s,),6D(s; + 1)] is an edge of the exterior enveloppe. Noiice
k \ that ,
% oL —In L < dalto, 1) < kP +n L (5.60)
\ since for all contours 7, |n] < In L. Then we define t; as above and s on. For any

\ \\ ’ 6D we have a unique sequence S{80) of points to, ..., tn, with
7 sl L < dy{ti tip) S eLP+Inl (8.61)
§ fori = 10,...,n—1. The distance between {,, and o may be smaller than cs L —1In L.

We say that iwo bare droplets D and T’ (of different configurations) are equivaleni

: . . if t 1 .
Figure 7: The inner boundaries and {he tree associated with T, There are six inner if the sequences S{T) and S{T') are the same

components, five external blocks and three internal blocks. One internal block is

, locks Definition:
composed of a point of multiplicity two of the exterior enveloppe. e

A droplef is a sequence of points & sich that there exists a configura-
tion of E having a bare droplet D with 5(D) = § . An errangement
of droplets is a family of sequences 5y,..., S, such that there exists a
configuration of E with bare droplets Th,..., Dy such that ${D) = 5,
t=1,...,k
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To each droplet we associate a closed polygonal line going from t, to ¢y, from #,
to iy, ..., from t, to ty. This closed polygonal line divides the plane into a finite
number of bounded connected sets and one unbounded connected set. The volume
vol{5), of a droplet is the sum of the volume of these bounded connected sets of m.&
The boundary of @ droplet S is the polygonal line defined above.

Theorem 8.3

Let E(S1,...,5) be the set of configurafions of E which are compatible with the ar-
rangement of droplets Sy,..., 5. The set £ can be partitioned into subsets E(5,.. ., Si)
such that the total volume of an arrangement of droplets 5,,..., 5y is bounded by

.r
9_ m
Wi@u wisvT Tralr) ™ Emﬂw vv (8.82)
Proof.

The total volume of an arrangement of droplets is greater than the total volume of
the large components minus

&
{6
M Lreg ~In L

i=1

w(LPes +In L) < O(L) (8.63)

8.3 Estimation of the probability of an arrangement of

droplets.
Let I' = (T'y,...,T'%) be the set of large contours in a configuration ¢ € £, We
define o map F;
FT) = (Dy,..., Dy} {8.64)
where (D, ..., D,) is the arrangement of bare droplets in the configuration ¢. Notice

that the bare droplets azre closed contours, but they are not necessarily disjoint : it is
possible that they can meet at points of multiplicity two of the exterior enveloppes.
However, the union of all bare droplets forms a compatible family of closed contours,
which we still denote by (Dy,..., D)

Lemma 8.7

Let ﬁ@:. .. V\Unv be an admissible arrangement of bare droplets. Then, for 3 large
enough,

Prob ({L: Fy(L = (D1,..., Do)} < (8.65)
exp(q - Ofin L)) - Prob ({Dy,..., D,})

where Prob ﬁ@r Co @awv 15 the probability of the family of closed contours whose
union is D, U ...Cm,un.
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Proof. Let o be a configuration, and (I'i{e), ..., ['s{c}) be the set of large contours
of . Let (T,...,T%) be a set of compatible large contours. The set (I';,...,T})
is mapped by F; into ([,7,...,T}”). By definition Fy(T%) = F{Ty"). Using lemma
8.1 we can write

Prob ({£: Fy(D) = (D1, . PY}) = : (8.66)
3y - Y o % Proble) <
OBy ADrr T
exp T..uh - Qﬁ\humd : Y, Prob(I"}
o

Fa( y=(B1 v By)

Fach contour T}" is uniquely decomposed into a family of bare droplets and internal
closed contours, since Fy(Iy") = I, By definition all these internal closed contours
are subsets of the internal blocks. By lemma 8.6 there are at most g internal blocks.
Indeed, if we remove from the tree all vertices which represent the external blocks,
then all vertices of incidence number one represent inner components. Since there
are ¢ inner components there are at most ¢ internal blocks. All internal contours
are inside the internal blocks. They meet the inner boundaries at the gluing sets,
which have lengths < InL. Let us denote by I a gluing set. If we resum in (8.66)
over all internal contours which are connected to I, then we get a factor

exp(O(e )]} < exp(O(e™*}In L) {8.67)
Therefore, we can bound (8.66) by

(2%3922) - exp (es L - O(1/ L)) - exp(gO(e ™) In L) (8.68)

Prob (D1,...,D,)

the factor (L23"F)? giving a very rough bound on the number of possible choices of
the gluing sets of type L.

