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Abstract

Information flow in a telecommunication network is accomplished
through the interaction of mechanisms at various design layers with the
end goal of supporting the information exchange needs of the applica-
tions. In wireless networks in particular, the different layers interact in
a nontrivial manner in order to support information transfer. In this
text we will present abstract models that capture the cross-layer inter-
action from the physical to transport layer in wireless network architec-
tures including cellular, ad-hoc and sensor networks as well as hybrid
wireless-wireline. The model allows for arbitrary network topologies as
well as traffic forwarding modes, including datagrams and virtual cir-
cuits. Furthermore the time varying nature of a wireless network, due
either to fading channels or to changing connectivity due to mobility, is
adequately captured in our model to allow for state dependent network
control policies. Quantitative performance measures that capture the
quality of service requirements in these systems depending on the sup-
ported applications are discussed, including throughput maximization,
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energy consumption minimization, rate utility function maximization
as well as general performance functionals. Cross-layer control algo-
rithms with optimal or suboptimal performance with respect to the
above measures are presented and analyzed. A detailed exposition of
the related analysis and design techniques is provided.



1
Introduction

In cross-layer designs of wireless networks, a number of physical and
access layer parameters are jointly controlled and in synergy with higher
layer functions like transport and routing. Furthermore, state informa-
tion associated with a specific layer becomes available across layers as
certain functions might benefit from that information. Typical physical
and access layer functions include power control and channel alloca-
tion, where the latter corresponds to carrier and frequency selection
in OFDM, spreading code and rate adjustment in spread spectrum,
as well as time slot allocation in TDMA systems. Additional choices
in certain wireless network designs may include the selection of the
modulation constellation or the coding rate, both based on the channel
quality and the desired rates [55, 156]. Due to the interference proper-
ties of wireless communication, the communication links between pairs
of nodes in a multinode wireless environment cannot be viewed inde-
pendently but rather as interacting entities where the bit rate of one
is a function of choices for the physical and access layer parameters
of the others. Our cross-layer model in this text captures the inter-
action of these mechanisms, where all the physical and access layer
parameters are collectively represented through a control vector I(t).
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2 Introduction

Another intricacy of a wireless mobile communication network is the
fact that the channel and the network topology might be changing in
time due to environmental factors and user mobility respectively. That
variation might be happening at various time scales from milliseconds
in the case of fast fading to several seconds for connectivity variations
when two nodes get in and out of coverage of each other as they move.
Actions at different layers need to be taken depending on the nature
of the variability in order for the network to compensate in an opti-
mal manner. All the relevant parameters of the environment that affect
the communication are represented in our model by the topology state
variable S(t). The topology state might not be fully available to the
access controller, which may observe only a sufficient statistic of that.
The collection of bit rates of all communicating pairs of nodes at each
time, i.e. the communication topology, is represented by a function
C(t) = C(I(t),S(t)). Note that the function C(., .) incorporates among
others the dependence of the link rate on the Signal-to-Interference plus
Noise Ratio (SINR) through the capacity function of the link. Over the
virtual communication topology defined by C(t), the traffic flows from
the origin to the destination according to the network and transport
layer protocols. Packets may be generated at any network node having
as final destination any other network node, potentially several hops
away. Furthermore, the traffic forwarding might be either datagram or
based on virtual circuits, while multicast traffic may be incorporated
as well. The above model captures characteristics and slightly gener-
alizes systems that have been proposed and studied in several papers
including [108, 111, 115, 135, 136, 143, 144, 147, 149]. That model is
developed in detail in Section 2 while representative examples of typical
wireless models and architectures that fit within its scope are discussed
there.

The network control mechanism determines the access control vec-
tor and the traffic forwarding decisions in order to accomplish certain
objectives. The quantitative performance objectives should reflect the
requirements posed by the applications. Various objectives have been
considered and studied in various papers including the overall through-
put, power optimization, utility optimization of the allocated rates as
well as optimization of general objective functions of throughput and/or
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power. In the current text we present control strategies for achieving
these objectives.

The first performance attribute considered is the capacity region of
the network defined as the set of all end-to-end traffic load matrices
that can be supported under the appropriate selection of the network
control policy. That region is characterized in two stages. First the
ensemble of all feasible long-term average communication topologies
is characterized. The capacity region includes all traffic load matrices
such that there is a communication topology from the ensemble for
which there is a flow that can carry the traffic load and be feasible
for the particular communication topology. Section 3 is devoted to the
characterization of the capacity region outlined above.

The capacity region of the network should be distinguished from the
capacity region of a specific policy. The latter being the collection of all
traffic load matrices that are sustainable by the specific policy. Clearly
the capacity region of the network is the union of the individual policy
capacity regions, taken over all possible control policies. One way to
characterize the performance of a policy is by its capacity region itself.
The larger the capacity region the better the performance will be since
the network will be stable for a wider range of traffic loads and therefore
more robust to traffic fluctuations. Such a performance criterion makes
even more sense in the context of wireless ad-hoc networks where both
the traffic load as well as the network capacity may vary unpredictably.
A policy A is termed “better” than B with respect to their capacity
regions, if the capacity region of A is a superset of the capacity region
of B. A control policy that is optimal in the sense of having a capacity
region that coincides with the network capacity region and is therefore
a superset of the capacity region of any other policy was introduced in
[143, 147]. That policy, the max weight adaptive back-pressure policy,
was generalized later in several ways [111, 115, 135, 149] and it is an
essential component of policies that optimize other performance objec-
tives. It is presented in Section 4. The selection of the various control
parameters, from the physical to transport layer, is done in two stages
in the max weight adaptive back pressure policy. In the first stage
all the parameters that affect the transmission rates of the wireless
links are selected, i.e. the function C(I(t),S(t)) is determined. In the



4 Introduction

second stage routing and flow control decisions to control multihop
traffic forwarding are made. The back pressure policy consists in giving
priority in forwarding through a link to traffic classes that have higher
backlog differentials. Furthermore the transmission rate of a link that
leads to highly congested regions of the network is throttled down. In
that manner the congestion notification travels backwards all the way
to the source and flow control is performed. Proofs of the results based
on Lyapunov stability analysis are presented also in Section 4.

The stochastic optimal control problem where the objective is the
optimization of a performance functional of the system is considered in
Sections 5 and 6. The development of optimal policies for these cases
relies on a number of advances including extensions of Lyapunov tech-
niques to enable simultaneous treatment of stability and performance
optimization, introduction of virtual cost queues to transform perfor-
mance constraints into queueing stability problems and introduction of
performance state queues to facilitate optimization of time averages.
These techniques have been developed in [46, 108, 115, 116, 136, 137]
for various performance objectives. More specifically in Section 5 the
problem of optimizing a sum of utility functions of the rates allocated
to the different traffic flows is considered. That formulation includes
the case of the traffic load in the system being out of the capacity
region, which case some kind of flow control at the edges of the net-
work needs to be employed. That is done implicitly through the use
of performance state queues, allowing adjustment of the optimization
accuracy through a parameter. The approach combines techniques sim-
ilar to those used for optimization of rate utility functions in window
flow controlled sessions in wireline networks, with max weight schedul-
ing for dealing with the wireless scheduling. In Section 6 generalization
of these techniques for optimization functionals that combine utilities
with other objectives like energy expenditure are given and approaches
relying on virtual cost queues are developed.

Most of the results presented in the text are robust on the statis-
tics of the temporal model both of the arrivals as well as the topology
variation process. The traffic generation processes might be Markov
modulated or belong to a sample path ensemble that complies with
certain burstiness constraints [35, 148]. Similarly the variability of the
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topology might be modeled by a hidden Markov process. These models
are adequate to cover most of the interesting cases that might arise in
real networks. The proofs in the text are provided for a traffic gener-
ation model that covers all the above cases and it was considered in
[115]. The definition of stability that was used implies bounded average
backlogs. The emphasis in the presentation is on describing the models
and the algorithms with application examples that illustrate the range
of possible applications. Representative cases are analyzed in full detail
to illustrate the applicability of the analysis techniques, while in other
cases the results are described without proofs and references to the
literature are provided.



2
The Network Model and Operational

Assumptions

Consider a general network with a set N of nodes and a set L of trans-
mission links. We denote by N and L respectively the number of nodes
and links in the network. Each link represents a communication channel
for direct transmission from a given node a to another node b, and is
labeled by its corresponding ordered node pair (a,b) (where a,b ∈ N ).
Note that link (a,b) is distinct from link (b,a). In a wireless network,
direct transmission between two nodes may or may not be possible
and this capability, as well as the transmission rate, may change over
time due to weather conditions, mobility or node interference. Hence
in the most general case one can consider that L consists of all ordered
pairs of nodes, where the transmission rate of link (a,b) is zero if direct
communication is impossible. However, in cases where direct commu-
nication between some nodes is never possible, it is helpful to consider
that L is a strict subset of the set of all ordered pairs of nodes.

The network is assumed to operate in slotted time with slots
normalized to integral units, so that slot boundaries occur at times
t ∈ {0,1,2, . . .}. Hence, slot t refers to the time interval [t, t + 1). Let
µ(t) = (µab(t)) represent the matrix of transmission rates offered over
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each link (a,b) during slot t (in units of bits/slot).1 By convention, we
define µab(t) = 0 for all time t whenever a physical link (a,b) does not
exist in the network. The link transmission rates are determined by a
link transmission rate function C(I,S), so that:

µ(t) = C(I(t),S(t)),

where S(t) represents the network topology state during slot t, and I(t)
represents a link control action taken by the network during slot t.

The topology state process S(t) represents all uncontrollable prop-
erties of the network that influence the set of feasible transmission
rates. For example, the network channel conditions and interference
properties might change from time to time due to user mobility, wire-
less fading, changing weather locations, or other external environmen-
tal factors. In such cases, the topology state S(t) might represent the
current set of node locations and the current attenuation coefficients
between each node pair. While this topology state S(t) can contain a
large amount of information, for simplicity of the mathematical model
we assume that S(t) takes values in a finite (but arbitrarily large) state
space S. We assume that the network topology state S(t) is constant for
the duration of a timeslot, but potentially changes on slot boundaries.

The link control input I(t) takes values in a general state space IS(t),
which represents all of the possible resource allocation options available
under a given topology state S(t). For example, in a wireless network
where certain groups of links cannot be activated simultaneously, the
control input I(t) might specify the particular set of links chosen for
activation during slot t, and the set IS(t) could represent the collection
of all feasible link activation sets under topology state S(t). In a power
constrained network, the control input I(t) might represent the matrix
of power values allocated for transmission over each data link. Likewise,
the transmission control input I(t) might include bandwidth allocation
decisions for every data link.

1 Transmission rates can take units other than bits/slot whenever appropriate. For example,
in cases when all data arrives as fixed length packets and transmission rates are constrained
to integral multiples of the packet size, then it is often simpler to let µ(t) takes units of
packets/slot.
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Every timeslot the network controller observes the current topology
state S(t) and chooses a transmission control input I(t) ∈ IS(t), accord-
ing to some transmission control policy. This enables a transmission
rate matrix of µ(t) = C(I(t),S(t)). The function C(I,S) is matrix
valued and is composed of individual Cab(I,S) functions that specify
the individual transmission rates on each link (a,b), so that µab(t) =
Cab(I(t),S(t)). In general, the rate function for a single link can depend
on the full control input I(t) and the full topology state S(t) and hence
distributed implementation may be difficult. This is often facilitated
when rate functions for individual links depend only on the local control
actions and the local topology state information associated with those
links. These issues will be discussed in more detail in later sections.

2.1 Link rate function examples for different networks

In this section we consider different types of networks and their corre-
sponding link rate functions C(I(t),S(t)). Our examples include static
wireline networks, rate adaptive wireless networks, and ad-hoc mobile
networks.

Example 2.1. A static wireline network with fixed link capacities.
Consider the six node network of Fig. 2.1a. The network is connected
via wired data links, where each link (a,b) offers a fixed transmission
rate Cab for all time. In this case, there is no notion of a time varying
topology state S(t) or a control input I(t), and so the transmission
rate function for each link (a,b) is given by Cab(I(t),S(t)) = Cab (where
Cab = 0 if there is no link from node a to node b). The network is thus
fully described by a constant matrix (Cab) of link capacities, which is
the conventional way to describe a wireline network.

Example 2.2. A network with time varying link capacities. Consider
the same network as in Example 2.1, but assume now that every times-
lot the data links can randomly become active or inactive. In particular,
an active link (a,b) can transmit at rate Cab as before, but an inactive
link cannot transmit. Let Sab(t) be a link state process taking values
in the two-element set {ON, OFF}, where Sab(t) = ON if link (a,b) is
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Fig. 2.1 (a) A static network with 6 nodes and constant link capacities Cab. (b) A network
with configurable link activation sets.

active during slot t, and Sab(t) = OFF otherwise. The topology state
S(t) of the network is thus the matrix (Sab(t)) composed of individual
link state processes, and the link transmission rate functions are given
by Cab(I(t),S(t)) = Cab(Sab(t)), where:

Cab(Sab(t)) =
{

Cab if Sab(t) = ON
0 if Sab(t) = OFF

.

In this example, the link transmission rate function depends on a time
varying topology state variable S(t), but there is still no notion of
resource allocation. Further note that the stochastics of the link acti-
vation processes Sab(t) are not specified here. A simple model might
be that each process Sab(t) is independently inactive with some outage
probability pab every slot, and active otherwise. However, in general,
the Sab(t) processes could be correlated with each other and also cor-
related in time.

Example 2.3. A static wireless network with configurable link activa-
tion sets. Consider a wireless network with stationary nodes and time
invariant channel conditions between each node pair. Suppose that due
to interference and/or hardware constraints, transmission over a link
can take place only if certain constraints are imposed on transmis-
sions over the other links in the network. For example, a node may not
transmit and receive at the same time over some of its attached links,
or a node may not transmit when a neighboring node is receiving, etc.
A given link (a,b) can support a transmission rate Cab, provided that it
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is scheduled for activation and no other interfering links are activated.
For each link (a,b), we define a control process Iab(t), where Iab(t) = 1 if
link (a,b) is activated during slot t, and 0 else. The control input process
I(t) thus consists of the matrix (Iab(t)), and this matrix is restricted
every timeslot to the set I consisting of all feasible link activation sets.
That is, the set I contains all sets of links that can be simultaneously
activated without creating inter-link interference. The link transmission
rate function is thus given by Cab(I(t),S(t)) = Cab(Iab(t)), where:

Cab(Iab(t)) =
{

Cab if Iab(t) = 1
0 if Iab(t) = 0

.

where the input satisfies the constraint (Iab(t)) ∈ I for all t. An example
network with three activated links is shown in Fig. 2.1b. While this link
transmission rate function is similar in structure to that of Example 2.2,
we note that the link capacities of Example 2.2 depend on random
and uncontrollable channel processes, while the link capacities in this
example are determined by the network control decisions made every
timeslot. This is an important distinction, and the notion of link acti-
vation sets can be used to model general problems involving network
server scheduling. Such problems are treated in [143] for multi-hop
radio networks with general activation sets I. An interesting special
case is when I is defined as the collection of all link sets such that no
node is the transmitter or receiver of more than one link in the set.
Such sets of links are called matchings. This special case has been used
extensively in the literature on crossbar constrained packet switches,
where the network nodes are arranged according to a bipartite graph
(see for example, [87, 103, 109, 113, 143, 150, 162]). Matchings are
also used in [29, 61, 91, 150, 163] to treat scheduling in computer sys-
tems and ad-hoc networks with arbitrary graph structures. Note that
there is an inherent difficulty in implementing control decisions in a
distributed manner under this model. Indeed, the constraint I(t) ∈ I
couples the link activation decisions at every node, and often exten-
sive message passing is required before a matching is computed and its
feasibility is verified. Generally, the complexity associated with finding
a valid matching increases with the size of the network. Complexity
can also be reduced by considering sub-optimal matchings, which often
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yields throughput within a certain factor of optimality. This approach
is considered in [29, 91, 163] (see also Section 4.7).

Example 2.4. A time varying wireless downlink. Consider a single
wireless node that transmits to M downlink users (such as a satellite
unit or a wireless base station, see Fig. 2.2a). Let Si(t) represent the
condition of downlink i during slot t (for each link i ∈ {1, . . . ,M}).
Suppose that channel conditions are grouped into four categories, so
that: Si(t) ∈ {GOOD, MEDIUM, BAD, ZERO}. Suppose that at most
one link can be activated during any slot, and that an active link can
transmit 3 packets when in the GOOD state, 2 packets in the MEDIUM
state, 1 in the BAD state, and none in the ZERO state. The topology
state S(t) for this system is given by the vector (S1(t), . . ., SM (t)). The
control input I(t) is given by the vector (I1(t), . . . , IM (t)), where Ii(t)
takes the value 1 if link i is activated in slot t, and zero else. The
control space I is the set of all vectors (I1, . . . , IM ) with at most one
entry equal to 1 and all other entries equal to zero. As there is only
a single transmitting node, we can express the link transmission rate
function as a vector: C(I(t),S(t)) = (C1(I(t),S(t)), . . . ,CM (I(t),S(t))).
Each function entry has the form Ci(I(t),S(t)) = Ci(Ii(t),Si(t)), where:

Ci(Ii(t),Si(t)) =


3Ii(t) if Si(t) = GOOD
2Ii(t) if Si(t) = MEDIUM
1Ii(t) if Si(t) = BAD
0 else

.

This type of downlink model is used to treat satellite and wireless
systems in [4, 95, 110, 144]. The model can be extended to include power
allocation in cases when transmission rates depend upon a continuous
power parameter [110]. For example, the transmission rate on each
downlink i ∈ {1, . . . ,M} might be approximated by the expression for
Shannon capacity over an additive white Gaussian noise channel:

Ci(Pi(t),Si(t)) = log(1 + Pi(t)αSi(t)), (2.1)
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Fig. 2.2 (a) An example satellite downlink with M downlink channels (M = 7 in the
example). (b) An example set of rate-power curves for the power allocation problem with
four discrete channel states.

where Pi(t) is the power allocated to channel i during timeslot t, and
αSi(t) is the attenuation-to-noise coefficient associated with channel
state Si(t) (see Fig. 2.2b). In this case, the control input I(t) is given
by the power vector P (t) = (P1(t), . . . ,PM (t)), and the control space
can be a continuum of feasible power vectors, such as all vectors that
satisfy a peak power constraint

∑M
i=1 Pi ≤ Ppeak.

