

Published at the International Conference on Enterprise Information Systems 2003 (ICEIS 2003), Angers,
France. Electronic version available at: http://lamswww.epfl.ch. © EPFL/LAMS & ICEIS

ON THE SYSTEMIC ENTERPRISE ARCHITECTURE
METHODOLOGY (SEAM)

Prof. Alain Wegmann
Systemic Modeling Laboratory (LAMS)

School of Computer and Communication Sciences (IC)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

 CH-1015 Lausanne, Switzerland
Email: alain.wegmann@epfl.ch
WWW: http://lamswww.epfl.ch

Keywords: enterprise architecture, system sciences, business engineering, software engineering.

Abstract: This paper presents an original methodology for Enterprise Architecture. Enterprise Architecture is the
discipline whose purpose is to align more effectively the strategies of enterprises together with their
processes and their resources (business and IT). Enterprise architecture is complex because it involves
different types of practitioners with different goals and practices. Enterprise Architecture can be seen as an
art; it is largely based on experience but does not have strong theoretical foundations. As a consequence, it
is difficult to teach, to apply, and to support with computer-aided tools. This paper presents how system
sciences, by defining the concept of the systemic paradigm, can provide these necessary theoretical
foundations. Thanks to our systemic paradigm, the enterprise architects can improve their understanding of
the existing methodologies and thus find explanations for the practical problems they encounter. This paper
then gives a concrete example of the application of the systemic paradigm: the Systemic Enterprise
Architecture Methodology (SEAM) - an original methodology. With SEAM, architects can use a
methodology that alleviates most of their practical problems and that can be supported by a tool.

1. INTRODUCTION

Business and information technology (IT)
integration is essential for enterprises to achieve
their competitiveness. Unfortunately, a large number
of the IT projects fail in achieving this integration
(Standish Group, 1994). Enterprise Architecture
(EA) addresses this issue and goes beyond IT. EA
addresses business implementation in general and,
more specifically, the integration in efficient
business processes of the IT resources (e.g.
applications, clusters, networks …) and of the
business resources (e.g. facilities, people, machines
…). Unfortunately, according to the analysts’
forecasts, the success rate of the EA projects is not
much higher than that of the IT projects
(MetaGroup, 2001).

The EA methodologies are largely based on the
experience developed by the architects across the
multiple projects they have realized. The experience
and the good practices are captured by means of
patterns that are reused from project to project.
Beyond these patterns, the methodologies have no
theoretical foundations. This leads to challenges in
promoting/ teaching/ applying EA and to the
difficulty of developing efficient tools to support
EA. In other words, EA has not reached the level of
maturity that it deserves in regards to its importance
to the development of competitive enterprises.

Our group’s goal is to bring more maturity to
EA. To do so, we analyze the foundations of EA and
formalize them in a systemic paradigm. Then, based
on this paradigm, we develop the Systemic
Enterprise Architecture Methodology (SEAM). The
SEAM acronym also refers to the seamless
integration between business and IT. SEAM

- 2 -

includes the SEAM philosophy, the SEAM method,
and prototypes of computer-aided design (CAD)
tools. The SEAM philosophy corresponds to the
fundamental principles on which SEAM is built.
These principles are important as they define the
formal models required to develop the CAD tools
necessary to support EA.

This paper has the following structure:
Section 2 - presents what EA is and its main
challenges; Section 3 - what SEAM is; Section 4 - a
small case study.

2. ENTERPRISE ARCHITECTURE
AND ITS CHALLENGES

In this section, we present EA in general. We
then introduce two existing methodologies. We
complete our presentation by a discussion of the EA
challenges.

 An enterprise is an organization of resources,
which performs a process. Examples of resources
are people, computers, machines, buildings …
Architecture is the “manner in which the elements
are arranged or organized” (Merriam-Webster,
Web). So, EA is the discipline that deals with the
organization of the enterprise’s resources. This
organization evolves, as a consequence of the forces
that are exerted in and on the enterprise. The goal of
an EA project is to define and implement the
strategies that will guide the enterprise in its
evolution. These strategies are actually both the
plans to be realized by the enterprise and the patterns
stating how the enterprise operates (Mintzberg & al.,
1998). To make this more concrete, let’s take an
example of an EA project related to an on-line
bookstore (BookCo). Our example is inspired by a
New-York Times article describing Amazon, the on-
line retailer (Hansell, 2001). As with Amazon,
forces are exerted on BookCo to require its
profitability. As a consequence, the management
team investigates how to reduce the BookCo
operating and capital expenditures while maintaining
the same revenue. To do this, different possible
organizations of the BookCo resources are analyzed.
The solution that is selected consists in using the
warehousing resource of the publisher instead of the
one of BookCo. By choosing this strategy, BookCo
focuses on the sales and marketing and leaves the
logistic aspects to the publisher. This would reduce
the operating and capital expenditures and allow
BookCo to become profitable. As a consequence,
this strategy requires the modification of the existing