We can now estimate the probability of an arrangement of droplets. ILet S =
(#5,...,tn) be o sequence of points defining a droplet. We define

n

T(8) = 3 m{ti i) (8.69)

it
with w.ivu = wu and ._..An-.'mw+~w as in Aﬂ‘WQV
Lemma 8.8

Let{S,,...,5,} be an admissible arrangement of droplets. If 3 is large enough, then

Prob({5y,..., 5} & AHWW mnqmmbv exp{p - O{ln L)) {8.70)

£=1
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Preof.

In any configuration compatible with the arrangement of droplets there are p bare
droplets, one for each §;. The lemma is proven using lemmas 8.7, and 6.7. We use
lemma 8.7 in order to reduce the estimation to the estimation of the probability of
the family of p bare droplets. Let us consider the case where we have a unique droplet
5= (ty,. .., laer). We can decompose any bare droplet D, 5(D) = §, into n pieces
B, 1= 1,...,n, with cutting points £;,... f, =ty. Let D = (§D; A, ... ,Ak) and s,
be the value of the parameter 3 such that §D(s;) = #;. For i = 2,. .., n we define 8,
as the open contour which is formed by the union of the part of the inner boundary
{8D(s) : 5i.1 < s < s;} and all external contours A which are connecied to that
part of the inner boundary except at the point £;_4. Since [6D{s;-3),6D(s;.4 + 1}
is an edge of the exterior enveloppe, the contour §; is irreductible at i1, when
t=2,...,n — 1, The contour 6, is irreductible at {to,tn—1} since [0, 8D{1)] is
an also edge of the exterior enveloppe. The contour 6, is defined as the union of
the part of the inner boundary {§D(s): 1 < s < s;} and all external contours A
which are connected to that part of the inner boundary. Since all external contours
are inside external blocks it follows from the tree-graph structute of a large contour
that all other requirements for a decomposition with cutting points are satisfied.
Therefore we can apply lemma 6.7. When several bare droplets are present ii is
possible that they are not disjoint. The only possibility is that they are joined by
an internal block consisting of a single point of the exterior enveloppe where two
large cycles meet. By the tree-graph structure of a large contour there are at most
p such points in a configuration of p bare droplets, Using the remark following the
proof of lemma 6.7, and the fact there are at most 2° - (L?) different families of at
most p points, we get an extra factor to the estimate of lemama 6.7, which is

& - (L*F = exp(pO(in L)) (8.71)
Lemma 8.9

Let @ be large enough. Then for any 8, 0 < § < b, and L large enough

Prob AMAE > ﬂv S exp (~T(1 - 0(1/8L*)) (8.72)

i

Proof.

The proof is similar to the proof of lemma 8.2. Let §; be a droplet and n, = n(5;)
be the number of points of the sequence $;. Let us suppose that we have k droplets,
S1y-., Sy and that ny < -+ <my and Ty = N. Let T = 52 7(5;). We have
Prob{{S:,..., 5} < (8.73)
exp(—T}exp{kO{in L)} =
exp(—T + kL) exp{~kL? + £O{In L))
Cleatly k& < N and N is such that
T 1

& e+ e 2T .ﬁn!v i
N2 BT e = o) (8.74)

with 7 = max r{n) = O{). Therefore
Prob{{5,..., 5} < (8.75)
exp AI% + OAH.TJEJ - exp Alzﬁhm — O{ln va