Example 2.5. A time varying ad-hoc network with interference. Con-
sider an ad-hoc wireless network with a set of nodes N and set of
links L. We assume that each link l = (a,b), has a transmitter located
at node a and a receiver located at node b. Let Pl(t) represent the
power that the transmitter of link l allocates for transmission over that
link, and let P (t) = (Pl(t))l∈L represent the power allocation vector.
In this case, the control input I(t) is equal to the power vector P (t),
and the constraint set I is given by the set P consisting of all power
vectors that satisfy peak power constraints at every node. The transmis-
sion rate function for link l is given by Cl(I(t),S(t)) = Cl(P (t),S(t)).
Assume that this function depends on the overall Signal to Interference
plus Noise Ratio (SINR) according to a logarithmic capacity curve:

Cl(P (t),S(t)) = log(1 + SINRl(P (t),S(t))) .
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Here SINRl(P (t),S(t)) is given by:

SINRl(P (t),S(t)) =
Pl(t)αll(S(t))

N0 +
∑

k∈L
k �=l

Pk(t)αkl(S(t))
,

where N0 is the background noise intensity on each link and αkl(S(t))
is the attenuation factor at the receiver of link l of the signal power
transmitted by the transmitter of link k when the topology state
is S(t). Hence, in this model the interference caused at the receiver
of link l by the signals transmitted by the transmitters of the other
links in modeled as additional noise. This SINR network model is
quite common in the wireless and ad-hoc networking literature. For
example, [111] considers this model for mobile ad-hoc networks, and
[31, 36, 42, 66, 92, 123, 124, 127, 128, 129, 167, 171] for static ad-hoc
networks and cellular systems. This model in the case of a system
with antenna arrays and beamforming capabilities is considered in
[28, 47, 48, 130]. It is quite challenging to implement optimal con-
trollers for this type of link transmission rate function. Indeed, as in
Example 2.3, the control input decisions are coupled at every node,
because the power allocated for a particular data link can act as
interference at all other links, and this interference model can change
depending on the network topology state. While distributed algorithms
exist for computing the rate associated with a particular power alloca-
tion, and for determining if a power allocation exists that leads to
a given set of link rates [167, 171], there are no known low com-
plexity algorithms for finding the power vectors that optimize the
performance metrics required for optimal network control. However,
randomized distributed approximations exist for such systems and offer
provable performance guarantees [57, 111, 115]. Furthermore, impor-
tant special cases of the low SINR regime are treated in [36, 127, 129]
using the approximation log(1 + SINR) ≈ SINR, and the high SINR

regime is treated in [31, 66] using the approximation log(1 + SINR) ≈
log(SINR).

Example 2.6. An ad-hoc mobile network. Consider a network with a
set N of mobile users. The location of each user is quantized according
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Fig. 2.3 An ad-hoc mobile network with a cell partitioned structure.

to a rectilinear cell partitioning that covers the network region of
interest, as shown in Fig. 2.3b. We assume that the channel conditions
(noise, attenuation factor) are time-invariant throughout the region so
that link transmission capabilities are determined solely by node loca-
tions. Let Sa(t) represent the cell location of node a during slot t.
The topology state variable S(t) consists of the vector (Sa(t))a∈N (one
component for each node a ∈ N ), and can change from slot to slot as
nodes move from cell to cell (according to some mobility process that is
potentially different for every node). In this case, the link transmission
rate function can be given by the SINR model of Example 2.5, where
the attenuation coefficients αkl(S(t)) are determined by the current
node locations. Note that the mobility model has been left unspecified.
Any desired mobility model can be used, such as Markovian random
walks [111], periodic walks, random waypoint mobility [25], indepen-
dent cell hopping [90, 114], etc. The network model can be simplified by
assuming no inter-cell interference. Specifically, suppose that nodes can
only transmit to other nodes in the same cell or in adjacent cells, and
that at most one node can transmit per cell during a single timeslot.
Suppose that transmissions in adjacent cells use orthogonal frequency
bands, and that interference from non-adjacent cells is negligible. In this
case, transmission decisions can be distributed cell-by-cell. Let Iab(t)
be a control process that takes the value 1 if link (a,b) is activated
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during slot t, and zero else (as in Example 2.3). Let I(t) = (Iab(t))
represent the matrix of transmission decisions, restricted to the con-
trol space IS(t) that specifies all feasible link activations under a given
topology state S(t). Suppose that the transmission rate of an in-cell
transmission is h packets/slot, and that of an adjacent cell transmis-
sion is l packets/slot (where h ≥ l). The link transmission rate function
is thus given by Cab(I(t),S(t)) = Cab(Iab(t),Sa(t),Sb(t)) (where Cab(·)
takes units of packets/slot), and we have:

Cab(Iab(t),Sa(t),Sb(t)) =


h if Iab(t) = 1 and Sa(t) = Sb(t)
l if Iab(t) = 1 and Sa(t) �= Sb(t)
0 else

.

where (Iab(t)) ∈ IS(t). Similar cell partitioned network models are used
in [114, 115, 116, 160]. Note that this model allows the possibility of
a single node transmitting over one frequency band while simultane-
ously receiving over another frequency band. In systems where this
is infeasible, the additional constraint that a node cannot simultane-
ously transmit and receive must be imposed. This couples transmission
decisions over the entire network and complicates optimal distributed
control. One (potentially sub-optimal) scheduling alternative is to ran-
domly choose a set of transmitter nodes and a set of receiver nodes
every timeslot (as in [57, 111]). Only nodes in the receiving set are valid
options for the transmitters. Another approach is to allow nodes to send
transmission requests, and allow an arbiter to determine which requests
are granted. Several rounds of arbitration can take place to improve
scheduling decisions. Simple types of one-step arbitration schemes are
designed into wireless protocols such as 802.11, where request to send
and clear to send messages regulate which network links are simultane-
ously active [125]. Multi-step arbitration schemes are frequently used
in packet switches for computer systems [3, 41, 104, 139]. The control
techniques that we develop in this text reveal principled strategies for
making these scheduling decisions in terms of current network condi-
tions and desired performance objectives.

These examples illustrate the wide class of data networks that fall
within the scope of our model. In summary, the function C(I(t),S(t))
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describes the physical and multiple access layer properties of a given
network.2 Viewing the network in terms of this abstract function pro-
vides insight into the fundamental control techniques applicable to all
data networks while enabling these techniques to take maximum advan-
tage of the unique properties of each data link.

2.2 Routing and network layer queueing

All data that enters the network is associated with a particular com-
modity, which minimally defines the destination of the data, but might
also specify other information, such as the source node of the data or
its priority service class. Let K represent the set of commodities in the
network, and let K represent the number of distinct commodities in
this set. Let A

(c)
i (t) represent the amount of new commodity c data

that exogenously arrives to source node i during slot t (for all i ∈ N
and all c ∈ K). We assume that A

(c)
i (t) takes units of bits, although it

can take other units when appropriate (such as units of packets). The
A

(c)
i (t) data is generated from the user or application associated with

source node i, and is not necessarily admitted directly to the network
layer. Rather, we view the A

(c)
i (t) data as arriving to the transport layer

at node i, and for each timeslot t we define R
(c)
i (t) as the amount of

commodity c data allowed to enter the network layer from the transport
layer at node i.

Each node i maintains a set of internal queues for storing network
layer data according to its commodity (Fig. 2.4). Let U

(c)
i (t) represent

the current backlog, or unfinished work, of commodity c data stored in
a network layer queue at node i. The queue backlog U

(c)
i (t) can con-

tain both data that arrived exogenously from the transport layer at
node i as well as data that arrived endogenously through network layer
transmissions from other nodes. In the special case when node i is the
destination of commodity c data, we formally define U

(c)
i (t) to be 0

for all t, so that any data that is successfully delivered to its destina-
tion is assumed to exit the network layer. We assume that all network

2 See [18] for a definition and discussion of the various layers associated with the standard
7 layer Open Systems Interconnection (OSI) networking model, including the transport,
network, and physical layers, and the multiple access sub-layer.
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Fig. 2.4 A heterogeneous network with transport layer storage reservoirs and internal net-
work layer queues at each node.

layer queues have infinite buffer storage space. Our primary goal for
this layer is to ensure that all queues are stable, so that time average
backlog is finite. This performance criterion tends to yield algorithms
that also perform well when network queues have finite buffers that are
sufficiently large.

A network layer control algorithm makes decisions about routing,
scheduling, and resource allocation in reaction to current topology
state and queue backlog information. The resource allocation decision
I(t) ∈ IS(t) determines the transmission rates µab(t) = Cab(I(t),S(t))
offered over each link (a,b) on timeslot t. In general, multiple com-
modities might be transmitted over this link during a single timeslot.3

Define µ
(c)
ab (t) as the rate offered to commodity c data over the (a,b)

data link during slot t. These µ
(c)
ab (t) values represent routing decision

variables chosen by the network controller. It is often convenient to
impose routing restrictions for each commodity, and hence we define
Lc as the set of all links (a,b) that commodity c data is allowed to use.

3 We shall find that we can restrict control laws to transmitting only a single commodity
per link, without loss of optimality.
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Thus, the controller at each node a ∈ N chooses the routing decision
variables µ

(c)
ab (t) subject to the following routing constraints:∑

c∈K
µ

(c)
ab (t) ≤ µab(t), (2.2)

µ
(c)
ab (t) = 0, if (a,b) /∈ Lc. (2.3)

We assume that only the data currently in node i at the beginning
of slot t can be transmitted during that slot. Hence, the slot-to-slot
dynamics of the queue backlog U

(c)
i (t) satisfies the following inequality:

U
(c)
i (t + 1) ≤ max

[
U

(c)
i (t) −

∑
b

µ
(c)
ib (t),0

]
+ R

(c)
i (t) +

∑
a

µ
(c)
ai (t).

(2.4)
The above expression is an inequality rather than an equality because
the actual amount of commodity c data arriving to node i during slot
t may be less than

∑
a µ

(c)
ai (t) if the neighboring nodes have little or no

commodity c data to transmit.

2.2.1 On the link constraint sets Lc

The routing constraint (2.3) restricts commodity c data from using
links outside of the set Lc. The constraint sets Lc are arbitrary, and
hence the above model includes the special case of single-hop networks
where only direct transmissions between nodes is allowed. This can
be accomplished by setting Lc = {(a,b)} for each commodity c whose
traffic is originated at node a and destined to node b. Also, the above
model includes the special case of unconstrained routing, where each
set Lc contains all of the links of the network. In this case, the network
does not require a pre-specified route. Routing decisions can be made
dynamically at each node, and packets of the same commodity can
potentially traverse different paths. While unconstrained routing allows
for the largest set of options, it can often be complex and may lead to
large network delay in cases when some packets are transmitted in
directions that take them further away from their destinations.

To ensure more predictable performance and to (potentially) reduce
these delay problems, the link sets Lc can be designed in advance
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to ensure that all transmissions move commodities closer to their
destinations. Note that restricting the routing options makes the net-
work less capable of adapting to random link failures, outages, or
user mobility, whereas unconstrained routing can in principle adapt
by dynamically choosing a new direction.

Both unconstrained and constrained routing allow for a multiplicity
of paths. In cases when it is desirable to restrict sessions to a single
path (perhaps to ensure in-order packet delivery), each set Lc can be
specified as a directed tree with final node given by the destination
node for commodity c. Alternatively, in cases when it is desired for
different paths to cross but not merge, a different commodity c can be
associated with each different source-destination pair, and the link set
Lc is defined as the set of all links in the path for commodity c.

2.3 Flow control and the transport layer

All exogenous arrivals A
(c)
i (t) first enter the transport layer at their

corresponding source nodes, and this data is held in storage reservoirs
to await acceptance to the network layer (Fig. 2.4). We assume there
is a separate storage reservoir for each commodity at each node, and
define L

(c)
i (t) as the backlog of commodity c bits currently stored in

the transport layer storage reservoir at node i. Every timeslot, each
source node i makes flow control decisions by choosing the amount of
bits R

(c)
i (t) to deliver to the network layer at node i, subject to the

constraint R
(c)
i (t) ≤ L

(c)
i (t) + A

(c)
i (t) for all (i,c) and all t, and subject

to some additional constraints made precise in Section 5.
The storage reservoirs for each commodity may be infinite or finite,

with size 0 ≤ Lmax
i ≤ ∞. Therefore, some data must be dropped if the

new exogenous arrivals are not admitted to the network layer and do
not fit into the storage reservoir. Hence, L

(c)
i (t) ≤ Lmax

i for all t, and the
dynamics of storage buffer (i,c) from one timeslot to the next satisfies
the following inequality:

L
(c)
i (t + 1) ≤ min

[
L

(c)
i (t) − R

(c)
i (t) + A

(c)
i (t), Lmax

i

]
.

The reason that the above expression is an inequality (rather than an
equality), is that the amount of bits to drop is chosen arbitrarily by the
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flow controller, and in particular the controller might decide to drop all
bits associated with a particular packet in the case when a complete
packet does not fit into the storage reservoir. The storage buffer size
Lmax

i is arbitrary, possibly zero. In the case when Lmax
i = 0, all data

that is not immediately admitted to the network layer is necessarily
dropped. In cases when Lmax

i > 0, the flow controller must make addi-
tional decisions about which data to drop whenever appropriate.

In Sections 3–4 we shall find it useful to neglect flow control deci-
sions entirely, so that all arriving data is immediately admitted to the
network layer and R

(c)
i (t) = A

(c)
i (t) for all timeslots t. In this case we

say the flow controllers are “turned off.” This action of “turning off”
the flow controllers is only used as a thought experiment to build under-
standing of network layer routing and stability issues. In practice, turn-
ing off the flow controllers can lead to instability problems in cases when
network traffic exceeds network capabilities, and these issues are con-
sidered in detail in Sections 5–6 when flow control is again integrated
into the problem formulation.

2.4 Discussion of the assumptions

In this section we discuss the assumptions stated previously about the
network model and its mode of operation.

2.4.1 The time slot assumption

Timeslots are used to facilitate analysis and to cleanly represent periods
corresponding to new channel conditions and control actions. However,
this assumption presumes synchronous operation, where control actions
throughout the network take place according to a common timeclock.
Although asynchronous networking is not formally considered in this
text, the timescale expansion and approximate scheduling results of
[111, 115, 134] suggest that the algorithms and analysis developed
here can be extended to systems with independent network compo-
nents that operate on their own timescales. Asynchronous systems are
further explored in [26].

The assumption that channels hold their states for the duration of
a timeslot is clearly an approximation, as real physical systems do not
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conform to fixed slot boundaries and may change continuously. This
approximation is valid in cases where slots are short in comparison to
the speed of channel variation. In a wireless system with predictable
slow fading and non-predictable fast fading [23, 105], the timeslot is
assumed short in comparison to the slow fading (so that a given mea-
surement or prediction of the fade state lasts throughout the timeslot)
and long in comparison to the fast fading (so that a transmission of
many symbols encoded with knowledge of the slow fade state and the
fast-fade statistics can be successfully decoded with sufficiently low
error probability).

2.4.2 Channel measurement

We assume that network components have the ability to monitor
channel quality so that intelligent control decisions can be made. This
measurement can be in the form of a specific set of attenuation coef-
ficients, or can be according to a simple channel classification such as
“Good,” “Medium,” “Bad.” Channel measurement technology is cur-
rently being implemented for cellular communication with High Data
Rate (HDR) services [63], and the ability to measure and react to chan-
nel information is expected to improve significantly.4 In systems where
it is difficult to obtain timely feedback about channel quality, such
as satellite systems with long round-trip times, channel measurement
can be combined with channel prediction. Accurate channel prediction
schemes for satellites are developed in [32, 33, 69].

2.4.3 The error-free transmission assumption

All data transmissions from one node to the next are considered to be
successful with sufficiently high probability. For example, the link bud-
get curves for wireless transmissions could be designed so that decoding
errors occur with probability less than 10−6. In such a system, there
must be some form of error recovery protocol which allows a source
to re-inject lost data back into the network [18]. If transmission errors

4 Indeed, it is claimed in [152] that channel measurements can be obtained almost as often
as the symbol rate of the link in certain local area wireless networks.
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are rare, the extra arrival rate due to such errors is small and does
not appreciably change network performance. Throughout this text, we
neglect such errors and treat all transmissions as if they are error-free.
An alternate model in which transmissions are successful with a given
probability can likely be treated using similar analysis. Recent work
in [74, 75] considers channel uncertainty for transmission scheduling
in MIMO systems, and work in [118] considers routing in multi-hop
networks with unreliable channels and multi-receiver diversity.



3
Stability and Network Capacity

Here we establish the fundamental throughput limitations of a general
multi-commodity network as defined in the previous section. Specif-
ically, we characterize the network layer capacity region. This region
describes the set of traffic rates that the network can stably support,
considering all possible strategies for choosing the control decision vari-
ables that affect routing, scheduling, and resource allocation. We begin
with a precise definition of stability for single queues and for queueing
networks.

3.1 Queue stability

Consider a single queue with an input process A(t) and transmission
rate process µ(t), where A(t) represents the amount of new arrivals that
enter the queue during slot t, and µ(t) represents the transmission rate
of the server during slot t. We assume that the A(t) arrivals occur at
the end of slot t, so that they cannot be transmitted during that slot.
Let U(t) represent the current backlog in the queue. The U(t) process
evolves according to the following discrete time queueing law:

U(t + 1) = max[U(t) − µ(t),0] + A(t).

23
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The queue might be located within a larger network, in which case
the arrival process A(t) is composed of random exogenous arrivals as
well as endogenous arrivals resulting from routing and transmission
decisions from other nodes of the network. Likewise, the transmission
rate µ(t) can be determined by a combination of random channel state
variations and controlled network resource allocations, both of which
can change from slot to slot. Therefore, it is important to develop a
general definition of queueing stability that handles arbitrary A(t) and
µ(t) processes.

Definition 3.1. A queue is called strongly stable if:

limsup
t→∞

1
t

t−1∑
τ=0

E{U(τ)} < ∞.

That is, a queue is strongly stable if it has a bounded time average
backlog. This leads to a natural definition of network stability:

Definition 3.2. A network is strongly stable if all individual queues
of the network are strongly stable.

A discussion of more general stability definitions can be found in
[12, 43, 58, 111, 115]. Throughout this text we shall restrict attention
to the strong stability definition given above, and shall often use the
term “stability” to refer to strong stability. The following simple but
important necessary condition holds for strongly stable queues with any
arbitrary arrival and server processes (possibly without well defined
time averages). Its proof can be found in [122].

Lemma 3.3. (Necessary Condition for Strong Stability) If a queue
is strongly stable and either E{A(t)} ≤ Amax for all t, or E{µ(t)−
A(t)} ≤ Dmax for all t, where Amax, Dmax are finite nonnegative con-
stants, then:

lim
t→∞

E{U(t)}
t

= 0. (3.1)
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3.1.1 The arrival process assumptions

To analyze network capacity, we assume that all exogenous arrival
processes A

(c)
i (t) satisfy the following structural properties for admis-

sible inputs.

Definition 3.4. An arrival process A(t) is admissible with rate λ if:

• The time average expected arrival rate satisfies:

lim
t→∞

1
t

t−1∑
τ=0

E{A(τ)} = λ.

• There exists a finite value Amax such that E
{
A(t)2 |H (t)

} ≤
A2

max for all timeslots t, where H (t) represents the history
up to time t, i.e., all events that take place during slots τ ∈
{0, . . . , t − 1}.

• For any δ > 0, there exists an interval size T (that may
depend on δ) such that for any initial time t0 the following
condition holds:

E

{
1
T

T−1∑
k=0

A(t0 + k) |H (t0)

}
≤ λ + δ. (3.2)

Some examples of admissible arrival processes are the following.