business processes, of the IT applications, and the
renegotiation of the contracts with the publisher.

EA projects deals with the enterprise in all its
aspects. As a consequence, EA teams have to be
multi-disciplinary. An EA team includes specialists
(typically upper management, functional managers
and senior staff members) together with architects.
The role of the architect is to federate the efforts of
the specialists to ensure successful projects. The
architects are either from the enterprise itself or from
a consulting firm or an IT vendor. In our example,
the EA team would be composed of the management
team of BookCo (marketing, operation, IT, finance,
legal, and quality managers), the senior staff
members (senior business analysts and IT
developers) and one or more enterprise architects.

In an EA project, the EA team analyzes the
existing organizations and designs new
organizations. To reason and communicate about
these organizations, the team develops an enterprise
model. An enterprise model represents the
resources found in the enterprise and in its
environment, together with the processes in which
they participate. The model represents only the
entities of the enterprise and of its environment that
are relevant for the project. The enterprise model is
structured in organizational levels (Miller, 1995). In
EA, an organizational level is a part of the enterprise
model that describes the enterprise from the
viewpoint of one or more specialists. Traditionally
EA methodologies consider three organizational
levels. The business level represents the company, in
its market. It is generally analyzed in terms of
products or services, and revenue. The operation
level represents that the company is composed of
people and systems (e.g. warehouse or IT
application). The operation level is generally
analyzed in terms of business processes and
operating expenditure. The technology level
represents the technical infrastructure composing the
systems (e.g. machinery in the warehouse or
software components in the IT application). The
technology level is generally analyzed in terms of
capability and capital expenditure. Each level
describes either what currently exists (as-is) or what
should exist (to-be). What is actually represented in
each organizational level depends on the chosen
methodology. In general, it is related to the
transport/ storage/ processing of either matter/
energy or information. It is important to highlight
that these organizational levels are related. For
example, an IT system can be modeled in the
operation level as an IT application providing a
service and in the technology level as a set of
software components that implements the service
defined in the operational level. Similarly, a
warehouse can be modeled as a service in the

- Page 3 -

operation level and as people and machinery in the
technology level. The traceability is the capability to
make explicit the relations between related model
elements found in the various levels of the enterprise
model. As the purpose of EA is to integrate business
and IT, this concept of traceability is essential as it
allows the EA team to make explicit how the
integration between the levels is realized. Typically,
the business level defines the goals to be reached
and the operational and technology levels show how
these goals will be reached. Explicitly establishing
relationships between organizational levels is what
makes EA projects original compared to other multi-
disciplinary projects. In regular multi-disciplinary
projects, the specialists use their own models. The
traceability between them is far more difficult to
establish. The consequence is that it is much more
difficult, or even impossible, to check whether the
project leads to an integrated solution.

EA methods define the development activities in
an EA project. A project begins with the decision of
an enterprise to react to or to anticipate a change.
The team’s first activity consists in modeling the
entities, from the enterprise and from its
environment, that are relevant to the project. In our
example, the team models the business level as-is
representing BookCo as unprofitable. They also
define the operation level as-is representing
BookCo’s existing business processes and the
related operating expenditures. The expected
reaction to the change, or the goal, is modeled as an
organizational level to-be. In our example, this
corresponds to the business level to-be that models
BookCo as profitable. Here a gap is created because
the operation level as-is (i.e. BookCo using its own
warehouse) does not correspond to what is defined
in the business level to-be (i.e. BookCo being
profitable). The gap is the difference between what
exists and what should exist to achieve the goal. To
close the gap, the team must develop organizational
levels to-be and deploy them. An EA project deals
with multiple gaps, typically one per level. Of
course, all these gaps correspond to a same
enterprise analyzed at different levels; so the
resolutions of the different gaps cannot be
independent of each other. This is why the EA team
needs to find adequate tradeoffs across all levels (as
opposed to finding “THE” optimal solution). In our
example, the EA team closes the operational level’s
gap by modeling that BookCo should use the
publisher’s warehouse to reduce the operating and
capital expenditures. The definition of this operation
level to-be creates a new gap, at this point in the
technology level. This gap states that the IT
application does not provide the adequate services
for outsourcing the warehouse. This second gap can
be resolved either by buying a new application or by