We estimate the number of droplets with ng + -+ + e = N. .There are at most
{ I2)* choices for choosing the first points of the k &.omur;mw if we have .nrOmmu the
first i points of a droplet, then there ate at most 21n L{cs L .+ In L} choices for the
next point. The number of droplets with ny + - + ny = N is smaller than

S q(N, k) - (2In B(es I* +mL) (@Y < (8.76)
k

S a(N, k) - (2In L(es 2P + LI =
k

exp{ NO(ln L)}
Therefore, we have (for L large encugh)
Prob AM T(S)>T) < (8.77)

exp AEH T, - 0?\_@&&?3: <3 exp AI?T«L% ~ Ofln h:v <

N31

exp Aim: T e Oﬁw\_mbr:.m vvv

Theorem 8.4

Let b be such that ¢ < b < 1 — ¢ = a. Let £ be the event which is the m:mmﬂmmnkod
of the set of configurations such that the sum of the lengths of the large contours is
saller than ¢+ L and the set

Cq H\w
=do: . b L O 8.78
AP S =
with O(LY/L) as in theorem §.3. Let £, be the event
. oy Fo
fr=lo: T 7(S) < T (m) Ti&ﬁ v (8.79)

S;e8(e)

with O(co/ L°) the function appearing in the estimation of Prob{A(m)) in theorem
7.1, If B is large enough, then

Prob ({£ N EjA(m)}) 2 1- 2exp T:w T*(m) - O3 v (8.80)
1—2exp AI_Q . Oﬁh_-,nvv

il
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Proof. . e .
g9 Large deviations and phase separation.
By th . ] . .
mmﬁamﬂﬂwﬂwmMmmwamwwwﬁmegm M:va.. MM. E, and therefore Prob(£5|A(m)) can be We comte to the last step of the analysis. From the above results we know a set
condition A(m) -2. We estimate the complementary event £5 of £; under the of typical configurations & N &, which is the union of subsets E{S;,..., 5} where
' . . _ §i,..., 5% is an arrangement of droplets, We first prove that all arrangements of
. _ .. Prob(£3) droplets of configurations of & 11&, have only a single droplet of volunie larger than
Prob(£5]A(m)) = HumocTKS:MN:unogL% {8.81} 12 if B is large encugh. This is a consequence of a lemma due to Minlos and Sinai.
< Prob{&s) The phase separation and the large deviations results follow then easily.
T Prob{A(m))
By lemma 8.9 we have Lemma 9.1 ({M.5.1})
Prob AM (S > Tl + mDTMMVVV < (8.82) Letd;, i=1,...,r, be v positive numbers such that
. i 1 s
{1 Loy _ di<l+¢g {9.1
exp A A ETMQA I Qmmhwlmv Oﬁ_mwh.l‘v:lm vvv ,lezm w
and by theorem 7.1 we have and
Prob(A(m)) > (1 - ¢} exp AL?: + oﬁmm:v (8.83) TE>1-g (9.2)
< : =1
We choose b, c < b <1~ ¢, and § so that h—§ > c. Therefore, if L is large enough ¢ and € positive. Let dpee = max(di:i=1,...,7). [f e, & are sufficiently small,
. co then there exists a positive function, exey, €;), such that g tends to zero when g
Prob(£7]A(m)) < exp AI 1/2. H*?HVOANM“V (8.84) and €; tend to zero, and such that
We have {see theorem 8.2) doax 21— €3, MU di < e +es %9
d; Fdmnx
Prob((&; N &2)°[A(m)} < Prob{&7|A(m)}} + Prob{£5| A(m)) (8.85) Proof.(IM.5.1])
< Zexp A;:m.ﬂ,?%ﬁm v
L Let # = 2 and let us suppose that d; > dy. Thus diax = di and we have
R y d+dy<i4e, d+d>zl—g (9.4)
emark.
The factor 2 in (8.79} can be replaced by any factor strictly larger than 1. Then in ; Therefore
{8.80) the factor 1/2 is replaced by (v — 1}/2. (dy + o) =& +d5 + 2dydy < {1+ e ) {9.5)
- 2 < )
and
M&H&uMH+NM+NM~1M+muHmW+MmM+mu Ammv
We have from {9.4) that
- 1z
a2 (*52) (9.7)
i 2
M and from {9.6) and (9.7)
1 &2 +e
Au .AI m . A% = mpﬁmfmww Awmv
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and Proof.
2y1/2 12
d 21— e —d})? 2 (1— 6~ €f) Pe1-e (9.9 From theorem 8.4 we know that a typical set of configurations, under the condition
Let us consider the general case. We divide d,,.. ., d, in two groups, diyr.. . di, and Afm), is the set of all configurations which contain droplets S,..., 5; such that
diy ..., d;,, and set i . . k .20 .
] S (S < T"(m) - ? +20(32)) (9.18)
&m e am: e R & .m.m N n_“u = md.: R nmm:u A@MOW f-1
Clearly and
k
ditdy<l4e,d+d 216 {9.11) Svol(Si) = V(im) - {1~ liamm - QAEVV (9.19)
faxl Qﬂﬁww