Example 3.1. Let X (t) be an ergodic Markov chain with a finite
state space {1, . . . ,Q}. When X (t) = m, let A(t) be chosen indepen-
dently and identically distributed (i.i.d.) with distribution P

(m)
A (a).

If πm, m ∈ {1, ...,Q} is the steady state distribution of X (t) and
E{A(t) |X (t) = m} = λm, then the process A(t) is admissible with rate
λ =

∑Q
m=1 λmπm. An important special case is when there is only one

state, so that A(t) is i.i.d. every slot with E{A(t)} = λ for all t.

Example 3.2. Let A(t) satisfy the following burstiness constraints

λ(t2 − t1) + σ1 ≥
t2−1∑
t=t1

A(t) ≥ λ(t2 − t1) − σ2, for all t2 > t1 ≥ 0,
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where σ1 and σ2 are nonnegative numbers. Then A(t) is admissible
with rate λ. Burstiness constrained models have been used extensively
in wired networks [27, 35, 82, 148] and in a wireless context in [157].

Below we define the concept of an admissible service process µ(t):

Definition 3.5. A server process µ(t) is admissible with time average
service rate µ if:

• The time average expected service rate satisfies:

lim
t→∞

1
t

t−1∑
τ=0

E{µ(τ)} = µ.

• There exists an upper bound µmax such that µ(t) ≤ µmax for
all t.

• For any δ > 0, there exists an interval size T (that may
depend on δ), such that for any initial time t0 the follow-
ing condition holds:

E

{
1
T

T−1∑
k=0

µ(t0 + k) |H (t0)

}
≥ µ − δ. (3.3)

Lemma 3.6. (Stability Conditions under Admissibility) Consider a
queue with an admissible input process A(t) with arrival rate λ, and
an admissible server process with time average rate µ. Then: (a) λ ≤ µ

is a necessary condition for strong stability. (b) λ < µ is a sufficient
condition for strong stability.

The necessary condition is quite intuitive. Indeed, if λ > µ, then
expected queue backlog necessarily grows to infinity, leading to insta-
bility. The sufficient condition is also intuitive, but its proof requires the
structure of admissible arrival and service processes as defined above
(see [115] for a proof). We note that strong stability also holds in cases
when the infinite horizon time average conditions for A(t) and µ(t)
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do not necessarily hold, but these processes satisfy all other inequality
conditions of the admissibility definitions (for some values λ and µ

such that λ < µ). We say that such an arrival process is admissible
with arrival rate less than or equal to λ, and such a service process is
admissible with average service rate greater than or equal to µ.

3.2 The network layer capacity region

Consider a network with a general link transmission rate matrix
C(I(t),S(t)) = (Cab(I(t),S(t))). Recall that I(t) ∈ IS(t) and S(t) ∈ S,
where IS(t) is the control space for a given topology state S(t), and S is
the finite set of all possible topology states for the network. The func-
tion C(·, ·) is arbitrary (possibly discontinuous) and is only assumed to
be bounded, so that for all links (a,b) and all I ∈ Is and s ∈ S we have:

0 ≤ Cab(I,s) ≤ µmax. (3.4)

for some maximum transmission rate µmax. The topology state S(t) is
assumed to evolve according to a finite state, irreducible Markov chain
(possibly periodic). Such chains have well defined time averages πs, rep-
resenting the time average fraction of time that S(t) = s. Specifically,
with probability 1 we have:1

lim
t→∞

1
t

t−1∑
τ=0

1[S(t)=s] = πs , for all s ∈ S. (3.5)

where 1[S(t)=s] is an indicator function that takes the value 1 whenever
S(t) = s, and takes the value zero otherwise.

Let N and K represent the set of nodes and commodities, with
sizes N and K respectively. Let Lc be the set of links defining the
routing constraints for each commodity c ∈ K. Define U

(c)
i (t) as the

internal queue backlog of commodity c data at node i. Due to the rout-
ing constraints, some commodities might never be able to visit certain
nodes. Further, some nodes might only be associated with destina-
tions, and hence these nodes do not keep any internal queues. Hence,
we define Ki as the number of internal queues kept by node i, where

1 The Markov structure for S(t) is used only to facilitate presentation. Our results hold more
generally for any S(t) that satisfies the channel convergent property defined in [115].
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Ki ∈ {0,1, . . . ,K}. Define D as the set of all node-commodity pairs (i,c)
associated with internal queues in the network, and let D represent the
number of such queues:

D �=
N∑

i=1

Ki.

The integer D defines the relative dimension of the network.
Let A

(c)
i (t) represent the process of commodity c bits arriving exoge-

nously to node i. Assume that these arrival processes are admissible
with time average rates λ

(c)
i (in units of bits/slot), and let λ = (λ(c)

i )
represent the arrival rate matrix. We assume throughout that λ

(c)
i = 0

whenever (i,c) /∈ D, so that the number of non-zero rates is less than
or equal to D. Assume that the network flow controllers are turned off,
so that all incoming traffic arrives directly to the network layer.

Definition 3.7. The network layer capacity region Λ is the closure
of the set of all arrival rate matrices

(
λ

(c)
i

)
that can be stably sup-

ported by the network, considering all possible strategies for choosing
the control variables to affect routing, scheduling, and resource alloca-
tion (including strategies that have perfect knowledge of future events).

Note that this is a network layer notion of capacity that considers
all choices of the decision variables µ

(c)
ab (t) and I(t) for a network that

operates according to a given C(I(t),S(t)) function; it was introduced
in [143, 147] and generalized further in [111, 115, 149]. This is dis-
tinct from the information theoretic notion of network capacity, which
includes optimization over all possible modulation and coding strate-
gies and involves many of the unsolved problems of network informa-
tion theory [34]. The network layer and information theoretic capacity
regions are called “stability” and “capacity” regions respectively in [98],
where a third notion of “throughput region” referring to the case when
all nodes have infinite backlogs, is also examined. In this work, we shall
use the term “capacity region” to refer to the network layer capacity
region as described above.

The issue of capacity scaling was raised in [59] where it was found
that the capacity vanishes asymptotically as the number of nodes
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increases, with a rate that is inversely proportional to a fractional power
of the number of nodes. The type of capacity considered in [59] is sim-
ilar to the one we consider here. More specifically a certain model is
considered for the local interaction of the radio transmissions, that
imply interference restrictions on simultaneous transmissions of nodes
with geographical proximity. Assuming a uniform end-to-end traffic
load matrix then, the capacity can be specified by a scalar, i.e. the
maximum traffic intensity that is sustainable under any transmission
control and traffic forwarding policy. In [59] a bound to that capacity
is obtained that vanishes inversely proportional to the square root of
the number of nodes. That important result indicates that large scale
ad-hoc wireless networks with flat architecture may only have limited
usability as a general purpose communication infrastructure. It moti-
vated a lot of follow up work generalizing the result in various ways,
some indicative examples are [57, 60, 78, 90, 94, 112, 114, 151, 166].

3.2.1 Constructing the capacity region

To build intuition about the set Λ, we first consider the capacity region
of a traditional wireline network with no time variation, such as the
static network of Example 2.1 in Section 2. Such a network is described
by a constant matrix (Gab), where Gab is the fixed rate at which data
can be transferred over link (a,b), and Gab = 0 if there is no physical
link from node a to node b. The network capacity region in this case
is described implicitly as the set of all arrival rate matrices

(
λ

(c)
i

)
for which there exist multi-commodity flow variables f

(c)
ab (for a,b ∈ N

and c ∈ K) that satisfy a set of flow conservation equations, and that
additionally satisfy the link constraint

∑
c f

(c)
ab ≤ Gab for all links (a,b).

This constraint ensures that the total flow over any link does not exceed
the link transmission rate. Intuitively, this coincides with the necessary
and sufficient conditions for queue stability described in Lemma 3.6.
Indeed, stability requires that the data arrival rate to any link is no
more than the transmission rate of the link, regardless of whether data
flows as a continuous fluid or as packetized units.

The capacity region of a general network differs from that of a
static wireline network only in the description of the link constraint.
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Indeed, first note that the time varying network topology requires link
transmission capabilities to be defined in a time average sense, where
the resulting transmission rate over a given link (a,b) is averaged over
all possible topology states. Second, the resulting time average link
rates are not fixed, but depend on the resource allocation policy for
choosing I(t) ∈ IS(t). Thus, instead of describing the network as a sin-
gle graph with a single transmission rate matrix (Gab), the network is
described by a collection of graphs defined by a graph family Γ. The
graph family Γ can be viewed as the set of all long-term transmis-
sion rate matrices (Gab) that the network can be configured to support
on the single-hop links connecting node pairs (a,b), and is defined as
follows:

Γ �=
∑
s∈S

πsConv{C(I,s) |I ∈ Is } , (3.6)

where addition and scalar multiplication of sets is used2, and where
Conv{A} represents the convex hull of the set A. Specifically,
Conv{A} is defined as the set of all finite weighted combinations
p1a1 + p2a2 + . . . + pmam of elements ai ∈ A (where {pi} are nonneg-
ative numbers summing to 1). Such weighted combinations are called
convex combinations. To intuitively understand why the graph family Γ
has the form given in (3.6), we note the following basic result from con-
vex set theory:

Fact 1: If µ is any random vector that takes values within some
general set A, then E{µ} ∈ Conv{A} (assuming the expectation is
well defined). �

Consider now the set As defined as the set of all transmission rate
matrices possible under channel state s:

As
�= {C(I,s) |I ∈ Is }.

Two example sets As, corresponding to two different topology states,
are shown in Fig. 3.1. Suppose we have a resource allocation algo-
rithm that every time slot independently chooses a random control

2 For vector sets A,B and scalars α, β, the set αA + βB is defined as {γ | γ = αa + βb :
for some a ∈ A, b ∈ B}.
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Fig. 3.1 A construction of the set Γ for the case of 2 dimensions, illustrating the set of
all achievable long term link rates (µ1,µ2). In this example, we consider only two chan-
nel states s1 and s2, each equally probable. Note that for the first channel state, the set
{C (I,s) |I ∈ Is } is disconnected and non-convex. Its convex hull is shown in the first plot.
The secont plot illustrates the weighted sum of the convex hull of the regions associated
with each of the two channel states. This is the Γ region, and is necessarily convex.

input I(t) ∈ Is according to some probability law whenever S(t) = s,
yielding a random rate matrix µ(t) = C(I(t),s). By definition, this
random rate matrix satisfies µ(t) ∈ As, and hence by Fact 1 it follows
that the expected rate matrix satisfies: E{µ(t) |S(t) = s} ∈ Conv{As}.
Thus, randomizing the control decisions allows the expected rate matrix
to expand beyond the set As to reach points within the larger set
Conv{As} (see Fig. 3.1). Further, by appropriately choosing the ran-
domized probabilities, any point within the set Γ can be reached in this
way. This is summarized in the following fact.

Fact 2: A matrix G = (Gab) is in the graph family Γ if and only
if there exists a randomized policy that bases control decisions on the
current channel state, such that:

G =
∑
s∈S

πsE{µ(t) |S(t) = s} , (3.7)

where E{µ(t) |S(t) = s} is the expected rate matrix offered by the ran-
domized policy when S(t) = s. �

By ergodicity of the topology state process S(t) together with
the law of large numbers, it is easy to see that the right hand
side of (3.7) is an expression for the time average transmission rate
limt→∞ 1

t

∑t−1
τ=0 µ(τ). Thus, the network can be configured to achieve
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long term link transmission rates for any rate matrix G within the
graph family Γ. Let Cl{Γ} represent the closure of the set Γ. The
following theorem from [111, 115] characterizes the network layer capac-
ity region. Recall that every timeslot, a network controller must choose
I(t) ∈ IS(t), and must choose routing variables µ

(c)
ab (t) that satisfy:∑

c µ
(c)
ab (t) ≤ Cab(I(t),S(t)), µ

(c)
ab (t) = 0 if (a,b) /∈ Lc.

Theorem 3.8. (Capacity Region for a Network) The capacity region
of the network is given by the set Λ consisting of all input rate matri-
ces

(
λ

(c)
i

)
such that λ

(c)
i = 0 whenever (i,c) /∈ D, and such that there

exists a rate matrix (Gab) ∈ Cl{Γ} together with multi-commodity flow
variables

{
f

(c)
ab

}
satisfying:

(Flow Efficiency Constraints)

f
(c)
ab ≥ 0, f (c)

aa = f
(c)
dest(c),b = 0, for all a,b ∈ N , c ∈ K, (3.8)

(Flow Conservation Constraints)

λ
(c)
i =

∑
b

f
(c)
ib −

∑
a

f
(c)
ai , for all (i,c) ∈ D with i �= dest(c), (3.9)

(Routing Constraints)

f
(c)
ab = 0, for all a,b ∈ N , c ∈ K with (a,b) /∈ Lc, (3.10)

(Link Constraints)∑
c

f
(c)
ab ≤ Gab, for all a,b ∈ N , (3.11)

where dest(c) represents the destination node for commodity c data.

Thus, a rate matrix
(
λ

(c)
i

)
is in the capacity region Λ if there exists

a matrix (Gab) ∈ Cl{Γ} that defines link capacities in a traditional
graph network, such that there exist multi-commodity flow variables{

f
(c)
ab

}
which support the

(
λ

(c)
i

)
rates with respect to this graph. Note

that inequalities (3.8) constrain flow variables to be non-negative and
to be “efficient,” in that no node transmits data to itself and no node
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re-injects delivered data back into the network. Inequality (3.9) is a
conservation constraint that ensures the total flow of commodity c data
into a given node i is less than or equal to the total flow out of that
node, provided that node i is not the destination. We note that (3.9)
is expressed as an equality constraint only to facilitate understanding.
The same theorem holds if (3.9) is replaced by the following inequality
constraint:

λ
(c)
i ≤

∑
b

f
(c)
ib −

∑
a

f
(c)
ai for all (i,c) ∈ D with i �= dest(c).

The above constraint is more useful because it leads to a simpler proof
of the theorem (see [111, 115]), and also simplifies construction of dual
algorithms for finding the multi-commodity flows

{
f

(c)
ab

}
in the case

when the set Cl{Γ} is known in advance and the problem is treated as
a convex program (see Section 4.10).

The following useful corollary establishes an important property of
the capacity region:

Corollary 3.9. If Γ = Cl(Γ) and if the topology state S(t) is i.i.d.
from slot to slot, then a rate matrix

(
λ

(c)
i

)
is within the capacity region

Λ if and only if there exists a stationary randomized control algorithm
that makes valid µ

(c)
ab (t) decisions based only on the current topology

state S(t), and that yields for all (i,c) and all time t:

E

{∑
b

µ
(c)
ib (t) −

∑
a

µ
(c)
ai (t)

}
= λ

(c)
i , for all (i,c) ∈ D with i �= dest(c) ,

where the expectation is taken with respect to the random topology
state S(t) and the (potentially) random control action based on this
state.

The constraints of Theorem 3.8 lead to the following structural
properties for Λ:

• The set Λ is convex, closed, and bounded [17, 115].
• The set Λ contains the all-zero matrix (so that 0 ∈ Λ).
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• If λ ∈ Λ, then λ̃ ∈ Λ, where λ̃ is any rate matrix that is
entrywise less than or equal to λ.

Let D̃ represent the subset of D consisting of all node-commodity
pairs (i,c) for which it is possible to stably support a non-zero input
rate λ

(c)
i (assuming that all other input rates are zero). The relative

interior of the set Λ is given by the set of all rate matrices λ for which
there exists an ε > 0 such that λ + ε ∈ Λ, where ε is a matrix with
entries ε

(c)
i = ε for all (i,c) ∈ D̃, and all other entries equal to zero. The

proof of Theorem 3.8 involves showing that
(
λ

(c)
i

)
∈ Λ is necessary

for stability, and that
(
λ

(c)
i

)
within the relative interior of Λ is suffi-

cient. Note that although the exogenous arrival processes are assumed
to be admissible, the capacity region must capture all possible routing,
scheduling, and resource allocation strategies, including strategies that
result in non-admissible arrival or service processes at the individual
queues of the network. In the next section, we prove the sufficient con-
ditions of Theorem 3.8 for the special case of a one-hop network. For
the complete proof for the general multi-hop case, the reader is referred
to [111, 115].

3.3 The capacity of one hop networks

Consider the special case of a one-hop network with L different exoge-
nous input processes. For simplicity, assume that data from each input
process is intended for transmission over a unique link. Let µ(t) =
(µ1(t), . . . ,µL(t)) represent the vector of link transmission rates during
slot t, where µl(t) = Cl(I(t),S(t)) denotes the rate over link l under
control input I(t) and topology state S(t). The corresponding graph
family Γ defined in (3.6) is thus a set of rate vectors rather than rate
matrices. Let A(t) = (A1(t), . . . ,AL(t)) represent the vector of exoge-
nous arrivals, where Al(t) is the number of bits that arrive to link l

during slot t (for l ∈ {1, . . . ,L}). Assume these processes are admissible
with rate vector λ = (λ1, . . . ,λL). We have the following corollary to
Theorem 3.8.



3.3. The capacity of one hop networks 35

Corollary 3.10. (Single Hop Capacity Region) The single hop
capacity region Λ consists of all rate vectors λ = (λ1, . . . ,λL) such that
there exists a vector (G1, . . . ,GL) ∈ Cl{Γ} such that λl ≤ Gl for all net-
work links l ∈ {1, . . . ,L}.

We skip the proof of necessity of this corollary and concentrate
on the proof of sufficiency since this is important for the subsequent
development and demonstrates the design issues involved.

Proof. (Sufficiency) Suppose for simplicity that Λ has full dimension.
Suppose each link l ∈ {1, . . . ,L} receives an admissible input process
of rate λl. Let λ represent the input rate vector. Assume that λ is in
the interior of the set Λ defined in Corollary 3.10, so that there exists
an ε > 0 such that (λ1 + ε, . . . ,λL + ε) ∈ Λ. Thus, there exists a vector
G = (G1, . . . ,GL) such that G ∈ Cl{Γ} and λl + ε ≤ Gl for all links
l ∈ {1, . . . ,L}. Then there must exist a matrix G = (G1, . . . ,GL) such
that G ∈ Γ and λl + ε/2 ≤ Gl for all links l. Because G ∈ Γ, it can be
written as:

G =
∑
s∈S

πsGs, (3.12)

where Gs ∈ Conv{C(I,s) |I ∈ Is } for each channel state s ∈ S.
Furthermore, by Caratheodory’s Theorem [17], each matrix Gs can
be decomposed into a convex combination of at most L + 1 elements
of {C(I,s) |I ∈ Is }:

Gs = p1
sC(I1

s ,s) + p2
sC(I2

s ,s) + . . . + pL+1
s C(IL+1

s ,s), (3.13)

where Ii
s ∈ Is for all s ∈ S and i ∈ {1, . . . ,L + 1}. Given such a decom-

position for each channel state s ∈ S, the following control algorithm
can be constructed: On each timeslot, observe the current network
topology state S(t). Given that S(t) = s, randomly choose one of the
L + 1 control options Ii

s with probability pi
s (for i ∈ {1, . . . ,L + 1}). It

follows that:

E{µ(t) |S(t) = s} = E{C(I(t),S(t)) |S(t) = s} = Gs. (3.14)
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This strategy results in a matrix µ(t) consisting of individual service
rate processes µl(t) for each link l. Claim: If S(t) evolves according to a
finite state irreducible Markov chain, then each service process µl(t) is
admissible with time average rate µl = Gl. A formal proof of the claim
is given in [115]. Intuitively, the claim holds because the time average
of the µ(t) process can be expressed as a sum over the steady state
topology state probabilities:

lim
t→∞

1
t

t−1∑
τ=0

µ(τ) =
∑
s∈S

πsE{µ(t) |S(t) = s} with probability 1,

and hence µ = G by (3.12) and (3.14). Thus, the queue for each link l

has an admissible input with rate λl and an admissible service process
with time average rate µl = Gl, where µl is strictly larger than λl. From
the sufficient condition of Lemma 3.6 in Section 3.1.1, it follows that
each queue of the network is stable, proving the result.