developing one (based on what already exists).
Deploying these operation levels will involve
development expenditures, new operating and
capital expenditures. The expenditures from all
levels have to be considered in the selection of the
adequate tradeoff. It is possible that the development
expenditures out-weigh the project’s benefits and
force its redefinition. In summary, in EA, finding the
right tradeoff consists in choosing, within each level,
a solution that is feasible, practical and that
contributes to the overall goal of the enterprise.

Existing EA methodologies are usually presented

in two parts: a framework and a method. Usually,
the frameworks are quite sophisticated and the
methods are rather simple. The frameworks, a term
widely used in EA, provide guidelines on how to
make the enterprise model. As most EA
methodologies are proprietary, we present here two
commercial methods: Zachman and CSAM.

The Zachman framework is the first EA
framework published (Zachman, 1987). Zachman
puts an emphasis on describing what exists on each
level of an enterprise. In the simplest version of the
framework, Zachman proposes to describe within
each level: what things are involved (data); how
things are done (function), where things are done
(network). The Zachman framework uses an add-hoc
notation. No specific CAD tool support is available.

CSAM is the Compaq Services Architecture
Methodology (CSAM, 2001). It is a methodology
very complementary to Zachman as it focuses on
documenting the interlocking web of goals,
principles, rationales, obstacles, principles
underlying the design and not so much on describing
what exists in each level as does Zachman. In
CSAM the team analyzes within each level: the
goals to achieve, the principles guiding what needs
to be done, the underlying rationales, the implication
and the obstacles related to what needs to be done.
CSAM recommend using, whenever possible,
discipline-specific theories. These theories also
correspond to the best practices and patterns already
existing in each discipline and in EA. For example,
CSAM recommends the use of Porter’s value chain
and value system [Porter] when analyzing the
business level. The CSAM framework uses text, as
notation, in spreadsheet, as tool.

To conclude this Section, we present three

important problems we have identified in the
practice of EA. Firstly, despite the fact that the EA
frameworks are defined to provide consistent
representations of the different organizational levels,
it is difficult to clearly establish and maintain the
traceability between the levels. As a consequence,
these frameworks are difficult to teach and apply.

- 4 -

Secondly, there is no tool to support the use of these
frameworks. So no help can be provided to the team
for developing the enterprise model and, more
importantly, for reusing, validating and maintaining
the model. As a consequence, the development of
multi-level model is tedious and discouraging.
Thirdly, the EA frameworks are not object-oriented
and are difficult to relate to UML (Unified Modeling
Language) (OMG, web). UML is a graphical object-
oriented modeling notation widely used by software
engineers and has begun to be adopted by the
business engineers. As a consequence, these
specialists do not feel comfortable using EA
frameworks. These three problems hinder the
promotion and the applicability of EA. Ultimately
all these problems explain why EA is not very
popular, despite its obvious importance.

3. SYSTEMIC PARADIGM &
SEAM

In this section, we propose theoretical
foundations for EA and illustrate how these
foundations can be used in a concrete EA
methodology: SEAM.

A system is a set of interacting components.

Based on Section 2, an enterprise is an organization
of resources that performs a process. Hence an
enterprise is a system in which the components are
the enterprise’s resources. Thus, we can anchor EA
on system sciences, the discipline that provides the
necessary theoretical foundations to model and
design systems.

Using system sciences, we can classify systems
in two categories: complicated systems and complex
systems. Complicated systems are systems for which
the behavior can be predicted by analyzing the
components’ interactions. Complicated systems are
deterministic systems. Typically a computer is a
complicated system. Complex systems are systems
for which the behavior cannot be predicted by such
analysis. Complex systems are non-deterministic.
Typically a system including humans, such as a
company, is a complex system. It is the co-existence
and interaction of complex systems with
complicated systems that is the challenge for EA.
Architects and specialists are well trained for dealing
with complicated systems but are usually far less
comfortable with complex systems.