Therefore duay > 1 — €3, dnin < €4 and For droplets the isoperimetric inequality is
ldy —da| > 1~ &3 — &4 (9.12) TS 2 4 (Wi vol(S;) (9:20)
Let us consider the case where in one geoup we take only one element dy,, which we

and therefore we have
iabel by d;. Let us prove that dyay = duy is impossible. Indeed, digay < ¢4 implies

: . k %
that d; < ¢4 for all 1 > 2. In this case we can always divide dy,...,d, into two new M (5 = W, .M<oz.m._,v {8.21)
groups such that i1 B =t
ldy — daf < 2e (9.13) z 4-JW. | V(m)- T - MSFO - QTLV

which is in contradiction with (9.12) if €; and e; are smalt enough. We have therefore

But, the relation between T*{m) and V(m) is precisely
proven that

(T*(m))? = 4 W] - V(m) (9.22)
di = doer 21— 63, 3 di e (9.14)
iz2 and
We notice that V(m) = a(m)|A] , a(m)= Hmem (9.23)
mmm = m di—dy < e+ e {9.15) Therefore, by putting &; = v{5:)/T"{m) we gel
k i
Vdi<liegand 3 .dizl-e {9-24}
Let us call large droplet any droplet whose volume is larger than L7 #=1 =
with
b
Theorem 9.1 — hak =% .0 L 5.25
a=20(5) , a=se+0(y) (9.23)
Let £, N £y be the set of theorem 8.4. If @ is large enough then there is a single and we may choose {see theorem 8.2)
large confour in any configurations o of & 11 &;. In all arrangements of droplets of .
configurations o of £ N & there is a single large droplet ${o) such that oy = m (W C:Gi B £ >1 (9.26)
m*
Ik .
vol(S} > V{m} |1~ Eaﬁﬁv - Qﬁaivu (9.16) From the lemma 9.1, we know that ihere exists a large droplet, say 5, , such that
7(51) 2 {1~ &) - T*(m} (9.27)
and
co and otherwise
HS) < T° T mcrv
(YT {m)i1+ Ahnv Am.md Muﬂﬁ,m.aw < (e 4+ €3) - T*{(m) {6.28)

i22
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Let us examine this last inequality. We recall that 0 < c < 1/2 and c < b < 1 — ¢,
Therefore the dominant term in e, 15 the first term and we can neglect the second
term for large L. We set

i 1
- W)/ =
€ %Qﬁav EB ..AQAﬂZ.V_ : .N.ﬂ R ﬂ@.M@V
and we have
1 <
=t 2mram) I- (9:30)

We can choose ¢p as small as we want so that we have for ¢p very small
€€ and e ™ epf2 & ef2 (9.31)
because {W,| = ({f?). Therefore

3 vol(8i) < (5 < {9.32)
i>7 qu

1 ? 1 e
W] ..wMgl,w.b =1 Mii%zweﬂq_ . Msﬁ,_ {m))* =

w: W

e T————— e A B Nh
ey 165 T

When J tends to infinity the Wulff crystal is a square of side 2, if we normalize the
surface tension by dividing by 8. In our case