The above stabilizing algorithm is not intended as a practical con-
trol strategy, as it cannot be implemented without extensive offline
preparation. Indeed, the input rate matrix and the network capacity
region would need to be known in advance, which requires a-priori
knowledge of the topology state probabilities πs for each state s ∈ S.
Further, assuming all of the probabilities could be accurately estimated,
the network controller would still need to pre-compute the decomposi-
tion of Gs in (3.13) for each possible topology state. As the number of
states can grow geometrically in the number of network links, a direct
attempt to implement the above policy would be very difficult even
for a relatively small network. However, the fact that the above policy
exists plays a crucial role in the analysis of a more practical stabilizing
strategy presented in Section 4.

Example 3.3. The capacity of ON-OFF downlink. Consider a simple
example of a two-queue wireless downlink that transmits data to two
downlink users 1 and 2 over two different channels. Assume that the
arrival processes are independent Bernoulli processes with rates λ1

and λ2, so that every timeslot a single packet independently arrives to
queue i with probability λi, and no packet arrives to queue i otherwise
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(for i ∈ {1,2}). All packets are assumed to have fixed lengths, so that
the queue backlog is measured in units of packets. Let U1(t) and U2(t)
respectively represent the current backlog of packets waiting for trans-
mission to user 1 and user 2, respectively. Channels independently
vary between ON and OFF states every slot according to independent
Bernoulli processes with ON probabilities p1 and p2. Every timeslot,
a controller observes the channel states and chooses to transmit over
either channel 1 or channel 2. We assume that a single packet can be
transmitted if a channel is ON, and no packet can be transmitted when
a channel is OFF, so that the only decision is which channel to serve
when both channels are ON. In this case, there are only four possible
topology states S(t), and the graph family Γ is given as the following
two dimensional set of rate pairs (g1, g2), expressed as a sum of sets as
in (3.6):

Γ = (1 − p1)(1 − p2){(0,0)} + p1(1 − p2){(1,0)}
+ p2(1 − p1){(0,1)} + p1p2Conv{(1,0),(0,1)} . (3.15)

It can be verified that the resulting capacity region of this system, char-
acterized by Corollary 3.10, is given by the set of all non-negative rate
vectors (λ1,λ2) satisfying the following three inequalities (in addition
to λ1 ≥ 0, λ2 ≥ 0):

λ1 ≤ p1, λ2 ≤ p2, λ1 + λ2 ≤ p1 + p2(1 − p1). (3.16)

This is a polyhedral region, where the set Γ forms the dominant face of
the polyhedron (See Figure 4.1 in the next section). That these three
inequalities are necessary for stability is quite intuitive: The first two
inequalities bound the individual input rates λi in terms of the maxi-
mum possible average transmission rates of their respective queues, and
the last inequality bounds the sum input rate in terms of the average
sum transmission rate. This simple capacity expression arises from the
special ON/OFF structure of the system. In [144], it is shown that any
downlink with L independent ON/OFF channels has a capacity region
that is given by a set of 2L − 1 inequalities: Each inequality corresponds
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to a subset of channels and indicates that the sum input rate into this
subset is less than or equal to the probability that at least one channel
within the subset is ON. A similar structure for the capacity region
holds when there are burstiness constraints on the channel state pro-
cesses instead of the Bernoulli process assumption made above [157].



4
Dynamic Control for Network Stability

In this section we develop a general algorithm for stabilizing networks
without requiring knowledge of the arrival rates or topology state prob-
abilities. Unlike the offline algorithm considered in the previous section,
which makes randomized resource allocation decisions based only on
the observed topology state, the algorithm in this section is an online
dynamic algorithm that bases decisions both on the observed topology
state and on the current queue backlogs. We begin with a motivating
example that illustrates the design challenges.

4.1 Scheduling in an ON/OFF downlink

Consider the ON/OFF downlink of Example 3.3, with arrival rates
λ1,λ2 and independent Bernoulli channels with ON probabilities p1

and p2, and assume that p1 < p2. Recall that the capacity region of
the system is given by the three inequality constraints in (3.16). While
the controller is constrained to serving only a single queue in any given
timeslot, the fact that there are two independent channels creates a
multi-user diversity gain, creating a larger probability that at least
one of the channels is ON during any particular timeslot. This gain

39
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is evident in the inequalities (3.16) that describe the capacity region,
where it is clear that the sum output rate of the system can be larger
than the output rate of any single queue alone. However, this diversity
gain is mitigated on timeslots in which one of the queues is empty.
Therefore, even for this simple system, scheduling must be done care-
fully in order to ensure stability.

For example, assuming the arrival rates are interior to the capac-
ity region, one might suspect that stability can be achieved simply
by serving any non-empty ON queue. However, in the case when the
choice is to serve an ON queue with two packets versus an ON queue
with twenty packets, serving the shorter queue can potentially create a
higher probability that this queue is empty in the near future, leading
to a loss of multi-user diversity and creating potential instability. This
phenomenon holds also for multi-rate systems: Choosing the non-empty
queue with the largest offered transmission rate can lead to instability
and sub-optimal throughput, even though this policy would maximize
throughput in the special case when all queues are “infinitely back-
logged” and always have packets to send. To illustrate this point, we
compare three well known scheduling algorithms applied to the special
case of the two queue downlink with ON/OFF channels: The Borst
algorithm [24], the ‘proportionally fair’ Max µi/ri algorithm [153], and
the Max Weight Match (MWM) policy [144].1

The Borst Algorithm: The Borst algorithm chooses to serve the non-
empty channel i with the largest µ̃i(t)/E{µ̃i} index, where µ̃i(t) is the
current rate offered by link i if this link is chosen for transmission, and
E{µ̃i} is the expected value of this rate taken over its steady state dis-
tribution (which is assumed to be known a-priori). This algorithm is
shown in [24] to have desirable fairness properties for wireless networks
with an “infinite” number of channels, where each incoming packet is
destined for a unique user with its own channel. Although the algo-
rithm was not designed for a two-queue downlink, it is closely related
to the Max µi/ri policy (to be described below), and it is illuminating
to evaluate its performance in this context. Applied to the two-queue

1 The MWM policy is also called the Longest Connected Queue (LCQ) policy for this special
case of ON/OFF channels.
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Fig. 4.1 The downlink capacity region Λ and the stability regions of the Borst policy and the
Max µi/ri policy. Input rates (λ1,λ2) are pushed toward point (0.5,1.0), and the simulated
throughputs under the Borst, Max µi/ri, and MWM policies are illustrated.

downlink, the Borst algorithm reduces to serving the non-empty ON
queue with the largest value of 1/pi. Because p1 < p2, this algorithm
effectively gives packets destined for channel 1 strict priority over chan-
nel 2 packets. It is not difficult to show that, for this simple system,
the stability region of the Borst policy is given by the set of all rate
pairs (λ1,λ2) such that λ1 ≤ p1, λ2 ≤ p2 − λ1p2 [108]. This is a strict
subset of the capacity region (see Fig. 4.1).

The Max µi/ri Algorithm: Consider now the related policy of serv-
ing the non-empty queue with the largest value of µ̃i(t)/ri(t), where
ri(t) is the empirical throughput achieved over channel i. This differs
from the Borst algorithm in that transmission rates are weighted by
the throughput actually delivered rather than the average transmis-
sion rate that is offered. This Max µi/ri policy is proposed in [153]
and shown to have desirable proportional fairness properties when all
queues of the downlink are infinitely backlogged [81, 159]. To evaluate
its performance for arbitrary traffic rates (λ1,λ2), suppose the running
averages r1(t) and r2(t) are accumulated over the entire timeline, and
suppose the system is stable so that r1(t) and r2(t) converge to λ1

and λ2. It follows that the algorithm eventually reduces to giving chan-
nel 1 packets strict priority if λ1 < λ2, and giving channel 2 packets
strict priority if λ2 < λ1. Thus, if λ1 < λ2 then these rates must also
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satisfy the inequalities λ1 ≤ p1, λ2 ≤ p2 − λ1p2 of the Borst algorithm.
However, if λ2 < λ1 then the rates must satisfy the inverted inequali-
ties λ2 ≤ p2 and λ1 ≤ p1 − λ2p1. Thus, at first glance it seems that the
stability region of this policy is a subset of the stability region of the
Borst algorithm. However, its stability region has the peculiar property
of including all feasible rate pairs (λ,λ) (see Fig. 4.1).

The MWM Algorithm: The MWM algorithm serves the queue with
the largest Ui(t)µ̃i(t) index, where Ui(t) is the current backlog in
queue i. For this special case of an ON/OFF downlink, this policy
reduces to serving the longest queue with an ON channel. The policy
is shown in [144] to stabilize the system whenever the arrival rates are
interior to the capacity region.

In Fig. 4.1 we consider the case when p1 = 0.5, p2 = 0.6, and plot
the achieved throughput of the Borst, Max µi/ri, and MWM poli-
cies when the rate vector (λ1,λ2) is scaled linearly towards the vector
(0.5, 1.0), illustrated by the ray in Fig. 4.1(a). One hundred differ-
ent rate points on this ray were considered (including example points
a - e), and simulations were performed for each point over a period of
5 million timeslots. Fig 4.1(a) illustrates the resulting throughput of the
Borst algorithm, where we have included example points d′ and e′ cor-
responding to input rate points d and e. Note that the Borst algorithm
always results in throughput that is strictly interior to the capacity
region, even when input rates are outside of capacity. Fig. 4.1(b) illus-
trates performance of the Max µi/ri and MWM policies. Note that the
MWM policy supports all (λ1,λ2) traffic when this rate vector is within
the capacity region. However, when traffic is outside of the capacity
region the achieved throughput moves along the boundary in the wrong
direction, yielding throughputs that are increasingly “unfair” because
it favors service of the higher traffic rate stream. Like the Borst policy,
the Max µi/ri policy leads to instability for all (stabilizable) input rates
on the ray segment c-d, and yields throughput that is strictly interior
to the capacity region even when inputs exceed system capacity (com-
pare points e and e′). However, the throughput eventually touches the
capacity region boundary at the “proportionally fair” point (0.4, 0.4)
when input rates are sufficiently far outside of the capacity region.
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This example illustrates two important points. First, the MWM
algorithm provides stability whenever possible, while other reasonable
algorithms may not. This first point is a special case of a general sta-
bility result for networks with arbitrary C(I(t),S(t)) functions, devel-
oped in the Section 4.4 via a theory of Lyapunov stability. Second, the
MWM policy does not necessarily offer fairness in cases when input
rates exceed the capacity region. This issue is considered in Section 5,
where our stabilizing algorithms are complemented with an optimal
flow control technique via a theory of Lyapunov optimization.

4.2 Network model

We consider the general network model of Section 2, where there are
N nodes and K commodities (with node and commodity sets N and
K, respectively). The network is characterized by:

• A topology state process S(t) that evolves according to an
irreducible Markov chain with a finite state space S and time
average probabilities πs for s ∈ S.

• A control decision variable I(t) (representing resource allo-
cation) with a potentially topology state-dependent control
space IS(t).

• A matrix valued transmission rate function C(I(t),S(t)) =
(Cab(I(t),S(t))), where Cab(I(t),S(t)) is the transmission
rate over link (a,b) under the control action I(t) and the
topology state S(t) (for a,b ∈ {1, . . . ,N}).

Recall that the Cab(I(t),S(t)) functions are arbitrary, and are only
assumed to be bounded. Define µ

(c)
ab (t) as the routing control variables,

representing the amount of commodity c data delivered over link (a,b)
during slot t. These routing variables are constrained as follows:

K∑
c=1

µ
(c)
ab (t) ≤ Cab(I(t),S(t)) for all (a,b) and all t, (4.1)

µ
(c)
ab (t) = 0 if (a,b) /∈ Lc, (4.2)
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where Lc is the set of all links that are allowed to transmit commodity c

data. Let A
(c)
i (t) represent the process of exogenous commodity c data

arriving to source node i (for i ∈ N and c ∈ K). We assume that the
flow controllers are turned off, so that all exogenous arrivals directly
enter the network layer at their source nodes. Let U

(c)
i (t) represent the

backlog of commodity c data currently stored in node i. The queueing
dynamics thus satisfy:

U
(c)
i (t + 1) ≤ max[U (c)

i (t) −
∑

b

µ
(c)
ib (t),0] + A

(c)
i (t) +

∑
a

µ
(c)
ai (t).

(4.3)

Each process A
(c)
i (t) is assumed to be admissible with rate less than

or equal to λ
(c)
i . Define λ = (λ(c)

i ) as the matrix of arrival rates. We
assume that the input rate matrix is stabilizable, and in particular
that is within the relative interior of the capacity region Λ. Recall
from Section 3.2 that this means there exists a value ε > 0 such that
λ + ε ∈ Λ, where:

• The set D contains all node-commodity pairs (i,c) for which
there exist network queues U

(c)
i (t).

• The set D̃ is the subset of D consisting of all node-commodity
pairs (i,c) for which it is possible to support a non-zero rate
λ

(c)
i (assuming there is no other traffic).

• The matrix ε has entries ε
(c)
i = ε for all (i,c) ∈ D̃.

Thus, λ + ε ∈ Λ implies that it is possible to find multi-commodity
flows to support the augmented traffic rate matrix associated with
adding a new stream of rate ε to each of the source queues U

(c)
i (t)

(for (i,c) ∈ D̃). Data from any new stream of rate ε is simply treated as
if it has the same commodity as the source queue it enters. To simplify
analysis, we assume that D = D̃. This is equivalent to the following
assumption.

“No Trapping Nodes” Assumption: If it is possible to send commod-
ity c data to a particular node i (so that a commodity c queue exists
for that node), then it is possible to support a non-zero communication
rate from node i to the destination of commodity c (possibly by using
multi-hop paths).
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For example, a “trapping node” might be a node with no outgoing
links, or a node that is part of a group of nodes with outgoing links that
only connect to other nodes of the group. Note that the “no trapping
node” assumption holds whenever it is possible to deliver data back
to the same node it came from. While this assumption is not required
for the capacity theorem (Theorem 3.8), it shall be useful in analyzing
the performance of the dynamic control policy introduced in the next
subsection. Indeed, without this assumption, a general dynamic policy
with no routing constraints might inadvertently send data to a trapping
node that prevents this data from ever reaching its destination.

The dynamic policy introduced in the next section is most easily
analyzed under the no trapping node assumption, although it can also
be applied to achieve maximum throughput in networks without this
assumption. In practice, if a particular node dies, or enough of its out-
going links die, then the node can become a trapping node. In this case,
although all of the data contained in this node will be lost, the rate of
adding more data to this node will approach zero, and so the dynamic
routing policy simply finds alternate routes for all future data.

4.2.1 Input and output rate bounds

To analyze network performance, it is useful to define the maximum
transmission rates out of and into a given node i ∈ N as follows:

µout
max,i

�= sup
[s∈S,I∈Is]

N∑
b=1

Cib(I,s), µin
max,i

�= sup
[s∈S,I∈Is]

N∑
a=1

Cai(I,s).

Finite values of the above constants exist because the C(I(t),S(t))
function is bounded. To simplify network analysis, it is also useful to
assume that the total exogenous arrivals to any node i ∈ N are deter-
ministically bounded by constants Amax

i , so that for all t we have:2∑
c∈K

A
(c)
i (t) ≤ Amax

i

2 The deterministic arrival bound is not necessary, and in [111, 115] the network is analyzed
under the general definition of admissible inputs, which assumes only a bound on the
second moment of exogenous arrivals.
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4.3 The stabilizing dynamic backpressure algorithm

We describe below an algorithm for resource allocation and routing
which, as will be shown, stabilizes the network whenever the vector
of arrival rates lies within the capacity region of the network. The
notion of controlling the system to maximize its stability region and
the following algorithm that achieves it was introduced in [143, 147]
and generalized further in [111, 115, 149].

The Dynamic Backpressure and Resource Allocation
Algorithm: Every timeslot t, the network controller observes the
queue backlog matrix U(t) =

(
U

(c)
i (t)

)
and the topology state vari-

able S(t) and performs the following actions for routing and resource
allocation.

Resource Allocation: For each link (a, b), define the optimal com-
modity c∗

ab(t) as the commodity that maximizes the differential backlog
(ties broken arbitrarily):

c∗
ab(t)

�= arg max
{c|(a,b)∈L c}

[
U (c)

a (t) − U
(c)
b (t)

]
,

and define W ∗
ab(t) as the corresponding optimal weight:

W ∗
ab(t)

�= max[U (c∗
ab(t))

a (t) − U
(c∗

ab(t))
b (t),0]. (4.4)

Choose the control action I(t) that solves the following optimization:

Maximize:
∑
ab

W ∗
ab(t)Cab(I(t),S(t)), (4.5)

Subject to: I(t) ∈ IS(t).

Routing: For each link (a,b) such that W ∗
ab(t) > 0, offer a transmis-

sion rate of µab(t) = Cab(I(t),S(t)) to data of commodity c∗
ab(t). Recall

that, by definition, c∗
ab(t) is a valid commodity to send over link (a,b)

(that is, (a,b) ∈ Lc∗
ab(t)

). If there is not enough data of commodity c∗
ab(t)

in node a to transmit over all outgoing links requesting this commodity,
idle fill bits are transmitted, with an arbitrary allocation of actual data
and idle fill data over the corresponding outgoing links.
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The weights W ∗
ab(t) can be determined at each node provided that

nodes are aware of the backlog sizes of their neighbors. However, the
optimization problem (4.5) that must be solved at the beginning of
each time slot requires in general knowledge of the whole network state.
There are important special cases where this optimization problem can
be solved in a distributed fashion with each node requiring knowledge
only of the local state information on each of its outgoing channels.
This issue will be described in Section 4.8. The resource allocation
problem can also be approximated or optimized to within a constant
factor using the schemes that will be described in Section 4.7.

The optimal routing commodities c∗
ab(t) can be determined provided

that nodes are aware of the backlog levels of their neighbors. Note that
this routing strategy does not require paths to be specified in advance:
Paths are chosen dynamically at each timestep according to the back-
pressure between neighboring nodes. The resulting algorithm assigns
larger transmission rates to links with larger differential backlog, and
zero transmission rates to links with negative differential backlog.