System sciences teach us that, to deal with
complex systems, we need to change our way of
thinking compared to the one we have when dealing
with man-made, artificial systems - or complicated
systems. Kühn calls a paradigm the set of values, or

principles, that we use when we think (Kühn, 1962).
Kühn claimed that science evolves through
paradigm shifts (a radical change of values) as
opposed to evolution (incremental changes of
values). We claim that, to address the problems of
EA, the architects and the specialists need to make a
paradigm shift from the mechanistic paradigm used
to understand complicated systems to the systemic
paradigm used to understand complex systems. The
mechanistic paradigm corresponds to the principles
intuitively and implicitly used by most professionals.
To work with systems in general, system scientists
have shown that professionals need to adopt the
systemic paradigm (Lemoigne, 1994). The systemic
paradigm makes explicit the principles used to
reason about systems and proposes a way to
structure the disciplines that deal with systems in
general (see “system inquiry” in (Banathy, web)).
The systemic paradigm defines the concepts of
systemic philosophy, systemic/ discipline-specific
theories, and systemic method. The systemic
philosophy explains the concepts used to make
models of systems and the relation between these
models and the reality. The systemic/ discipline-
specific theories provide the conceptual tools for
teams to reason while working on the model. The
systemic method explains how to proceed in the
analysis and design of systems.

To make explicit the existence of the systemic
paradigm is already an important contribution to the
field of EA as this provides a theoretical justification
for what the parts of the EA methodologies are. For
example, in Section 2, Zachman and CSAM provide
part of the systemic philosophy by defining the
framework. Only CSAM proposes explicitly the use
of discipline-specific theories (e.g. Porter’s value
system). Both methodologies propose a method.

We now present the SEAM, our implementation
of the systemic paradigm in the field of EA. Section
3.1 presents the SEAM philosophy; Section 3.2 the
SEAM method. The theories are not presented as
SEAM relies on the theories already existing in the
current disciplines involved in EA.

3.1 SEAM Philosophy

The systemic philosophy is composed of three
parts that are (Schwarz, 2001): (1) the epistemology
defining “what is knowledge” (Section 3.1.1); (2)
the ontology defining “what exists” (Section 3.1.2);
and (3) the ethics defining “what is right or correct”
(Section 3.1.3). Note that most of the discussion on
the philosophy is generic and can possibly be
applied to most EA methodologies. Only the
ontology we use is SEAM specific.

- Page 5 -

3.1.1 Epistemology

Epistemology is the study of the nature of
knowledge and justification [Audi, 1999].
Epistemology defines epistemological principles that
are useful for understanding the relationship
between reality and the model (Lemoigne, 1994;
Checkland, 1999). One of the most important
principles is the constructivism principle: it states
that all knowledge is relative to the observer. As the
only way to comprehend reality is to have
knowledge about this reality (hence to depend on an
observer), observer-independent descriptions of
reality do not exist. This principle is fundamental as,
among other things, it provides the justification
behind the organizational levels found in EA. The
concept of level corresponds to the different
abstractions, or viewpoints, that the specialists have
developed to simplify their understanding of
systems. It happens that these viewpoints appear
hierarchical and this is why we call them levels
(Miller, 1995). Note that these levels correspond to
those identified in the most recent software
engineering processes (Atkinson, 2001; D’Souza
,1999). Each discipline considers levels of reality
that are specific sets of entities perceived in reality,
entities that the specialists “control” or realize. For
example, software engineers realize software
components. So software engineers perceive the
existence of a “component” reality level. These
levels of reality are represented in the model as
organizational levels. The entities in the levels of
reality are represented as model elements in the
organizational levels. Each specialist usually “owns”
one organizational level and factors in the other
specialists’ organizational levels.

Concretely, understanding this constructivism
principle allows SEAM to explain the rationale
behind the existing EA methodologies and thus
allows for more flexibility. For example, our
experience shows that, in many cases, it is useful to
go beyond the traditional 3 levels used in EA
methodologies. In a project that aimed at
reengineering the IT infrastructure of a nation-wide
department store, with the goal of being able to
change prices nation-wide on a daily basis, we
identified 12 levels of reality that we represented in
5 organizational levels (from the marketing analysis
of what the enterprise expects from the price fixing
process, via the enterprise/ region/ store price
adaptation process down to the Java classes, stored
in EJB components in the cash register infrastructure
existing in the stores).