W
Ry

=1 (9.33)

Thus, for large B, the total volume of the droplets 5;,..., 5 is at most 1/4L*
since m* == 1 and we can choose & > 1 as small as we want. This implies the
existence of a single large droplei. We have two possibilities: either there is only
one large contour, and each dreplet is associated with this large contour, or there are
several large contours. This second possibility is excluded for large enough 3. The
total length of the boundaries of the droplets 5;,7 > 2 is at most of order O(L1-).
Therefore the total number of the points of the sequences S3,..., 5y is of order at
most O(L**~*). The total volume of the droplets which are not linked to S; by the
same large contour is at least

- QL7 < (9.34)

Indeed, each large contour has an inner component of volume larger than L. But
sincee<b<l~c=awehavel—c+b< 2a,and we get a contradiction because
from (9.32) we know that the tolal volume of the droplets 5:,..., 5 is at most
1/4L* when 3 is large. We conclude that there is a unique large contour in any
configuration of the set £ M &;.
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We recall the following definitions, Let v{n} be the surface tension of an interface
perpendicular to the unit vector n of R2 Let W, be the Wulff crystal,

W, = {z € B*: (njz) € r(n}} {9.35)

where {-|-) is the Euclidean scalar product. The volume of W, is denoted by
S\ |. By a dilatation of the Wulff crystal we define a set W.(m) of volume V(m) =
Q?:v;r with alm) = (m* —m}f2m". The value of the Wulfl functional for this set
i T*(m), (T*(m))? = 4{W,|- V(m). Let A = A{L) be a square box of volume L?
and A{m) = A{m;c, ) be the set

Almic,co) = {o |3 o{t) — miAl} < il - 177} {9.36)

teA

with § < ¢ < 1/2, and ¢ not too large.

Thecrem 9.2 {Phase separation)

Let —m* < m < +m*, m not too small {see remark below). Let E be the subset of
all configurations o such that

o there is a single large contour T of length |F| < oL
* the volume of T' is such that jvol(T') — V{m)| < cy|A} - L~*
The consfants cp, ¢q arve defined in theorem 8.2. If B and L are large enough, then
Probl(E|A(m)) > 1 ~ exp(~BO(L'"°)) (9.37)

The conditional probability is computed with the finite Gibbs measure e

Theorem 9.2 (Phase separation)

Lel —m* < m < +m*, m not too small (see remark below). Let § be a large droplet,
E{5) be the set of all configurations o having only one large droplet 5, and £ be the
union of the sets E(S) such that

# the r-length of S is such that [r(S) ~ T*(m}] < T"(m}- O(L°)
o the volume of § is such that tvolS ~ V{m)| < |A}- O(L7°)
If 8 and L are large enough, then
Prob(£lA(m)) 2 1 — exp(-BO(L' ")) {9.38)
The conditional probability is computed with the finite Gibbs measure piy

Proof.

The lower bound on 7(S) is & consequence of the isoperimetric inequality and of the
lower bound on the volume of 7(5).
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Theorem 9.4 {Large deviations)

Let —m* < m < 4", m not too small (see remark below). If B is large enough
then

. u.
.m_amwu ~7 ln M.Ho.owr@vﬁm?ﬁn_ o)) = 2{|We| a{m))’? . (9.39)

The probability is computed with the finite Gibbs measure u}.
Remark.
The value of m must be such that the square box A contains a set 1somnetric to

Wo(m). I not, the resulis above are not correct. They remain correct if we chooge
a box A which iz obiained by a dilatation of the Wulff crystal.

Proof.

Theorem 7.1 gives an upper bound. For the other bound we may consider only the
case 0 < £ < 1/2. We have

Prob(A) = Prob(An &)+ Prob(AN &°) (9.40)
= Prob{A N £} + Prob(£°|A)Prob{ 4)
< Prob{£) + Prob{£°| A}Prob{ A}
But
Prob(£) < Prob{{o : r(S(e)) = T (m}{1 + O{L™°)}) (9.41)

Where S(¢) is the arrangement of droplets of the configuration ¢. The theorem
follows from lemma 8.9

Conelusion.