In the special case when the routing constraint sets Lc consist of all
data links, then the above policy is equivalent to the Dynamic Routing
and Power Control (DRPC) policy of [111] (where the I(t) control
variable used here plays the role of the P (t) power matrix from [111]).
The DRPC policy itself is a generalization of the original backpressure
algorithm developed for multi-hop packet radio networks in [143], where
stable scheduling algorithms were developed using maximum weight
activation sets with link weights equal to differential backlog.

Consider now the case of a single-hop network where a commodity c

is associated with each link (a,b) traffic. As mentioned in Section 2.2.1
this case can be treated by simply setting Lc = {(a,b)} . Taking into
account that the traffic backlog at the destination node is considered
zero, we have the following simplified algorithm in this case.

The Single-hop Dynamic Backpressure and Resource Allo-
cation Algorithm: Every timeslot t, the network controller observes
the queue backlog matrix U(t) =

(
U b

a(t)
)

(U b
a(t) is the backlog at node

a of traffic destined to node b) and the topology state variable S(t) and
performs the following actions for routing and resource allocation.
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Resource Allocation: Choose the control action I(t) that solves the
following optimization:

Maximize:
∑
ab

U b
a(t)Cab(I(t),S(t)),

Subject to: I(t) ∈ IS(t).

Each link then transmits with rate µab (t) = Cab (I (t) ,S (t)).
We close this section by describing an important property of the

proposed algorithm; in fact the algorithm is designed so that this prop-
erty is satisfied. Consider any routing control variables µ̃

(c)
ab (t) that are

admissible (i.e., satisfy (4.1) and (4.2)). Notice that by the definition
of the Resource Allocation and Routing policy,∑

ab

∑
c

µ̃
(c)
ab (t)

[
U (c)

a (t) − U
(c)
b (t)

]
≤
∑
ab

∑
c

µ̃
(c)
ab (t)W ∗

ab(t)

≤
∑
ab

W ∗
ab(t)Cab(I(t),S(t)),

where the final inequality follows from the routing constraints (4.1)
(4.2). Moreover, the upper bound above is achievable by the control
policy that allocates resources to maximize the weighted sum of trans-
mission rates

∑
ab W ∗

ab(t)Cab(I(t),S(t)) subject to I(t) ∈ IS(t), and then
chooses control variables:

µ
(c)
ab (t) =

{
Cab(I(t),S(t)) if c = c∗

ab(t)
0 otherwise

. (4.6)

These are exactly the routing control variables defined by the Dynamic
Backpressure Algorithm. Taking into account the following simple but
important identity

∑
ic

U
(c)
i (t)

[∑
b

µ
(c)
ib (t) −

∑
a

µ
(c)
ai (t)

]
=
∑
ab

∑
c

µ
(c)
ab (t)

[
U (c)

a (t) − U
(c)
b (t)

]
,

we conclude from the above the following basic property:
Basic Property: If µ

(c)
ab (t) are the routing control variables defined

by the Dynamic Backpressure and Resource Allocation Algorithm and
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µ̃
(c)
ab (t) those of any other feasible algorithm, then for any time t ≥ 0,

∑
ic

U
(c)
i (t)

[∑
b

µ̃
(c)
ab (t) −

∑
a

µ̃
(c)
ab (t)

]

≤
∑
ic

U
(c)
i (t)

[∑
b

µ
(c)
ib (t) −

∑
a

µ
(c)
ai (t)

]
. (4.7)

In the next section we provide the basic tools for proving stability
via Lyapunov function techniques, which are then used in Section 4.5
for proving the stability of the Dynamic Backpressure Algorithm.

4.4 Lyapunov stability

One of the most important mathematical tools for proving stability of
queueing networks and for developing stabilizing control algorithms is
the technique of Lyapunov drift. The idea is to define a non-negative
function, called a Lyapunov function, as a scalar measure of the aggre-
gate congestion of all queues in the network. Network control deci-
sions are then evaluated in terms of how they affect the change in the
Lyapunov function from one slot to the next.

Specifically, consider a network with L queues, and let U(t) =
(U1(t), . . . ,UL(t)) represent the vector process of backlog in each queue
as a function of time. We define the following quadratic Lyapunov func-
tion L(U):

L(U) =
L∑

i=1

U2
i .

Note that L(U(t)) = 0 if and only if all network queues are empty at
time t, and that L(U(t)) is large whenever one or more components of
U(t) is large.

Assume that U(t) evolves according to some probabilistic law, and
that the initial conditions are such that E{Ui(0)} < ∞ for all queues
i ∈ {1, . . . ,L}.
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Lemma 4.1. (Lyapunov Stability) If there exist constants B > 0, ε >

0, such that for all timeslots t we have:

E{L(U(t + 1)) − L(U(t)) |U(t)} ≤ B − ε

L∑
i=1

Ui(t), (4.8)

then the network is strongly stable, and furthermore:

limsup
t→∞

1
t

t−1∑
τ=0

L∑
i=1

E{Ui(τ)} ≤ B

ε
.

The expression on the left hand side of (4.8) is the Lyapunov drift,
representing the expected change in the Lyapunov function from one
slot to the next. With slight abuse of notation,3 we shall often use
∆(U(t)) as a formal representation of this Lyapunov drift:

∆(U(t))�=E{L(U(t + 1)) − L(U(t)) |U(t)} .

Note that if the condition (4.8) holds, then for any δ > 0, the Lyapunov
drift satisfies ∆(U(t)) ≤ −δ whenever

∑L
i=1 Ui(t) ≥ (B + δ)/ε. That is,

the condition of the Lemma ensures that the Lyapunov drift is negative
whenever the sum of queue backlogs is sufficiently large. Intuitively, this
property ensures network stability because whenever the queue backlog
vector leaves the bounded region{

U ≥ 0

∣∣∣∣∣
L∑

i=1

Ui ≤ (B + δ)/ε

}
,

the negative drift eventually drives it back to this region.

Proof. (Lemma 4.1) Assume the condition (4.8) holds for all timeslots
t. Taking expectations of (4.8) (with respect to the distribution for the
random queue backlog U(t) at time t) we have by the law of iterated
expectations:

E{L(U(t + 1))} − E{L(U(t))} ≤ B − ε

L∑
i=1

E{Ui(t)} .

3 Strictly speaking, the Lyapunov drift should be expressed as ∆(U(t), t), as it could poten-
tially depend on the timeslot t as well as the queue backlog values U(t). However, to
simplify notation, we use ∆(U(t)) as a formal symbolic representation of the same thing.
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The above inequality holds for all timeslots t ∈ {0,1,2, . . .}. Summing
the inequality over timeslots τ ∈ {0, . . . ,M − 1} yields a telescoping
series on the left hand side, resulting in:

E{L(U(M))} − E{L(U(0))} ≤ BM − ε

M−1∑
τ=0

L∑
i=1

E{Ui(τ)} .

Dividing the above inequality by M , shifting terms, and using the fact
that L(U(M)) ≥ 0, we have:

1
M

M−1∑
τ=0

L∑
i=1

E{Ui(τ)} ≤ B

ε
+

E{L(U(0))}
Mε

.

The above inequality holds for all positive integers M . Taking a limsup
as M → ∞ yields the result.

The theory of Lyapunov drift has a long history in the field of
discrete stochastic processes and Markov chains (see, for example,
[10, 106]). The first application of the theory to the design of dynamic
control algorithms for radio networks appeared in [143], where a gen-
eral algorithm was developed to stabilize a multi-hop packet radio net-
work with configurable link activation sets. The concepts of maximum
weight matching and differential backlog scheduling, developed in [143],
play important roles in the dynamic control strategies we present in
later sections. The Lyapunov drift approach has been successfully used
to optimize allocation of computer resources [21, 22], stabilize packet
switch systems [72, 80, 87, 103, 148, 150] satellite and wireless sys-
tems [4, 67, 110, 144, 145, 149, 158], and ad-hoc mobile networks [111].
Recently, a simple extension of Lyapunov drift theory is developed in
[108, 115, 116] to provide both stability and performance optimization
(addressed in more detail in Sections 5 and 6).

Lyapunov drift theory for queueing networks is traditionally pre-
sented in terms of Foster’s criterion for stability (see, for example, [10]).
Roughly, Foster’s criterion applies to queueing processes that evolve
according to ergodic Markov chains with countably infinite state spaces,
and ensures that the Markov chain has a well defined steady state
provided that some mild assumptions hold, and provided that the
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Lyapunov drift is negative whenever the queue state is outside of a
bounded region of the state space. The form of the Lyapunov drift
Lemma (Lemma 4.1) does not require Foster’s criterion, and is adapted
from similar statements in [67, 87, 110]. This approach to Lyapunov
stability yields a simpler stability proof as well as an upper bound on
average queue occupancy. If the conditions of Lemma 4.1 are supple-
mented with the additional Markovian assumptions of Foster’s crite-
rion, then the resulting limsup of the backlog bound in Lemma 4.1 can
be replaced with a regular limit, as Foster’s criterion guarantees the
limit exists.

A statement similar to Lemma 4.1 can also be made concerning
T -slot Lyapunov drift, which is useful in cases when network stochastics
require more than one timeslot to ensure a negative drift:

Lemma 4.2. (T -slot Lyapunov drift) If there is a positive integer T

such that E{U(τ)} < ∞ for τ ∈ {0, . . . ,T − 1}, and if there are positive
values B,ε such that for all timeslots t0 we have:

E{L(U(t0 + T )) − L(U(t0)) |U(t0)} ≤ B − ε

L∑
i=1

Ui(t0),

then the network is strongly stable, and the average congestion satisfies:

limsup
t→∞

1
t

t−1∑
τ=0

L∑
i=1

E{Ui(τ)} ≤ B

ε
.

The proof is similar to the proof of Lemma 4.1, and is omitted for
brevity (see [111, 115] for details).

As a preliminary demonstration of the power of Lyapunov drift
theory, we use the T -slot theorem to prove the sufficient condition for
queue stability given in Lemma 3.6 of Section 3.1.1. The next simple
lemma will be useful.

Lemma 4.3. If V,U,µ,A are nonnegative real numbers and

V ≤ max[U − µ,0] + A,
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then

V 2 ≤ U2 + µ2 + A2 − 2U (µ − A) .

Consider a single queue with backlog U(t) and with arrival and
server processes A(t) and µ(t).

Lemma 4.4. If A(t) is admissible with rate less than or equal to λ,
and if µ(t) is admissible with rate greater than or equal to µ, and if
λ < µ, then the queue is strongly stable, and queue backlog satisfies:

limsup
t→∞

1
t

t−1∑
τ=0

E{U(τ)} ≤ T (µ2
max + A2

max)
µ − λ

, (4.9)

where µmax is a bound such that µ(t) ≤ µmax for all t, and where T

is the smallest integer such that at every timeslot t and (regardless of
past history of the system) the following condition holds:

E

{
1
T

t+T−1∑
τ=t

µ(τ) − 1
T

t+T−1∑
τ=t

A(τ) |H (t)

}
≥ (µ − λ)/2. (4.10)

Further, if the arrivals A(t) are i.i.d. every slot with mean E{A(t)} = λ,
and if µ(t) service rates are i.i.d. every slot with mean E{µ(t)} = µ,
then:

limsup
t→∞

1
t

t−1∑
τ=0

E{U(τ)} ≤ (µ2
max + A2

max)
2(µ − λ)

. (4.11)

The parameter T used in the above theorem can be viewed as the
time required for the system to reach “near steady state.” Note that the
general bound (4.9) differs by a factor of 2T from the bound (4.11) for
the i.i.d. case. This is due to the fact that non-i.i.d. systems may have
system states that yield low transmission rates or large arrival bursts
for many timeslots in a row. While the i.i.d. case can be viewed as a
special case when T = 1, the extra factor of 2 arises because i.i.d. sys-
tems effectively “reach steady state” on each and every timeslot, so that
the left hand side of (4.10) is exactly equal to (µ − λ) for all t. Below
we present a proof of Lemma 4.4 for the non-i.i.d. case. The argument
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below is the only T -slot analysis that we present in this text. In later
sections we restrict proofs to cases that involve simpler i.i.d. assump-
tions, with the understanding that these proofs can be modified using
T -slot analysis to yield similar results for non-i.i.d. systems.

Proof. (Lemma 4.4) The unfinished work in the queue T slots into
the future can be bounded in terms of the current unfinished work as
follows:

U(t + T ) ≤ max

[
U(t) −

t+T−1∑
τ=t

µ(τ),0

]
+

t+T−1∑
τ=t

A(τ).

The above expression is an inequality instead of an equality because
new arrivals may depart before the T slot interval is finished. From
Lemma 4.3 we have:

U2(t + T ) ≤ U2(t) + T 2µ2
max +

(
t+T−1∑

τ=t

A(τ)

)2

− 2TU(t)

[
1
T

t+T−1∑
τ=t

µ(τ) − 1
T

t+T−1∑
τ=t

A(τ)

]
.

Taking conditional expectations with respect to U(t), noting that

E{A(τ1)A(τ2) |U(t)} ≤
√

E{A(τ1)2 |U(t)}E{A(τ2)2 |U(t)} ≤ A2
max,

and using the definition of T yields:

E
{
U2(t + T ) − U2(t) |U(t)

}≤ T 2µ2
max + T 2A2

max − 2TU(t)(µ − λ)/2.

Applying Lemma 4.2 to the above inequality (using L(U) = U2)
yields (4.9), proving the result.

4.5 Lyapunov drift for networks

In this section we show that the Dynamic Backpressure Algorithm
stabilizes the network, using Lyapunov drift techniques described in
Section 4.4. Let U(t) represent the matrix of queue backlogs, and define
the following Lyapunov function:

L(U) =
∑
ic

(
U

(c)
i

)2
.
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The above sum is taken over all (i,c) entries, where we formally define
U

(c)
i (t) = 0 for all t whenever (i,c) /∈ D. To calculate the drift ∆(U(t))

we apply Lemma 4.3 to the queueing equation (4.3) and obtain,

(
U

(c)
i (t + 1)

)2 ≤
(
U

(c)
i (t)

)2
+

(∑
b

µ
(c)
ib (t)

)2

+

(
A

(c)
i (t)+

∑
a

µ
(c)
ai (t)

)2

− 2U
(c)
i (t)

[∑
b

µ
(c)
ib (t) − A

(c)
i (t) −

∑
a

µ
(c)
ai (t)

]
.

Summing over all valid entries (i,c) and using the fact that the sum of
squares of non-negative variables is less than or equal to the square of
the sum, it is not difficult to show that the above inequality implies:

L(U(t + 1)) − L(U(t)) ≤ 2BN

−2
∑
ic

U
(c)
i (t)

[∑
b

µ
(c)
ib (t) − A

(c)
i (t) −

∑
a

µ
(c)
ai (t)

]
.

where

B �=
1

2N

∑
i∈N

[
(µout

max,i)
2 + (Amax

i + µin
max,i)

2] . (4.12)

Taking conditional expectations yields the following bound for Lya-
punov drift:

∆(U(t)) ≤ 2BN + 2
∑
ic

U
(c)
i (t)E

{
A

(c)
i (t)

∣∣∣U(t)
}

−2E

{∑
ic

U
(c)
i (t)

[∑
b

µ
(c)
ib (t) −

∑
a

µ
(c)
ai (t)

]∣∣∣∣∣U(t)

}
. (4.13)

Using the Basic Property discussed in at the end of Section 4.3 we
conclude that the Backpressure Algorithm is designed to minimize at
each time slot, over all admissible policies, the bound in the right hand
side of (4.13). This is the key property on which the proof of stability
of the algorithm, as described in the next theorem, is based.

Theorem 4.5. (Backpressure Algorithm Performance) If there exists
a value ε > 0 such that λ + ε ∈ Λ (where ε is a matrix with all entries
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(i,c) ∈ D equal to ε, and all other entries equal to zero), then the above
dynamic backpressure algorithm stabilizes the network. Furthermore,
in the special case when the arrival processes A(t) are i.i.d. over time-
slots and the topology state process is i.i.d. over timeslots (so that
E{A(t)} = λ and Pr[S(t) = s] = πs for all timeslots t), the average
congestion satisfies:

limsup
t→∞

1
t

t−1∑
τ=0

∑
ic

E

{
U

(c)
i (τ)

}
≤ NB

εmax
,

where εmax is the largest value of ε such that λ + ε ∈ Λ, and B is
defined in (4.12).

The theorem is proven in [111, 115] for the case of general admis-
sible inputs and Markov modulated topology state processes, where a
congestion bound is also derived. As in the case of single hop networks,
the congestion bound for the non-i.i.d. case is roughly a factor of T

larger than the i.i.d. congestion bound given above, where T is the
duration required for the system to reach “near steady state.” Below
we prove the theorem for the i.i.d. case.

Proof. (Theorem 4.5) For simplicity, we assume that Cl(Γ) = Γ. Since
arrivals A(t) are i.i.d. over timeslots, we have E

{
A

(c)
i (t) |U(t)

}
= λ

(c)
i

for all (i,c). Hence we can rewrite (4.13) as:

∆(U(t)) ≤ 2BN + 2
∑
ic

U
(c)
i (t)λ(c)

i

− 2
∑
ic

U
(c)
i (t)

[
E

{∑
b

µ
(c)
ib (t) −

∑
a

µ
(c)
ai (t)

∣∣∣∣∣U(t)

}]
. (4.14)

However, recall the basic inequality (4.7), which states that the
Dynamic Backpressure policy minimizes the final term on the right
hand side of the above inequality over all possible alternative poli-
cies µ̃

(c)
ab (t). However, because λ + ε ∈ Λ, we know from Corollary 3.9

of Section 3 that there exists a stationary randomized algorithm that
makes decisions based only on the current topology state S(t) (and
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hence independent of the current queue backlog) so that for all (i,c) ∈ D
we have:

E

{∑
b

µ̃
(c)
ib (t) −

∑
a

µ̃
(c)
ai (t)

∣∣∣∣∣U(t)

}
= ε + λ

(c)
i .

Using the above in (4.14) and considering (4.7), we conclude:

∆(U(t)) ≤ 2BN − 2ε
∑
ic

U
(c)
i (t).

This drift inequality is in the exact form for application of the Lyapunov
drift lemma (Lemma 4.1 of Section 4.4), proving the result.

4.6 Time varying arrival rates

The Dynamic Backpressure Algorithm does not require knowledge of
input rates or topology state probabilities, and hence it easily adapts
to time varying system statistics [109, 115]. For example, suppose the
arrivals A(t) are i.i.d. with expected rate vector E{A(t)} = λ(1) for
some duration of time t1 ≤ t ≤ t2, but that user demands change after
time t2, so that E{A(t)} = λ(2) for t2 < t ≤ t3. After time t3, the rates
might change again, and so on, so that rate changes occur at arbitrary
times. It can be shown that the system is strongly stable and has aver-
age congestion bounded by a uniform constant, provided that there is
a positive value ε such that all rate matrices are within a given distance
ε of the capacity region boundary [109, 115].