To conclude, we emphasize that the explicit
definition of epistemological principles is necessary
to set the bases on which the SEAM ontology
(presented in the next Section) is built.

3.1.2 SEAM Ontology

In computer sciences, an ontology defines a set
of concepts and their inter-relations. Note that in
philosophy, ontology is synonymous to metaphysics
and refers to what exists in reality. In SEAM, we
take the computer science’s definition; the ontology
corresponds to what exists in the model. We leave to
metaphysicians the discussion of what truly exists in
reality.

Our general system ontology defines the set of
concepts and inter-relations necessary to model
systems in general. Our ontology (Naumenko, 2002)
is based on RM-ODP, an ISO/ITU standard
(ISO/IEC 1996). To be able to build a CAD tool, we
have formalized RM-ODP in a specification
language called Alloy (Jackson 2000). In our
ontology, we consider that the model elements are
defined by two characteristics: the basic modeling
characteristic, and the specification characteristic. In
its simplest form, the ontology defines 5 basic
modeling characteristics (BMC) - object, action,
state, location in time, location in space - and 2
specification characteristics (SC) - type and instance.
Model elements are defined by combining a BMC
with an SC. For example, to model an exchange of
money against some goods, we use a model element
with the basic modeling characteristic “action” and
with the specification characteristic “type <sale>”.
The BMC “action” states that the model element
represents something happening in reality. The SC
“type <sale>” states that there is a predicate named
<sale> that further characterizes the “action” model
element. This predicate defines the action’s pre-
condition as “the buyer has money and the seller has
goods” and the post-condition as “the buyer has
goods and the seller money”. All this together
defines the model element with the combined
characteristics of being an “action type <sale>”. This
model element refers to all the happenings, existing
in the perceived reality, in which goods are
exchanged against money. For a more thorough
discussion on behavior modeling and behavior
representation, see (Balabko, 2002).

Thanks to our object-oriented ontology, we can
develop a CAD tool that can support the modeling of
enterprises by using a UML-like notation. The
existence of this ontology brings a concrete solution
to the three general EA problems identified in the
conclusion of Section 2.

3.1.3 Ethics

SEAM defines the relationships between the
perceived reality and the model (Section 3.1.1) and
what kind of model elements are in the model

- 6 -

(Section 3.1.2). These definitions apply for all
SEAM projects. But, in a concrete project, an actual
enterprise model needs to be developed. The model
is the result of the analysis of the perceived reality.
Different perceptions are possible and the team will
have to choose. For example, an EA team can
perceive an enterprise as serving its customer (by
selling products) or as serving its shareholder (by
raising the share value). The team has to choose if
they want to consider the company as selling
products to the customer and then consider rising the
share value as a constraint to satisfy or if they want
to choose the opposite. Depending on the choice, the
enterprise model will be different and this will
influence the selection of what will be implemented.
The ethics correspond to the choices that the
specialists make when they decide on how they want
to model their perceived reality. These choices
cannot have any formal justification. The only
justification is that the specialists believe that they
are right. This is where experience intervenes.

There are benefits to keep ethics as an explicit
concept. This allows SEAM to capture where the
skills of the team’s members intervene. This
provides a means to distinguish between what is
formal and what is subjective. Last but not least, this
also captures the fundamental business and social
values of the enterprise; values that will influence
the project goal.

3.2 SEAM Method

An enterprise is a complex system as it involves
people, autonomous entities, and because it interacts
with other complex systems (e.g. customers,
competitors, suppliers). The key characteristic of
complex systems is continuous evolution. So, the
context in which the project is run continuously
evolves. This is the reason a SEAM project is
iterative. So the specialists can adapt the model to
represent the changes that are happening within the
enterprise. This also allows the specialists to test and
validate with real people in the enterprise the
hypothesis made in the model.

SEAM iterations have 3 kinds of development

activities: multi-level modeling, multi-level design,
and multi-level deployment. These activities might
happen sequentially or in parallel.

The goal of the multi-level modeling is to make a
new model, or to modify an existing model of the
enterprise. It is important that the team members
agree regularly on what organizational levels are
used. The specialists define or modify the
corresponding organizational levels in the model. By
doing so they agree on what they perceive as

existing in terms of goals, processes, and
infrastructure.