The single large contour I of each configuration of the set ENE can be decomposed
into its inner boundary 51 whose length is (L) and a family of closed contours 8,
which are disjoint two by two and which have at least one side in comunon with T,
but no edge in common with I'. Let £ be the subset of configurations o of £ &
which are characterized by the fact that each small contour v has a length |y| < CL®
and each closed contour # of the decomposition of T has a length |8] < CL®. The
constant a satisfies 1/2 < & < 1. From the theorems on the phase separation, the
results of 6.41 and theorem 7.1 there exist Sy, Lo and a constant ¢ such that for all
Bo> Baand L > Lg,

o Prob}(£|A(m)) > 1 — exp{—BO(L"))

There is another picture of the typical configurations at a scale of order O(L*). Let
§ be a droplet of £~ and E(S) be the subset of all configurations of £* associated
with the droplet 5. Let A(A) be the set of all t € A which are at 2 distance smaller
than € L* from the boundary of A, and A(S5) be the set of all ¢ € A which are at a
distance smaller than ;L from a point ¢; of 5. There exisis a constant ) so that

» the unique large contour T of any configuration of {5} is in A(S}.

The set A\(A(A)U A(S)) has two cornected components, A(5)and A_(S), which
are serarated by A(S5). Let A be a finite subset of Z*. By choosing the constant
¢, large enough we get the following results (see section 4 and also appendix A in

E.U.%EY - A
e fAtsin Ay, then
e ANBSNE — (AT | < Olexp(~AL%)) (o(AN”
o if Aisin A_, then

Ha(AIE(SNE — (o(A)) ™1 < Olexp(~AL ) (AN

Let W,{m) be the Wulff droplet of volume V(m), and A(m) be the subset
A{m) = {t € R? : dy(t, We(m) < G213}
There exists a constant (7 so that

e any polygon constructed with the vertices of a droplet of £7 is covered by a
set isometric to A(m}.

This statement is a consequence of the generalization of the classical mmoamwwmm in-
equalities of Bonnesen to the case of the r-length {see [D.K.8]). Let c be a rectifiable
Jordan curve, which is the boundary of a region @ of volume vol{c). Let

r{c) = supf{r:r - W.+ o C Glorsomex € R*1
R{c} inf{R: R W, +2 D G for some z € R*}

whete p- W, = {y = p-z : @ € W.}. Bonnesen’s inequalities are

(e}~ frie)? — 4| W, ivol{c r{e) + 4/ m{c)? — 4{W.lvol{c)
(&) — @_Eg volle) < R V' -

i
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10 A shorter proof of the main results.

It 1s possible to get a shorter proof of the main results, if another notion of contours
is introduced. Let A be a finite subset of 7%, and Jet ¢ be a spin configuration in
A compatible with the + b.c. for A. The configuration is uniguely specified by ,

* family of A*-compatible contours {7;,...,¥,). We say that a point t* € 7% 45 4
crossing point of a contour v if there are four edges of v which contain the point £,
We modify the family of contours as follows :

¢ ot each crossing point we change the contours according to rule a) of figure §
¢ we round off the corners of the contours according to rules b), ) of figure 8.

After these transformations we get a family of closed simple disjoint lines, ¥4, . .. Y,
which we call simple contours. We define for the simple contours the notions of imty’,
inty, A*compatibility and A*-compatibility as before. We zalso use an equivalent
description, which is more convenient for the duality. We iniroduce some order for
the points of the dual lattice and we orient each simple contour so that the interior
of the simple contour is at the left-hand side. We deform the simple contours so that
they are again drawn on the dual lattice and we consider these new lLines as unii-
speed parametrized curves, the origin of the curve being the first point of the curve
for the order of the dual lattice. We call these lines parametrized contours. We still
denote the parametrized contours by v/,..., ... The length of 7' is by definition the
length of the parameirized contour 4. A simple contour, or a paramettized contour
is,