4.7 Imperfect scheduling

It is not difficult to show that if a “sub-optimal” control decision I(t)
is chosen that satisfies:∑

ab

W ∗
ab(t)Cab(I(t),S(t)) ≥ γ max

I∈IS(t)

∑
ab

W ∗
ab(t)Cab(I(t),S(t)) − D,

for some constants γ, D such that 0 ≤ γ ≤ 1 and 0 ≤ D < ∞, then
the network is also stable, provided that the arrival rates are interior
to γΛ, which is a γ scaled version of the capacity region. Thus, if the con-
troller is off from the optimum by no more than an additive constant D
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(i.e., γ = 1), then full stability is still possible (although the resulting
congestion increases by an additive constant proportional to D). How-
ever, if the controller deviates from optimality by a multiplicative con-
stant, the achievable throughput region may be a subset of the capacity
region. This result is presented in [115], and similar results are presented
for low complexity switch scheduling in [109, 134]. Related “imperfect
scheduling” statements are developed for utility optimization in [91]
using a convex optimization theory framework. The result can be shown
by a simple modification of the proof of Theorem 4.5. Specifically, the
result follows by replacing (4.7) with the following inequality:

γ
∑
ic

U
(c)
i (t)

[∑
b

µ̃
(c)
ab (t) −

∑
a

µ̃
(c)
ab (t)

]
− D

≤
∑
ic

U
(c)
i (t)

[∑
b

µ
(c)
ib (t) −

∑
a

µ
(c)
ai (t)

]
,

and by assuming that (λ + ε)/γ ∈ Λ.
This simple result leads to two significant conclusions:

First, any effort to allocate resources to increase the value of∑
ab W ∗

ab(t)Cab(I(t),S(t)) will lead to improved network throughput,
even if the maximum is not attained. Second, full network capacity
can be achieved by using queue backlog estimates, provided that the
difference between the estimate and the exact value is bounded by a
constant [115]. Therefore, assuming that the maximum per-timeslot
backlog change in any queue is bounded, full network stability can
be achieved by using out of date queue backlog information. Queue
updates can be arbitrarily infrequent without affecting stability,
although the average congestion may increase in proportion to the
duration between updates. Related work in the area of imperfect
scheduling for wireless networks is developed in [29, 91, 163].

4.8 Distributed implementation

As mentioned in Section 4.3, the weights W ∗
ab(t) of the optimization

problem (4.5) can be determined by node a provided that this node is
aware of the backlog sizes of its neighbors. However, the optimization
problem itself is not always easily amenable to a distributed solution,
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as it could require full knowledge of the topology state S(t) and full
coordination of all network nodes. This is the case in the server allo-
cation problem of Example 2.3, where the constraint I(t) ∈ I can only
be met by a coordinated decision, and in the power allocation problem
of Example 2.5 that requires knowledge of the full power matrix.

These problems can be avoided if the network is designed so that the
link rate functions Cab(I(t),S(t)) depend only on network conditions
and control input decisions that are local to link (a,b). In particular,
suppose that the topology state S(t), the link control input I(t), and
the control space IS(t) can be decomposed into terms associated with
G independent groups of nodes:

S(t) =
(
S1(t), S2(t), . . . , SG(t)

)
,

I(t) =
(
I1(t), I2(t), . . . , IG(t)

)
,

IS(t) = I1
S1(t) × I2

S2(t) × . . . × IG
SG(t),

where Sg(t) represents the local components of the topology state S(t)
measured at nodes within group g (for g ∈ {1, . . . ,G}). Likewise, Ig(t)
represents the transmission control input decisions corresponding to
nodes within group g, and satisfies the constraint Ig(t) ∈ Ig

Sg(t). Further
suppose that the link transmission rate functions for each outgoing link
(a,b) of every node a associated with a particular group ga can be
written as pure functions of Sga(t) and Iga(t):

Cab(I(t),S(t)) = Cab (Iga(t),Sga(t)) .

In this case, resource allocation decisions associated with a given
group g can be made independently of allocation decisions for other
groups. An example network where such a decomposition is possible is
the ad-hoc mobile network of Example 2.6, where groups are defined
according to cell partitions. Similarly, such a decomposition is possi-
ble when communication takes place over wireline data links that do
not influence other channels, or when all wireless network nodes trans-
mit over orthogonal frequency bands so that there is no inter-channel
interference.

However, networks with general interference properties cannot be
decomposed in this way. One approach is to make random control deci-
sions I(t), and then to have the flow control and routing layers simply
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react to the resulting transmission rates µab(t) = Cab(I(t),S(t)). This
approach is considered in [57, 111, 115] for distributed control of wire-
less ad-hoc networks. Another approach is to use simplified sub-optimal
scheduling to achieve results within a constant factor of optimality. For
example, in a network where link activation sets conform to matching
constraints, it is well known that a greedy contention based scheduling
algorithm achieves within a factor of 2 of optimality. Specifically, each
node greedily requests to transmit over its maximum weight outgoing
link, and conflicting requests are resolved by granting the largest weight
contender (breaking ties arbitrarily). The contention scheme must pass
through several iterations before reaching a point when no new links
can be matched (where each iteration includes at least one new link).
Related “factor of k” results apply for greedy scheduling in systems
where each link has at most k other interfering links. Greedy schedul-
ing strategies of this type are considered for somewhat different control
algorithms in [29, 91, 163, 164]. We will see in Section 5 that the same
distributed implementation issues arise when one considers resource
optimization problems and fairness issues in addition to stability.

4.9 Algorithm enhancements and shortest path service

Note that the routing constraint sets Lc can be designed to ensure that
data is routed over links that make progress toward the appropriate
destination. However, these routing restrictions potentially reduce the
network capacity region, and can limit adaptivity when link or node
failures necessitate re-routing. These issues can be avoided if all sets Lc

are equal to the set of all network links. While this leads to the largest
capacity region Λ, it can also lead to large end-to-end network delay. For
example, if a single packet is injected into an empty network, there is no
backpressure to suggest an appropriate path. Hence, the packet might
take a random walk through the network, or might take a periodic walk
that never leads to the destination. In this case, although the network
congestion is quite low (only one packet), network delay can be infinite.
Similarly, in cases when the network is lightly loaded, the end-to-end
delay can be large even though the congestion bound of Theorem 4.5
is satisfied.
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To achieve low delay while still avoiding the routing restrictions
associated with the sets Lc, we can program a shortest path bias into
the weights of the dynamic backpressure algorithm. This leads to the
following “enhanced” version of the dynamic backpressure algorithm,
defined in terms of constants θ

(c)
i > 0 and Q

(c)
i ≥ 0.

Enhanced Dynamic Backpressure Routing Algorithm (EDR): For
all links (a,b), find the commodity c∗

ab(t) such that:

c∗
ab(t)

�=arg max
c∈{1,...,K}

{
θ(c)
a (U (c)

a (t) + Q(c)
a ) − θ

(c)
b (U (c)

b (t) + Q
(c)
b )

}
,

and define:

W ∗
ab(t)

�= max
[
θ
(c∗

ab)
a

(
U

(c∗
ab)

a (t) + Q
(c∗

ab)
a

)
− θ

(c∗
ab)

b

(
U

(c∗
ab)

b (t) + Q
(c∗

ab)
b

)
,0
]
.

Control decisions are then made as before, using these new weights and
commodities W ∗

ab(t) and c∗
ab(t) as a replacement for the originals.

This enhanced strategy is developed in [111, 115] and called the
“Enhanced Dynamic Routing and Power Control (EDRPC)” strategy.

Using the Lyapunov function L(U) =
∑

ic θ
(c)
i

(
U

(c)
i

)2
, it is not difficult

to show that the enhanced algorithm stabilizes the network whenever
the original algorithm does.

In particular, a shortest path bias can be programmed into the
algorithm by setting all θ

(c)
i weights to 1, but choosing the weights Q

(c)
i

to be proportional to the distance (or number of hops) between node i

and the destination of commodity c along the shortest path through the
network (where Q

(c)
i = 0 if node i is the destination of commoditiy c).

These distances can either be estimated or computed by running a
shortest path algorithm. With these bias values, packets are inclined
to move in the direction of their shortest paths, providing low delay in
lightly loaded conditions while still ensuring stability throughout the
entire capacity region.

We note that the combined weight U
(c)
i (t) + Q

(c)
i associated with

commodity c data in node i can be used in the same manner as a rout-
ing table, and in situations where the network nodes do not change their
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relative locations, the unfinished work quantities can be updated each
timeslot by having neighboring nodes transmit their backlog changes
over a low bandwidth control channel. As each link transmits only a
single commodity every timeslot, the number of such backlog incre-
ments required to be transmitted over the control channel by any user
is on the order of neighboring nodes.

Below, we consider the special case of a simple “multiple source sin-
gle sink” static sensor network consisting of 100 sensor nodes randomly
placed in a 10 × 10 square. We use a cell-partitioned model (similar to
the one considered in [116]) with 100 equal-sized cells. Each node can
communicate with neighboring nodes in the same or adjacent cells.
Time is slotted and each node can transmit to at most one of its neigh-
bors in a time slot, though a node can receive from multiple nodes.
Each sensor node has independent data of input rate λ to deliver to
a centrally located sink node, so that there is only one commodity in
the network, and only one destination. Nodes are assumed to have a
fixed transmission power PMAX . The data rate achievable over a link
is then taken as BWlog(1 + αPMAX) where α is the attenuation over
that link, being a function of the distance between the nodes and BW

is the bandwidth of the link.
We consider two interference scenarios, one in which a node’s trans-

mission doesn’t cause interference at other nodes and the other where a
node’s transmission causes interference at nodes in the same or adjacent
cells. The performance of a distributed implementation of DRPC and
EDRPC is compared with a pure shortest path based routing scheme
in this setup. The left plot in Fig. 4.2 shows the performance of these
schemes under the “no interference” model with asymmetric bottleneck
link capacities. The right plot shows the performance with interfer-
ence and symmetric link capacities. It can be seen that in both cases,
DRPC/EDRPC significantly outperform the shortest path scheme as
input rate λ is pushed up. At low data rates, backlog based decisions
are likely to lead to false turns, which degrades the performance of
DRPC. By incorporating path lengths into the backpressure calcula-
tion, EDRPC improves upon the performance of DRPC at low data
rates while maintaining the advantages of backlog aware schemes at
high data rates.
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Fig. 4.2 Simulation results comparing backpressure routing, enhanced backpressure routing,
and pure shortest path routing, for a 100 node wireless sensor network with a single cen-
trally located destination. We would like to thank Rahul Urgaonkar (University of Southern
California) for developing these simulation experiments.

4.10 Multi-commodity flows and convex duality

The Dynamic Backpressure Algorithm stabilizes the network and offers
average delay guarantees whenever the input rate matrix is inside the
capacity region of the wireless network. Here we consider a related prob-
lem of computing an offline multi-commodity flow given a known rate
matrix (λ(c)

i ). Classical multi-commodity flow problems for wired net-
works can be reduced to linear programs, and fast approximation algo-
rithms are developed in [85]. A distributed algorithm was first given in
[51], and pricing and game theory approaches are developed in [70, 71].

Here we consider the special case of a network with a time
invariant topology state, and formally pose our network stability prob-
lem as a static multi-commodity flow problem (following the devel-
opment given in [115, 111]). We show that a classical subgradient
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search method for solving the problem via convex duality theory
corresponds almost exactly to a deterministic network simulation of
the Dynamic Backpressure Algorithm. Notions of duality are also used
in [31, 66, 70, 71, 79, 83, 100, 101, 165] to consider static network opti-
mization, where in many cases the dual variables play the role of prices
charged by the network to multiple users competing for shared network
resources in order to maximize their own utility. Applications of static
duality theory to the area of internet congestion control are developed
in [97].

In our context, the dual variables correspond to queue backlogs,
rather than network prices. This illustrates a relationship between
static optimization and the Lyapunov stability theory, suggesting that
static algorithms can be modified and applied in dynamic settings while
preserving analytical optimality. This observation also motivates our
study of stochastic network optimization in the next section.

Consider a time invariant network with transmission rate function
C(I(t)) for I(t) ∈ I (note that there is no notion of a time varying
topology state here). Suppose that a commodity corresponds to a des-
tination, so that all commodity c data is destined for node c. Given a
particular rate matrix (λ(c)

i ), the problem of finding a multi-commodity
flow corresponds to the following convex optimization problem.

Maximize: 1

Subject to: λ
(c)
i +

∑
a

f
(c)
ai ≤

∑
b

f
(c)
ib ∀i,c with i �= c,({

f
(c)
ab

}
,{µab}

)
∈ Ω, (4.15)

where Ω is the set of all variables
({

f
(c)
ab

}
,{µab}

)
such that:

f
(c)
ab ≥ 0 for all a,b,c ∈ {1, . . . ,N},

f (c)
aa = f

(a)
ab = 0 for all a,b,c ∈ {1, . . . ,N},(∑

c

f
(c)
ab

)
≤ (µab) for some (µab) ∈ Cl{Γ}. (4.16)

The maximization function “1” is used as an artifice to pose this multi-
commodity flow problem in the framework of an optimization problem.
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Note that the set Ω is convex and compact (it inherits convexity and
compactness from the set Cl(Γ) consisting of all link transmission rate
matrices (Gab) entrywise less than or equal to some element of Γ, see
[115]). Moreover, the objective function “1” and all inequality con-
straints are linear. The optimization problem is therefore convex [17],
and has a dual formulation, where the optimal solution of the dual prob-
lem exactly corresponds to an optimal solution of the original ‘primal’
problem (4.15). To form the dual problem, we introduce non-negative
Lagrange multipliers {U

(c)
i } for each of the inequality constraints in

(4.15), and define the dual function:

L
(
{U

(c)
i }

)
�= max({

f
(c)
ab

}
,{µab}

)
∈Ω1 +

∑
i�=c

U
(c)
i

(∑
b

f
(c)
ib −

∑
a

f
(c)
ai − λ

(c)
i

) . (4.17)

The dual problem to (4.15) is:

Minimize: L
({

U
(c)
i

})
,

Subject to: U
(c)
i ≥ 0 for all i,c ∈ {1, . . . ,N}.

The dual problem is always convex, and the minimizing solution can be
obtained using classical subgradient search methods (where the func-
tion −L

({
U

(c)
i

})
is maximized). Consider a fixed stepsize method

with stepsize T = 1. The basic subgradient search routine starts with
an initial set of values U

(c)
i (0) for the Lagrange multipliers, and upon

each iteration t = {1, 2, . . .} these values are updated by computing a
subgradient η for one time unit, and, if necessary, projecting the result
back onto the set of non-negative values [17]:

U
(c)
i (t + 1) = max

[
U

(c)
i (t) + η

(c)
i ,0

]
. (4.18)

However, it is shown in [17] that a particular subgradient of
−L

({
U

(c)
i

})
is:

η =

(
−
∑

b

f
∗(c)
ib +

∑
a

f
∗(c)
ai + λ

(c)
i

)∣∣∣∣∣
(i,c)∈{1,...,N}2

, (4.19)
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where the
{

f
∗(c)
ab

}
variables are solutions to the maximization in (4.17)

with U
(c)
i = U

(c)
i (t). Using (4.19) in (4.18) for all i �= c, we find:

U
(c)
i (t + 1) = max

[
U

(c)
i (t) −

∑
b

f
∗(c)
ib +

∑
a

f
∗(c)
ai + λ

(c)
i ,0

]
. (4.20)

From the above equation, it is apparent that the Lagrange multipliers{
U

(c)
i (t)

}
play the role of unfinished work in a multi-node queueing

system with input rates λ
(c)
i , where U

(c)
i (t) represents the amount of

commodity c bits in node i. In this way, the f
∗(c)
ab values can be viewed

as the transmission rates allocated to commodity c traffic on link (a,b).
Equation (4.20) thus states that the unfinished work at time t + 1 is
equal to the unfinished work at time t plus the net influx of bits into
node i. Thus, the operation of projecting the Lagrangian variables onto
the positive orthant acts exactly as an implementation of the standard
queueing equation.

It is illuminating to calculate the optimal f
∗(c)
ab values by perform-

ing the maximization in (4.17). To this end, we need to maximize∑
i�=c U

(c)
i (t)

(∑
b f

(c)
ib − ∑

a f
(c)
ai

)
subject to the constraints of (4.16).

However, as in Section 4.5, we can switch the sum to find:∑
i�=c

U
(c)
i

(∑
b

f
(c)
ib −

∑
a

f
(c)
ai

)
=
∑
abc

f
(c)
ab

[
U (c)

a − U
(c)
b

]
.

Remarkably, from the right hand side above, it is apparent that
the optimal values f

∗(c)
ab are identical to the resulting transmission

rates µ
(c)
ab (t) that would be computed if the Dynamic Backpressure and

Resource Allocation Algorithm of Section 4.3 were used to calculate
routing and resource allocation decisions in a network problem with
unfinished work levels U

(c)
i (t). It follows that this backpressure algo-

rithm can be viewed as a dynamic implementation of a subgradient
search method for computing the solution to an optimization prob-
lem using convex duality. This suggests a deeper relationship between
stochastic network control algorithms and subgradient search methods.
Further, it suggests an approach to stochastic network optimization.
Indeed, note that the optimization problem (4.15), which maximizes
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the function “1,” can be adjusted to maximize some other performance
criteria, which may be of interest in the corresponding dynamic net-
work control problem. One approach is to use the theory of stochastic
approximation and stochastic subgradients (see for example [44, 68]),
which has recently been applied in [84] to a downlink scheduling prob-
lem with infinitely backlogged sources. In the next section, we develop
a method that uses a novel extension of Lyapunov drift theory to allow
stability and performance optimization simultaneously [108, 115, 116],
yielding explicit tradeoffs in utility optimization and average delay.



5
Networking Outside of the Capacity Region:

Utility Optimization and Fairness

Up to this point we have focused attention only on the problem of
controlling a network to achieve stability. In this section we begin our
treatment of stochastic network optimization, where the goal is to stabi-
lize the network while additionally optimizing some performance metric
and/or satisfying some additional constraints. Specifically, this section
investigates the situation when the exogenous arrival rates are outside
of the network capacity region Λ. In this case, the network cannot be
stabilized without a transport layer flow control mechanism to limit
the amount of data that is admitted. The goal is to design a cross-
layer strategy for flow control, routing, and resource allocation that
provides stability while achieving optimal network fairness. Here, we
measure fairness in terms of a general utility function of the long term
admission rates of each session.

The solution to this flow control problem involves three new con-
cepts. The first is a simple extension of Lyapunov drift theory that
enables stability and performance optimization to be treated simulta-
neously [108, 115, 116]. The second is the introduction of auxiliary
variables that are used to hold additional state information useful
for optimizing functions of time averages [108, 121, 120]. The third

68
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is the technique of using virtual cost queues to transform performance
constraints into queueing stability problems [108, 116, 136]. These tech-
niques are instrumental in the design of utility-optimal flow controllers,
and shall also be used in Section 6 to address more general problems
of network optimization, including minimum energy routing and cost
constrained scheduling.