The goal of the multi-level design is to identify
gaps and to resolve them as explained in Section 2.
By doing so, the team defines what new process and
resources need to be developed and deployed.

The goal of the multi-level deployment is to
transform what is described in each organizational
level to-be in artifacts that can be understood (by
people or computers). The artifacts might be plans
(e.g. for opening a new plant or for the negotiation
of a contract) or might be directly executable (e.g.
job descriptions or programs). Note that even if
artifacts are developed and deployed, it does not
necessarily mean that what was developed will be
used in practice (Markus, 1994). Enterprises are
complex systems; the people, being autonomous,
might not have the motivation to use what was
developed. For this reason, in SEAM, these
motivational issues are considered explicitly in the
enterprise model.

4. CASE STUDY

This Section is based on the BookCo example
already presented in Section 2 and makes reference
to Fig. 1. Our goal in this section is not to show in
detail how SEAM works, but rather to give the
reader a feel for SEAM’s benefits.

4.1 Multi-level Modeling

In the BookCo project, the team defines 4
organizational levels: business level, company level,
operation level, and technology level.

Let’s consider the company level first, as it is the
most relevant to the management team. The
company level as-is represents: the BookCo
company (BookCo), the publisher (PubCo) and the
shipping company (ShipCo) acting together to
manufacture and sell (Mfg&Sale) products to the
customer. BookCo is not profitable. This is
represented by a property of BookCo. For a
discussion on property modeling, please refer to
(Preiss, 2002). To express the project goal, the
company level to-be is defined. It looks the same as
the as-is with the only difference that BookCo is
profitable. The team then represents the operation
level as-is because that organizational level
represents the entities that the team wants to work
with. They represent BookCo Purchasing,
Warehousing, and the IT application (IT) with
PubCo and ShipCo acting together to Market a
product.

- Page 7 -

Figure 1: BookCo Project’s Organizational Levels As-is & To-Be

Note that the Market action on the operation

level corresponds to the role Market done by
BookCo in the Mfg&Sale action represented in the
company level. The Market action is itself composed
of two (component) actions P (for purchasing) and D
(for delivery). These are examples of traceability.
Traceability is one of the benefits of the use of the
ontology as defined in Section 3.1.2.

To completely define the project goal, the team
needs to determine what should be maintained
(Regev, 2002) between the as-is and the to-be. For
this, the team defines the business level. As we
mentioned, BookCo and its partners manufacture
and sell products. For the customers, it is irrelevant
who does what, as long as the customers can get
products conveniently. To express this, the team
models the BookCo Business System (BookCoBiS)
and the Customer. BookCoBiS represents all
companies working with BookCo to manufacture
and sell products. Note that on the business level,
BookCoBiS is considered as a whole and on the
operation level as a set of companies. This again
illustrates the traceability between levels and the use
of our ontology.

4.2 Multi-level Design

The benefit of our design approach is that, for
the design of each level (e.g. the operation level), the
specialists think both in abstract terms or goals (e.g.
what is defined on the business level and on the
company level) and in concrete terms or means (e.g.

what is defined on the operation level). This favors
the development of better solutions as the specialists
can investigate different possible means to satisfy
the goal (Hammer, 1990). This is one of the
advantages of SEAM.

After having modeled the enterprise across
levels, the team then closes the gap found in the
operation level by making the operation level to-be.
This is done by imagining and analyzing different
possible operational levels to-be and selecting the
adequate one. The selected solution (as presented in
Section 2 and shown in Fig. 1) consists in not
involving BookCo in the storage and shipping of the
products.

To check the feasibility of the solution the EA
team then analyzes and resolves the gap that will
exist in the technology level (not represented): the
existing IT application does not support the new
business process. Working in the technology level is
similar to working on the operation level. The only
difference between these levels is the use of
different discipline-specific theories to assess the
various design alternatives.

4.3 Multi-Level Deployment

Multi-level deployment happens as described in
Section 3. The project is iterative. In the first
iterations, most work will be done in the business-
related levels. At these levels, the deployment
consists mostly in informing and directing the
people about the enterprise’s goals (thus possibly

- 8 -

triggering multiple projects to investigate how to
implement the goals). Once the business-related
levels become more stable, the team will add more
technology-related levels. In IT, these technology
levels correspond to different IT technologies found
in the enterprise such as the application clusters,
software components, programming language
objects, etc.... Ultimately the IT models will
represent the computers, configuration descriptors,
programs, etc… that will be physically deployed in
the enterprise.