o smallif voly' < L%, 1/2 < a < 1,
o large if voly’ > [?°

The greal advantage of the simple contours is that their geometry is trivial. There-
fore we can avold a large part of the discussion of section 8. The main steps of the
analysis are summarized in remark 3 of the introduction. The first three steps are
proven in essentially the same way when we adopt the new definition of contours.
The proof of theorem 7.1 is in fact simpler, since we do not need the discussion of
points 4, § and 6 of the previous proof {see below). We concentrate the discussion
on the changes which occur in section 8. We prove a lemma replacing lemma 8.8,
Once this lemma is established, then theorem 8.4 is proved as before, and hence also
theorems 9.2, 9.3 and 9.4.

As in section 6.4.2 we use the duality and correlation inequalities. Tt is therefore
convenient to work with parametrized contours. Let I" be a large parametrized con-
tour. We define the notion of droplet. {This is essentially the skeleton of [D.K.81)
A droplet is specified by an ordered sequence of points of [Y. The first point of
the sequence is the origin of IV, t; = I'(s = 0). The next point, t,, is I'(s} s0
that 5" is the fizst value of the parameter s € N such that do{T"(0),I"(s)) > Lb.
As before ¢ < b < a = 1~ ¢. The next point is defined similarly and so on. In
this way we can associate with each large parametrized contour a sequence of points

aA

H.P.g
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- o i N )
RULE B RULE C

B e

Figure 8: Modification rules for the contours.
S(I*) = {t1,-..,ta}, which we call & droplet. (It is possible that we have t; = t;

for i # j since the parametrized contours may #wﬁw ﬁwwam of Mu%awwwﬂﬁ Wﬁwvwm MWM
arrangement of droplets 51, .. , 8, is defined as in section 8 an { r.m... Sk i
set of all configurations associated with the ﬁnﬁ,&aﬁmnn oﬁ &aommn”mm 1y fwa M.ym_..m
is possible that the same point ¢ of the &g.&. M.wﬁﬁm occurs in two .m.nluan wn ;
sinee the parametrized contours are not digjoint.] For any droplet 5 = {t1,-. -1t

we define its -length, -

3 10.1
.ﬂﬁ%u ”ﬂ M._.Qu.unu.fmv - s=+u =1 A v

izt

Here 7(t;,¢;41) is defined as in (7.30). We prove a lemima replacing lemma 8.8.

Lemma 10.1

Let A be a simply connected finite set of 72, Let 54,..., 5 be an arrangement of k
droplets, the droplet 5; having n; points. If B is large enough, then

!
Prob(E(Sy,...,5)) < Hmm exp TJOTLE wv 11 e ) (10.2)

F=t F=1

The probability is computed with the Gibbs measure e
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Proof.

To simplify the notations we consider the case & = 1 of a single droplet §
{t1,...,ta}. Let " be a large contour such that S{F) = §. We decompose :,”i.
e

mv&.n.m.uﬁ.mwﬂmﬂmnm OAVMZUO‘.—HHa uw.mﬂﬁ.: Oﬁmn—vaH GHNG&A.\C & m
wgﬁ
u fLours, »u ' y .u—.:. wwn ﬁm@ h:-

A= A{T(s)]e < 5 < sipa}

| {10.3)
whete s; is defined by 4 = I'(s;). We must estimate
Prob(E(S)) = !
(E(5)) WH Prob(I) (10.4)
S(1Y)=8
~ n ot ZOA A
e Y Hlahgy ZA0 )
Ay Aagt m v Nﬂ>sv