5.1 The flow control model and fairness objective

Consider the general multi-hop network model introduced in Section 2,
where the network has N nodes, K commodities, a topology state pro-
cess S(t), and a link transmission rate function C(I(t),S(t)) (where
I(t) ∈ IS(t)). Recall that a general network control algorithm must
choose the resource allocation and routing decision variables as follows:

• Resource (Rate) Allocation: Observe the current topology
state S(t) and choose a transmission control I(t) ∈ IS(t) to
yield link transmission rates µ(t) = C(I(t),S(t)).

• Routing/Scheduling: For each link (a,b) and each commodity
c, choose µ

(c)
ab (t) to satisfy the following constraints:

∑
c

µ
(c)
ab (t) ≤ µab(t), (5.1)

µ
(c)
ab (t) = 0 if (a,b) /∈ Lc, (5.2)

(where Lc is the set of all network links that are acceptable
for commodity c data to traverse).

Newly arriving data does not immediately enter the network layer.
Rather, it first enters a transport layer storage reservoir. Specifically,
new data of commodity c that arrives to source node n is first placed in
a transport layer reservoir (n,c). A control valve determines the amount
of data R

(c)
n (t) released from this reservoir on each timeslot. This R

(c)
n (t)

process acts as the exogenous arrival process to the network layer queue
U

(c)
n (t). As discussed in Section 2.2, the following inequality holds for
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the network queues.

U (c)
n (t + 1) ≤ max

[
U (c)

n (t) −
∑

b

µ
(c)
nb (t),0

]
+
∑

a

µ(c)
an(t) + R(c)

n (t).

(5.3)
Let L

(c)
n (t) represent the current backlog in the transport layer reservoir

(n,c) at time t. The flow control decision variables R
(c)
n (t) are chosen

every timeslot according to the following restriction:

• Flow Control (Type 1): Choose R
(c)
n (t) such that:

R(c)
n (t) ≤ L(c)

n (t) + A(c)
n (t) for all (n,c) and all t,∑

c

R(c)
n (t) ≤ Rmax

n for all n and all t,

where the constants Rmax
n are chosen to be positive and suit-

ably large, to be made precise in the development of our
CLC1 flow control algorithm (introduced in the next section).
The first constraint above ensures that admitted data is less
than or equal to the actual data available, and the second is
important for limiting the burstiness of the admitted arrivals.
We label the above flow control constraints as “Type 1” to
distinguish them from the following alternative constraint
specifications:

• Flow Control (Type 2): Choose R
(c)
n (t) such that:

R(c)
n (t) ≤ L(c)

n (t) + A(c)
n (t) for all (n,c) and all t,

R(c)
n (t) ≤ R̂(c)

n for all n and all t,

where R̂
(c)
n are suitably large positive constants, to be made

precise in our CLC2 algorithm in Section 5.4.2. The Type 2
constraints are simpler but are also less restrictive and gen-
erally lead to a larger bound on average network congestion.

5.1.1 The fairness objective

Let λ =
(
λ

(c)
n

)
denote the arrival rate matrix of the exogenous arrival

streams (A(c)
n (t)). This rate matrix is arbitrary, and in particular the
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rates can either be inside or outside of the capacity region Λ. Flow
control decisions about what data to admit are crucial in the case when
the input rates exceed network capacity, and it is important to establish
a quantitative measure of network fairness. To this end, we define a set
of utility functions g

(c)
n (r), representing the “satisfaction” received by

sending commodity c data from node n to the destination node of this
commodity at a time average rate of r bits/slot. The utility functions
are assumed to be non-decreasing and concave. Such utility functions
are a conventional means of measuring network fairness. For example,
concave utilities are used to evaluate fairness for wireline networks in
[70, 71, 97, 107], for static wireless networks in [16, 31, 66, 83, 91],
and for stochastic wireless networks in [46, 84, 108, 115, 136]. Further-
more, different choices of the g

(c)
n (r) functions lead to different fairness

properties [71, 140].
For our problem, the goal is to support a fraction of the traffic

demand matrix λ to achieve a long term throughput matrix r =
(
r
(c)
n

)
that maximizes the sum of user utilities. The optimal sum utility is
thus defined by the following optimization problem:

Maximize:
∑
n,c

g(c)
n

(
r(c)
n

)
(5.4)

Subject to: r ∈ Λ, (5.5)

0 ≤ r(c)
n ≤ λ(c)

n for all (n,c). (5.6)

Inequality (5.5) is the stability constraint and ensures that the long
term admitted rates are stabilizable by the network. Inequality (5.6) is
the demand constraint that ensures the admission rate of session (n,c)
is no more than the incoming traffic rate of this session.

Because the functions g
(c)
n (r) are non-decreasing, it is clear that if

λ ∈ Λ, then the above optimization is solved by the matrix r∗ = λ (so
that r

∗(c)
n = λ

(c)
n for all (n,c)). If λ /∈ Λ, then the solution r∗ will lie

somewhere on the capacity region boundary. The above optimization
could in principle be solved if the arrival rates (λ(c)

n ) and the capac-
ity region Λ were known in advance, and all users could coordinate by
sending data according to the optimal solution. However, the capacity
region depends on the topology state probabilities, which are unknown
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to the network controllers and to the individual users. Furthermore,
the individual users do not know the data rates or utility functions of
the other users. In this section, we develop a practical dynamic control
strategy that yields a resulting matrix of throughputs r that is arbi-
trarily close to the optimal solution of (5.4 )–(5.6). The distance to the
optimal solution is shown to decrease like 1/V , where V is a control
parameter affecting a tradeoff in average delay for data that is served
by the network.

5.1.2 Capacity region geometry

Recall that D is the set of all (n,c) pairs that represent valid network
layer queues U

(c)
n (t) (so that it is possible for commodity c data to be

present at node n). The integer D represents the total number of these
queues, and defines the effective dimension of the network. We assume
throughout that U

(c)
n (t) �= 0 , R

(c)
n (t) �= 0 for all t whenever (n,c) /∈ D,

and that g
(c)
n (r) �= 0, λ

(c)
n

�= 0 whenever (n,c) /∈ D.
The capacity region Λ can be shown to be compact and convex with

D effective dimensions [115]. It shall be useful to define the parameter
µsym to be the largest time average admission rate that is simulta-
neously supportable by all sessions (n,c) ∈ D, so that (µsym1(c)

n ) ∈ Λ
(where 1(c)

n is an indicator function that is equal to 1 whenever (n,c) ∈
D, and zero else). Geometrically, the value µsym represents the edge size
of the largest D-dimensional hypercube that can be fit into the capac-
ity region Λ, and is a value that unexpectedly arises in our analysis.
We assume throughout that µsym > 0.

In the next section, we present a solution to the fairness problem
(5.4)–(5.5) in the special case when all active sessions are infinitely
backlogged (so that the demand constraint (5.6) is removed). A modified
algorithm that uses auxiliary variables and flow state queues is then
presented in Section 5.4 to solve the general problem (5.4)–(5.6).

5.2 Dynamic control for infinite demand

Here we develop a practical control algorithm that stabilizes the net-
work and ensures that utility is arbitrarily close to optimal, with a
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corresponding tradeoff in network delay. We define an active session
(n,c) to be a source-commodity pair such that (n,c) ∈ D and g

(c)
n (r)

is not identically zero. To highlight the fundamental issues of routing,
resource allocation, and flow control, in this section we assume that
all active sessions (n,c) have infinite backlog in their corresponding
reservoirs, so that flow variables R

(c)
n (t) can be chosen without first

establishing that this much data is available for admission. Flow con-
trol is imperative in this infinite backlog scenario, and the resulting
problem is simpler as it does not involve the demand constraint (5.6).

The following control strategy, developed in [108, 115], is decou-
pled into separate algorithms for resource allocation, routing, and flow
control.

Cross-Layer Control Algorithm 1 (CLC1) [108, 115]:

• Flow Control — (algorithm FLOW1) Every timeslot, the flow
controller at each node n observes the current level of queue
backlogs U

(c)
n (t) for each commodity c ∈ {1, . . . ,K}. It then

sets R
(c)
n (t) = r

(c)
n , where the r

(c)
n values are solutions to the

following optimization:

Maximize :
K∑

c=1

[
V g(c)

n

(
r(c)
n

)
− r(c)

n U (c)
n (t)

]
, (5.7)

Subject to:
(
r(c)
n

)
≥ 0,

K∑
c=1

r(c)
n ≤ Rmax

n , (5.8)

where V > 0 is a chosen constant that effects the performance
of the algorithm.

• Routing and Scheduling — Each node n observes the back-
log in all neighboring nodes j to which it is connected by
a valid outgoing link (n,j). Let W

(c)
nj (t) = U

(c)
n (t) − U

(c)
j (t)

represent the differential backlog of commodity c data, and
define W ∗

nj(t)
�=max[c|l∈Lc ]

{
W

(c)
nj (t),0

}
. Let c∗

nj(t) represent
the maximizing commodity. Data of commodity c∗

nj(t) is
selected for (potential) routing over link (n,j) whenever
W ∗

nj(t) > 0.
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• Resource Allocation — The current topology state S(t)
is observed, and a transmission decision I(t) ∈ IS(t) is
selected by maximizing

∑
n,j W ∗

nj(t)µnj(t), where µnj(t) =
Cnj(I(t),S(t)). The resulting transmission rate of µnj(t) is
offered to commodity c∗

nj(t) data on link (n,j). If any node
does not have enough bits of a particular commodity to send
over all outgoing links requesting that commodity, null bits
are delivered.

The flow control policy (5.7)–(5.8 ) uses a parameter V that deter-
mines the extent to which utility optimization is emphasized. Indeed,
if V is large relative to the current backlog in the source queues, then
the admitted rates R

(c)
n (t) will be large, increasing the time average

utility while consequently increasing congestion. This effect is miti-
gated as backlog grows at the source queues and flow control deci-
sions become more conservative. Note that the routing and resource
allocation strategies of CLC1 are identical to the Dynamic Backpres-
sure strategy developed for network stability in Section 4.3. Issues of
distributed implementation can be dealt with using the methods of
Section 4.8.

The flow control algorithm of CLC1 is decentralized, where the con-
trol valves for each node n require knowledge only of the queue back-
logs in node n. Note that CLC1 uses “Type 1” flow control constraints.
The resulting problem (5.7)–(5.8) involves maximizing a sum of con-
cave functions subject to a simplex constraint, and can easily be solved
using standard derivative matching techniques [19]. It is useful to note
that this flow control strategy can be replaced by a strategy that uses
“Type 2” flow control constraints, and thus maximizes (5.7) over the
less restrictive constraint set 0 ≤ r

(c)
n ≤ Rmax

n . This constraint set is
simpler because it allows each flow control decision variable R

(c)
n (t) to

be determined by finding the maximum of a concave function of one
variable over a given interval, a problem in which closed form solutions
are often readily available. However, this simplicity comes at the cost
of a potential increase in average network congestion and delay, due
to the fact that the maximum admission burst into node n during a
single slot would be KRmax

n , rather than Rmax
n (see delay analysis in
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Section 5.3). The simplified constraint set is identical to (5.8) in the
special case when there is only a single active session (n,c) at any given
node n, considered in examples in Sections 5.2.2–5.2.4.

We also note that the nature of the CLC1 flow control algorithm
assumes that data can be admitted as “fractional packets.” This is
because the resulting R

(c)
n (t) values might not be integers or integer

multiples of a given packet length. This problem arises whenever the
utility functions g

(c)
n (r) are non-linear. The problem can be mitigated

when Rmax
n is large in comparison to the packet granularity, or can be

overcome by appending an additional stage to the flow control reser-
voir that only sends actual packets into the network when the accumu-
lated “admitted but undelivered” data exceeds the packet length. The
problem is avoided entirely in the modified algorithm CLC2 that uses
auxiliary variables to handle non-linear effects (Section 5.4.2).

5.2.1 Algorithm performance

To analyze the performance of the above CLC1 algorithm, we define
the maximum transmission rates out of and into a given node n as
follows:

µout
max,n

�= sup
[S,I∈IS ]

N∑
b=1

Cnb(I,S), µin
max,n

�= sup
[S,I∈IS ]

N∑
a=1

Can(I,S).

Assume that the flow control constants Rmax
n are positive and

satisfy Rmax
n ≥ µout

max,n for all n. Assume utilities g
(c)
n (r) are non-

negative, non-decreasing, continuous, and concave, and define Gmax
�=

max[(
r
(c)
n

)∣∣∣∑c r
(c)
n ≤Rmax

n :∀n
]∑

n,c g
(c)
n

(
r
(c)
n

)
. Define the constant B as

follows:

B �=
1

2N

N∑
n=1

[
(Rmax

n + µin
max,n)2 + (µout

max,n)2
]
. (5.9)

Theorem 5.1. If channel states are i.i.d. over timeslots and all active
reservoirs have infinite backlog, then for any flow parameter V > 0 the
CLC1 algorithm stabilizes the network and yields the following time



76 Utility Optimization and Fairness

average congestion and utility bounds:1∑
n,c

U
(c)
n ≤ NB + V Gmax

µsym
, (5.10)

liminf
t→∞

∑
n,c

g(c)
n (rnc(t)) ≥

∑
n,c

g(c)
n

(
r∗(c)
n

)
− BN

V
, (5.11)

where r∗ = (r∗(c)
n ) is the optimal solution of (5.4) subject to constraint

(5.5), and where:

∑
n,c

U
(c)
n

�=limsup
t→∞

1
t

t−1∑
τ=0

[∑
n,c

E

{
U (c)

n (τ)
}]

,

rnc(t)�=
1
t

t−1∑
τ=0

E

{
r(c)
n (τ)

}
. (5.12)

The above result holds for all V > 0. Thus, the value of V can be
chosen so that BN/V is arbitrarily small, resulting in achieved utility
that is arbitrarily close to optimal. This performance comes at the cost
of a (potential) linear increase in network congestion with the para-
meter V . By Little’s theorem, average queue backlog is proportional
to average bit delay, and hence performance can be pushed towards
optimality with a corresponding tradeoff in end-to-end network delay.

A result similar to the above theorem holds if the “Type 1” flow con-
trol constraint

∑
c R

(c)
n (t) ≤ Rmax

n in (5.8) is replaced with the simpler
and less restrictive “Type 2” constraint R

(c)
n (t) ≤ Rmax

n (for all (n,c)).
However, the constant B in the performance bounds (5.10) (5.11) would
then need to be replaced with a constant B̃ that is larger than B roughly
by a factor equal to the largest number of distinct commodities that
are sourced at any single node.

The proof of Theorem 5.1 uses a Lyapunov technique that allows
stability and performance optimization to be treated simultaneously,

1 Using T -slot Lyapunov analysis, the CLC1 algorithm can be shown to yield similar per-
formance for non-i.i.d. systems (with an increased constant B). The same is true for the
other performance optimal algorithms presented in this work.
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and is provided in Section 5.3. Below we present a simple corollary that
is useful in characterizing the performance of CLC1 under suboptimal
resource allocation strategies:

Corollary 5.2. If the resource allocation policy of CLC1 is replaced
with any (potentially randomized) policy that yields a transmission rate
function µ(t) = C(I(t),S(t)) that satisfies the following for all slots t:

∑
ab

W ∗
ab(t)E{µab(t) |U(t)} ≥ γ

(
max

I∈IS(t)

∑
ab

W ∗
ab(t)Cab(I,S(t))

)
− C,

for some fixed constants γ and C such that 0 < γ ≤ 1 and C ≥ 0, then

∑
n,c

U
(c)
n ≤ C + NB + V Gmax

µsymγ
, (5.13)

liminf
t→∞

∑
n,c

g(c)
n (rnc(t)) ≥

∑
n,c

g(c)
n (r̃∗

nc) − C + NB

V
, (5.14)

where (r̃∗
nc) is the optimal solution to the following optimization:

Maximize:
∑
n,c

g(c)
n (r(c)

n ) (5.15)

Subject to: (r(c)
n ) ∈ γΛ,

0 ≤ r(c)
n ≤ λnc.

That is, allocating resources to come within a factor γ of the optimal
solution of the CLC1 resource allocation yields a utility that is close
to the optimal utility with respect to a γ scaled version of the capacity
region. The above corollary is related to the approximate Lyapunov
scheduling results presented in Section 4.7. A closely related “imperfect
scheduling” result is developed from a convex programming perspective
in [91]. Below we present the implications of these results.
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5.2.2 Maximum throughput and the threshold rule

Suppose utilities are linear, so that g
(c)
n (r) = αncr for some non-negative

weights αnc. The resulting objective is to maximize the weighted sum
of throughput, and the resulting FLOW1 algorithm of CLC1 has a
simple threshold form, where some commodities receive as much of the
Rmax

n delivery rate as possible, while others receive none. In the special
case where the user at node n desires communication with a single
destination node cn (so that g

(c)
n (r) = 0 for all c �= cn), the flow control

algorithm (5.7) reduces to maximizing V αncnr − U
(cn)
n (t)r subject to

0 ≤ r ≤ Rmax
n , and the solution is the following threshold rule:

Rncn(t) =

{
Rmax

n if U
(cn)
n (t) ≤ V αncn

0 otherwise
.

The qualitative structure of this flow control rule is intuitive: When
backlog in the source queue is large, we should refrain from sending new
data. The simple threshold form is similar to the threshold scheduling
rule developed in [157] for server scheduling in a downlink with N

ON/OFF channels and burstiness constraints on the channel states and
packet arrivals. Specifically, assuming αn ≤ αn+1 (for 1 ≤ n ≤ N − 1),
the policy developed in [157] assigns at time t to channel queue n an
index

In (U (t)) = min{U (t) , nT} ,

where T is a given threshold parameter, and transmits a packet from the
ON queue with the highest index. It is shown that for T large enough
this policy maximizes the weighted sum of channel throughputs. In the
special case of this downlink scenario (a commodity is identified with
a channel), the resource allocation layer of the CLC1 policy would
always serve the longest ON queue, and the flow control layer would
only allow new packets of type i into queue i if the current backlog
in this queue is below V (and so backlog in queue i would never grow
beyond V + Rmax

i ). In comparison, we see that the V and T parameters
play similar roles.
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5.2.3 Proportional fairness and the 1/U rule

Consider now utility functions of the form g
(c)
n (r) = log

(
1 + βr

(c)
n

)
(for

some constant β > 0). It is shown in [71] that maximizing a sum of such
utilities over any convex set Λ leads to proportional fairness.2 In the
special case when there is only one destination cn for each user n, the
flow control algorithm reduces to maximizing V log(1 + βr) − U

(cn)
n r

subject to 0 ≤ r ≤ Rmax
n , which leads to the following ‘1/U ’ flow control

function:

Rncn(t) = min

[
max

[
V

U
(cn)
n (t)

− 1
β

,0

]
,Rmax

n

]
.

Here we see that the flow control valve restricts flow according to a
continuous function of the backlog level at the source queue, being less
conservative in its admission decisions when backlog is low and more
conservative when backlog is high.