5. CONCLUSION

In this paper, we first present Enterprise
Architecture, its importance for developing
competitive enterprises and the limitations in its
applicability. We then present how a systemic
paradigm can provide the theoretical foundations to
underlie Enterprise Architecture. To make this more
concrete, we present SEAM that extends the EA
methodologies, mainly by its use of the philosophy.
This explicit use of philosophy allows for the
combination of the formal aspects (i.e. ontology)
together with the human aspects (i.e. epistemology
and ethics). The originality of SEAM is this
combination. It enables the integration of a generic
approach (from level to level) together with the
relevant level-specific theories and practices. It also
enables the development of CAD tools that truly
support EA. Finally, in our experience, presenting
the SEAM philosophy greatly simplifies teaching
EA.

ACKNOWLEDGMENTS

I wish to acknowledge the significant
contributions made by the SEAM team members: P.
Balabko, A. Naumenko, O. Preiss (ABB), G. Regev;
our industrial partners: F. Bouchet (consultant), J.
Donaldson and L. Laverdure (Compaq Professional
Services), G. Genilloud and William Frank (Domain
& Financial Systems Architects); our academic
partners: E. Schwarz (Uni. of Neuchâtel), and all the
other academics who influenced this work.

REFERENCES

Audi R. 1999. The Cambridge Dictionary of Philosophy.
Cambridge Press.

Atkinson C. & al., 2001. Developing and Applying
Component-Based Model-Driven Architectures in
Kobra. IEEE Enterprise Distributed Object
Computing Conference.

Banathy B., web. A Taste of Systemics. www.isss.org.
Balabko P., Wegmann A. 2002. From the RM-ODP to the

Formal Behavior Representation. In Practical
Foundations of Business and Systems
Specification. KluwerAcademic Press.

Checkland P., 1999. Systems Thinking, Systems Practice.
Wiley.

Compaq, 2002. Compaq Services Architecture
Methodology. www.compaq.com/services/arch

D’Souza D. & Wills A., 1999. Objects, Components, and
Frameworks with UML. The Catalysis Approach.
Addison Wesley. http://www.catalysis.org

Hammer M., 1990. Reengineering work: Don’t Automate,
Obliterate. Harvard Business Review, 7.

Hansell S., 2001 May 20, A Front-Row Seat as Amazon
Gets Serious. New-York Times, http://www.nyt.com

ISO/IEC 1996. X.902, Open Distributed Processing 1995-
1996. http://isotc.iso.ch (‘iso/iec standard’ in ‘ITTF’)

Jackson D. 2000. Alloy: A Lightweight Object Modeling
Notation. http://sdg.lcs.mit.edu/~dnj/

Kühn T.S., 1962. The Structure of Scientific Revolutions,
Chicago.

Lemoigne, J.L., 1994. Le constructivisme. ESF Editeur.
Markus M. L., Keil M. 1994 Summer. If we Build It, They

Will Come: Designing Information System That
People Want to Use. Sloan Management Review.

Merriam-Webster, Web. M-W Dictionary. www.m-w.com
Metagroup, 2001. The Changing Role of IT Strategy:

Enterprise Architecture Strategies.
www.metagroup.com

Miller J.G., 1995. Living Systems. University of Colorado
Press

Mintzberg & al., 1998. Strategy Safari. Free Press.
Naumenko A., Wegmann A. , 2002. A Metamodel for the

Unified Modeling Language. UML 2002 Conference.
OMG, web. Unified Modeling Language. www.omg.org
Preiss O., Wegmann A. 2002. A Systems Perspective on

the Quality Description of Software Components. 6th
conference on Systemics, Cybernetics and Informatics.

Porter M.E., 1985. Competitive Advantage. Free Press.
Regev G., Wegmann A., 2002. Regulation-Based Linking

of Strategic Goals to Business Processes. Workshop on
Goal-Oriented Business Process Modeling.

Schwarz E., 2001. Personal communication.
Standish Group, 1994. Chaos Report.

www.pm2go.com/sample_research/chaos_1994_1.php
Zachman J.A., 1987. A Framework for Information

Systems Architecture. IBM System Journal, 26, 3.