Sxe={t; &1}

where ﬁ_w partition function Z{A*(A1,...,A.)) is the partition function of an Isi
E,.,ug& with iree boundary condition, at inverse temperature 8%, in a finit Mﬁm
A™(A1, ..., A ). This box contains all spins of A~ which are not on M&m ﬁwnwwmw i OM
no_u.moﬁu Ar, .. o An and all spins on these parametrized contours which are at o oo
which are Bc&mna by rules b) and ¢). We remouve all coupling constants of the oBMmM
between ;.5 spins which are on these parametrized curves. The partition fu d,mo y
are normalized as in (6.5), see also (6.23). We fix for the moment Ay A w:m o
over Ay, Let Z{A"(X;, ..., A.)) be the partition function of an wm_.mm“ nwmmmwiwww“ﬁﬂﬁ
boundary .now&mo? at inverse femperature 8, in the finite box A*() A H_Mmm
hox contains all spins of A~ which are not on the parametrized nozmwrw.qw .y % W_w
and all spins on these parametrized contours which are at corners which are e a.m., m
v%.nnmam b} and ¢), as well as the spins £; and {; which are on the ro:mmwmﬂo M»w
umion of these parametrized contours. Again, we remove all couplin n%zcﬁ om
between two spins which are on these parametrized contours. We can m%_mﬂwwwﬁmm m

mlu.mwym_NAA}*A\/T s “\ﬂ:vv

Z(A (A2, A0)) {10.5)

as a nwu#:uwto: to the expectation value {o(t;)o(£:))" (A*(Ns, ..., A }. Therefor
by Griffiths’inequalities we can bound the sum over ), by {o{t; viwnv:vu.. We get )

- Ay Nﬁ\f*ﬁ\/m»...,\/:
> TT(tenn gy D totote)’ - (106)

At An: = A el
m»_.H.T...\W..t.w . A v
Y [aan gy 2800 02D 2O s M)
Z1oon At = A o -
.u\(.»ﬂ.mn...y?..v; k= m Au.m. ! v..:vv NTP w

MSW sum oﬁww.yu when the other parametrized contours are fixed. Let M 7
e m compatible closed parametrized contours of a configuration nom?mvmawm ﬁw

Z(A*(Az,...,A.)). Then the family of parametrized of contours Ay, m,. .. 0. is

yol.
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|3 8 EX. 2

£

Figure 9: Examples of rule a) for an open contour.

a compatible family of parametrized comtours contribuling to the numerator of
Aqﬁnuvaﬁuvva (A™(Xs,---, X)) If one of the parametrized contours 1; fouches Az at
t, then we suppose, without restricting the generality, that this is the parametrized
contour ;. The union of A, and 7, is denoted by X,. It may happen that X, must
be considered as a single parametrized contour. Indeed, we must extend the rule a)
to the case of an open contour when three edges have a common point. Examples
of this situation are given in figure 9, Whenever this situation occurs we may get
the same family of compatible parametsized contours in two different ways : either
it is the family Xy, 72, 1., %m or it is the family A2, 71,72, - Tm. IR figure 9 this
is the case for the third example. To avoid this problem we multiply and divide
by the partition function Z(A"(As,...,M,)) which is the pattition function for an
Ising model defined on A*(Az, ..., A)\{t2}. (As before we have no coupling constant

between two spins on the parametrized contours Az,.. ., An-} We have
ot (A s, A0))
tanh g ) ! < {o{ts)o(ts))’ 10.7
S aah )M TR € ottt (10.7)

and by the cluster expansion

Z(A (- 2n)) -
TS ) (06) (10.8)

By repeating this argument we prove lemma 10.1.

Remark.

The bound of lemina 8.8 is better than the bound of lemma 10.1. However, the
extra factor is of an order comparable with the entropy estimate of a collection of
droplets and therefore the proofs of lemma 8.9 and theorem 8.4 remain the same.
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On the Critical Behavior of the
First Passage Time ind > 3

L. Chayes*

Department of Mathematics, University of California
Los Angeles California 90024
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Abstract The first passage times for the Bernoulli percolation problems on
the d-dimensional :Wﬂwonnawa lattices are S<wmmmm6a.. Foralld (and hence
for d 2 3) it is rigorously established that, in the n:c.n& region, the first
passage times tend to zero with the same scaling behavior as the decay rate
for correlations in the associated percolation problem.
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