5.2.4 Mechanism design and network pricing

The flow control policy (5.7) has a simple interpretation in terms of
network pricing. Specifically, consider a scenario where the g

(c)
n (r) func-

tions are measured in units of dollars, representing the amount the user
at source node n is willing to pay for rate r service to destination c.
The social optimum operating point

(
r
∗(c)
n

)
is defined as the point that

maximizes the sum of utilities
∑

n,c g
(c)
n

(
r
(c)
n

)
subject to

(
r
(c)
n

)
∈ Λ. For

simplicity, we again assume that there is a single user at node n that
desires to send a single commodity cn. Every timeslot, each user n deter-
mines the amount of data r

(cn)
n (t) it desires to send based on a per-unit

2 Strictly speaking, the proportionally fair allocation seeks to maximize
∑

n,c log(r(c)
n ), lead-

ing to
∑

n,c
ropt

nc −r
(c)
n

r
opt
nc

≥ 0 for any other operating point (r(c)
n ) ∈ Λ. We use non-negative

utilities log(1 + βr) and thereby obtain a proportionally fair allocation with respect to

the quantity ropt
nc + 1/β, leading to

∑
n,c

ropt
nc −r

(c)
n

r
opt
nc +1/β

≥ 0. This can be used to approximate

proportionally fair scheduling for large β. Alternatively, it can be used with β = 1, yielding
a utility function log(1 + r) which is different from proportionally fair utility but still has
many desirable fairness properties.
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price PRICEncn(t) charged by the network. The transaction between
user and network takes place in a distributed fashion at each node n.
We assume all users are ‘greedy’ and send data every timeslot by max-
imizing total utility minus total cost, subject to an Rmax

n constraint
imposed by the network. That is, each user n selects R

(cn)
n (t) = r

(cn)
n ,

where the r
(cn)
n values solve:

Maximize : g(cn)
n

(
r(cn)
n

)
− PRICEncn(t)r(cn)

n , (5.16)

Subject to: 0 ≤ r(cn)
n ≤ Rmax

n .

Consider now the following dynamic pricing strategy used at each
network node n:

PRICEnc(t) =
U

(c)
n (t)
V

dollars/bit.

We note that this pricing strategy is independent of the particular
g
(c)
n (r) functions, and so the network does not require knowledge of the

user utilities. Using this pricing strategy in (5.16), it follows that users
naturally send according to processes R

(c)
n (t) that exactly correspond to

the FLOW1 algorithm (5.7), and hence the performance bounds (5.10)
and (5.11) are satisfied.

5.3 Performance analysis

To prove Theorem 5.1, we first introduce a simple result from [108,
115, 116] that extends the Lyapunov stability results presented in
Lemma 4.1 of Section 4.4 to include performance optimization. In par-
ticular, the technique allows queueing stability and performance opti-
mization to be treated using a single drift analysis.

5.3.1 Lyapunov optimization

To begin, consider any discrete time queueing system with vector back-
log process U(t) = (U1(t), . . . ,UN (t)) that evolves according to some
probability law, and let R(t) = (R1(t), . . . ,RK(t)) represent any associ-
ated vector control process that influences system dynamics (for some
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integers N and K). Let L(U) be any non-negative function of U . Recall
that the one-step Lyapunov drift ∆(U(t)) is defined as follows:

∆(U(t))�=E{L(U(t + 1)) − L(U(t)) |U(t)} ,

where the conditional expectation is taken with respect to the random
one-step queueing dynamics given the current backlog U(t).

Lemma 5.3. (Lyapunov Drift) Let E{L(U(0))} < ∞. If there exist
scalar random processes x(t) and y(t) such that for every timeslot t

and for all possible values of U(t), the Lyapunov drift satisfies:

∆(U(t)) ≤ E{y(t) |U(t)} − E{x(t) |U(t)} , (5.17)

then:

limsup
t→∞

1
t

t−1∑
τ=0

E{x(τ)} ≤ limsup
t→∞

1
t

t−1∑
τ=0

E{y(τ)} ,

liminf
t→∞

1
t

t−1∑
τ=0

E{x(τ)} ≤ liminf
t→∞

1
t

t−1∑
τ=0

E{y(τ)} .

Proof. Taking expectations of (5.17) with respect to the distribution
of U(t) and using the law of iterated expectations yields:

E{L(U(t + 1))} − E{L(U(t))} ≤ E{y(t)} − E{x(t)} .

The above inequality holds for all t. Summing over t ∈ {0, . . . ,M − 1}
yields:

E{L(U(M))} − E{L(U(0))} ≤
M−1∑
τ=0

E{y(τ)} −
M−1∑
τ=0

E{x(τ)} .

Shifting terms, dividing by M , and using non-negativity of L(U) yields:

1
M

M−1∑
τ=0

E{x(τ)} ≤ 1
M

M−1∑
τ=0

E{y(τ)} +
E{L(U(0))}

M
.

The result follows by taking limits as M → ∞.
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Suppose now that the goal is to stabilize the U(t) process while
minimizing a concave function g(·) of the time average of the R(t) pro-
cess. Specifically, we define the following vector of time average expec-
tations over t slots:

r(t)�=
1
t

t−1∑
τ=0

E{R(t)} . (5.18)

Let g(r) be any scalar valued, concave utility function of a K dimen-
sional variable r, and let g∗ represent a desired “target” utility value.

Theorem 5.4. (Lyapunov Optimization) If there are positive con-
stants V,ε,B such that for all timeslots t and all unfinished work matri-
ces U(t), the Lyapunov drift satisfies:

∆(U(t)) − V E{g(R(t)) |U(t)} ≤ B − ε

N∑
i=1

Ui(t) − V g∗, (5.19)

then time average utility and congestion satisfies:

limsup
t→∞

1
t

t−1∑
τ=0

N∑
i=1

E{Ui(τ)} ≤ B + V (g − g∗)
ε

, (5.20)

liminf
t→∞ g(r(t)) ≥ g∗ − B

V
, (5.21)

where r(t) is defined in (5.18), and g is defined:

g �=limsup
t→∞

1
t

t−1∑
τ=0

E{g(R(τ))} .

This theorem is most useful when the quantity (g − g∗) can be
bounded by a constant. For example, if 0 ≤ g(R(t)) ≤ Gmax for all t

(for some constant Gmax), then (g − g∗) ≤ Gmax. It follows that if the
parameter V can be chosen as desired, then the lower bound on achieved
utility can be pushed arbitrarily close to the target utility g∗, with a
corresponding increase in queue congestion that is linear in V .
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Proof. (Theorem 5.4) Define:

x(t) �= ε
∑

i

Ui(t) + V g∗,

y(t) �= B + V g(R(t)).

The drift condition (5.19) thus implies:

∆(U(t)) ≤ E{y(t) |U(t)} − E{x(t) |U(t)} . (5.22)

Using the limsup result of Lemma 5.3 yields:

limsup
t→∞

1
t

t−1∑
τ=0

E

{
ε
∑

i

Ui(τ) + V g∗
}

≤ limsup
t→∞

1
t

t−1∑
τ=0

E{B + V g(R(τ))} .

The right hand side of the above inequality is equal to B + V g. Rear-
ranging terms yields (5.20). Likewise, using (5.22) with the liminf result
of Lemma 5.3 yields:

liminf
t→∞

1
t

t−1∑
τ=0

E{x(t)} ≤ liminf
t→∞

1
t

t−1∑
τ=0

E{B + V g(R(t))}

= B + V liminf
t→∞

1
t

t−1∑
τ=0

E{g(R(t))} .

Noting that x(t) ≥ V g∗ yields:

V g∗ ≤ B + V liminf
t→∞

1
t

t−1∑
τ=0

E{g(R(t))} .

Dividing by V and rearranging terms yields:

g∗ − B/V ≤ liminf
t→∞

1
t

t−1∑
τ=0

E{g(R(t))} (5.23)

≤ liminf
t→∞ g

(
1
t

t−1∑
τ=0

E{R(τ)}
)

(5.24)

= liminf
t→∞ g(r(t)),
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where (5.24) follows from Jensen’s inequality together with concavity
of g(·). It follows that liminft→∞ g(r(t)) ≥ g∗ − B/V , proving the
theorem.

It is useful to note that a similar result can be shown for minimizing
a convex cost function h(r) by defining g(r) = −h(r) and reversing
inequalities where appropriate. Further, the proof uses concavity of g(r)
only in the inequality (5.24). Thus, without the concavity assumption,
the congestion bound (5.20) still holds, while the utility bound (5.24)
is replaced by (5.23).

5.3.2 Computing the drift

To apply the Lyapunov Optimization Theorem (Theorem 5.4) to the
design and analysis of our CLC1 control policy, we define the util-
ity function g(r)�=

∑
n,c g

(c)
n

(
r
(c)
n

)
. This utility function is used to

evaluate the utility associated with the flow control decision vari-
ables R(t) =

(
R

(c)
n (t)

)
. Further, we define the Lyapunov function

L(U)�=1
2
∑

n,c

(
U

(c)
n

)2
(the factor 1/2 is used for notational convenience

later). The Lyapunov Optimization Theorem suggests that a good con-
trol strategy is to greedily minimize the following drift metric every
timeslot:

∆(U(t)) − V
∑
n,c

E

{
g(c)
n

(
R(c)

n (t)
)

|U(t)
}

. (5.25)

This is indeed the principle behind the CLC1 control algorithm.
To begin, recall that the Lyapunov drift ∆(U(t)) for any control

policy can be computed using methods in Section 4.5, and we have:

∆(U(t)) ≤ NB −
∑
n,c

U (c)
n (t)E

{∑
b

µ
(c)
nb (t)

−
∑

a

µ(c)
an(t) − R(c)

n (t) |U(t)

}
. (5.26)

where B is defined in (5.9). The expectations above are taken with
respect to the distribution of the random topology state S(t) at time t,
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and with respect to the (potentially randomized) choice of control
decision variables.

Now define the flow function Ψ(U(t)) and the network function
Φ(U(t)) as follows:

Ψ(U(t))�=
∑
n,c

E

{
V g(c)

n (R(c)
n (t)) − U (c)

n (t)R(c)
n (t) |U(t)

}
, (5.27)

Φ(U(t))�=
∑
n,c

U (c)
n (t)E

{∑
b

µ
(c)
nb (t) −

∑
a

µ(c)
an(t) |U(t)

}
. (5.28)

Subtracting the utility component V
∑

n,c E

{
g
(c)
n

(
R

(c)
n (t)

)
|U(t)

}
from

both sides of (5.26) yields:

∆(U(t)) − V
∑
n,c

E

{
g(c)
n

(
R(c)

n (t)
)

|U (t)
}

≤ NB − Φ(U(t)) − Ψ(U(t)). (5.29)

The design strategy for CLC1 is now apparent: Given a particular U(t)
matrix at time t, the CLC1 policy is designed to greedily minimize the
right hand side of (5.29 ) over all possible routing, resource allocation,
and flow control options. Indeed, it is clear that the flow control strat-
egy (5.7) maximizes Ψ(U(t)) over all feasible choices of the R

(c)
n (t)

values (compare (5.7) and (5.27)). That the routing and resource allo-
cation policy of CLC1 maximizes Φ(U(t)) has already been seen in
Section 4.3, where the differential backlog policy was presented. Our
analysis proceeds by finding a stationary control policy for choosing
the decision variables that does not depend on the queue backlog, and
plugging the resulting Φ(U(t)) and Ψ(U(t)) functions associated with
such a policy into the right hand side of (5.29).

5.3.3 A near-optimal operating point

To design a suitable stationary control policy, it is important to
first consider a near-optimal solution to the optimization problem
(5.4)–(5.6). Specifically, for any ε > 0, we define the set Λε as follows:

Λε
�=
{(

r(c)
n

)∣∣∣(r(c)
n + ε1(c)

n ) ∈ Λ, r(c)
n ≥ 0 for all (n,c) ∈ D

}
, (5.30)
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where 1(c)
n is equal to 1 whenever (n,c) ∈ D, and zero else. Thus, the

set Λε can be viewed as the resulting set of rate matrices within the
network capacity region when an “ε-layer” of the boundary is stripped
away from the D effective dimensions. Note that this set is compact and
non-empty whenever ε ≤ µsym (where µsym is defined in Section 5.1.2).

The near-optimal operating point
(
r
∗(c)
n (ε)

)
is defined as a solution to

the following optimization problem:3

Maximize :
∑
n,c

g(c)
n

(
r(c)
n

)
(5.31)

Subject to:
(
r(c)
n

)
∈ Λε

0 ≤ r(c)
n ≤ λnc for all (n,c)

This optimization differs from the optimization in (5.4 )–(5.6) in that
the set Λ is replaced by the set Λε.

Lemma 5.5. (Continuity of Near-Optimal Solutions) If utility func-
tions g

(c)
n (r) are non-negative and concave, and if there is a positive

scalar µsym such that (µsym1(c)
n ) ∈ Λ, then:∑

n,c

g(c)
n

(
r∗(c)
n (ε)

)
→
∑
n,c

g(c)
n

(
r∗(c)
n

)
as ε → 0, (5.32)

where
(
r
∗(c)
n

)
is the optimal solution of (5.4)–(5.6).

Proof. The proof uses convexity of the capacity region Λ, and is given
in Section 5.5.2 of [115].

5.3.4 Derivation of Theorem 5.1

The proof of Theorem 5.1 relies on the following two lemmas.

3 Note that the final constraint
(
r
(c)
n

)
≤

(
λ
(c)
n

)
is satisfied automatically in the case of infi-

nite traffic demand. We include the constraint here as this optimization is also important
in the treatment of general traffic matrices

(
λ
(c)
n

)
in Section 5.4.2.
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Lemma 5.6. If the storage reservoirs for all active input streams are
infinitely backlogged, then for any ε such that 0 < ε ≤ µsym, the flow
control algorithm of CLC1 yields:

ΨCLC1(U(t)) ≥ V
∑
n,c

g(c)
n

(
r∗(c)
n (ε)

)
−
∑
n,c

U (c)
n (t)r∗(c)

n (ε).

where
(
r
∗(c)
n (ε)

)
is the optimal solution of problem (5.31).

Lemma 5.7. If the topology state S(t) is i.i.d. over timeslots, then for
any ε such that 0 < ε ≤ µsym, allocating resources and routing accord-
ing to CLC1 yields:

ΦCLC1(U(t)) ≥
∑
n,c

U (c)
n (t)

(
r∗(c)
n (ε) + ε

)
, (5.33)

where
(
r
∗(c)
n (ε)

)
is the optimal solution of problem (5.31).

Lemma 5.6 follows because the flow control algorithm of CLC1
maximizes Ψ(U(t)), defined in (5.27), over all valid resource alloca-
tion options, including the particular choice R

(c)
n (t) = r

∗(c)
n (ε) for all

(n,c). This is a valid choice because: 1) all reservoirs are assumed
to be infinitely backlogged, so there are always r

∗(c)
n (ε) units of

data available, and 2)
∑

c r
∗(c)
n (ε) ≤ Rmax

n (because (r∗(c)
n (ε)) ∈ Λ and

hence
∑

c r
∗(c)
n (ε) ≤ µout

max,n is required). Lemma 5.7 follows because the
resource allocation and routing algorithm of CLC1 maximizes Φ(U(t)),
defined in (5.28), over all other options, including the stationary ran-
domized strategy of Corollary 3.9 that would yield for all (n,c) ∈ D:

E

{∑
b

µ
∗(c)
nb −

∑
a

µ∗(c)
an |U(t)

}
= r∗(c)

n (ε) + ε1(c)
n . (5.34)

Plugging the bounds of Lemmas 5.6 and 5.7 directly into the drift
expression (5.29) yields the following for algorithm CLC1:
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∆(U(t)) − V
∑
n,c

E

{
g(c)
n

(
R(c)

n (t)
)

|U(t)
}

≤ NB

−
∑
n,c

U (c)
n (t)

(
r∗(c)
n (ε) + ε

)
− V

∑
n,c

g(c)
n

(
r∗(c)
n (ε)

)
+
∑
n,c

U (c)
n (t)r∗(c)

n (ε).

Canceling common terms yields:

∆(U(t)) − V
∑
n,c

E

{
g(c)
n

(
R(c)

n (t)
)

|U (t)
}

≤ NB

− ε
∑
n,c

U (c)
n (t) − V

∑
n,c

g(c)
n

(
r∗(c)
n (ε)

)
.

The above drift expression is in the exact form specified by
Theorem 5.4. Thus, network congestion satisfies:∑

n,c

U
(c)
n ≤ (NB + V Gmax)/ε, (5.35)

and time average performance satisfies:∑
n,c

g(c)
n (rnc) ≥

∑
n,c

g(c)
n

(
r∗(c)
n (ε)

)
− NB/V. (5.36)

The performance bounds in (5.35) and (5.36 ) hold for any value ε

such that 0 < ε ≤ µsym. However, the particular choice of ε only affects
the bound calculation and does not affect the CLC1 control policy
or change any sample path of system dynamics. We can thus opti-
mize the bounds separately over all possible ε values. The bound in

(5.35) is clearly minimized as ε → µsym, yielding:
∑

n,c U
(c)
n ≤ (NB +

V Gmax)/µsym. Conversely, the bound in (5.36) is maximized by taking

a limit as ε → 0, yielding by (5.32):
∑

n,c g
(c)
n (rnc) ≥ ∑

n,c g
(c)
n

(
r
∗(c)
n

)
−

NB/V . This proves Theorem 5.1. �

5.3.5 Notes

• The utility optimization problem for network flow control
was first formalized by Kelly et. al. in [70, 71] for wireline
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networks with fluid-like dynamics. There, network flows are
described according to primal and dual convex programs, and
Lagrange multipliers are interpreted as shadow prices that
facilitate distributed control mechanisms. The proportionally
fair objective is considered in [70, 71], and related work in
[101, 107] treats different systems and objectives. Game the-
ory aspects of network fairness are considered in [65, 101],
auction algorithms are considered in [138], and adversarial
queueing theory approaches are considered in [5]. The rela-
tionship between utility optimization, convex duality theory,
and classical TCP protocols for wireline networks is explored
in [97].

• Convex programming approaches to static wireless networks
are considered in [16, 31, 36, 66, 79, 83, 91, 100, 165]. The
work in [31] investigates systems with transmission rates
that depend logarithmically on SINR. Under the assump-
tion that log(1 + SINR) ≈ log(SINR), a set of decoupled
algorithms for flow control, routing, and resource allocation
are constructed and shown to drive resources to a fixed opti-
mal operating point. The work in [36] considers the case
log(1 + SINR) ≈ SINR. In this case, it is shown that fixed
operating points are sub-optimal, and that optimal strategies
involve a time-varying link transmission schedule. A simi-
lar problem is investigated in [76], where NP-Completeness
results are developed for transmission scheduling.

• Utility optimization and proportional fairness are also
treated in [46, 81, 153, 159] for stochastic wireless down-
links with infinite backlog. Fairness for systems with different
downlink channels for each arriving packet is treated in [24].

• Fair allocation according to the maxmin rule has been con-
sidered in [133, 146] where optimal scheduling policies were
proposed for single hop and multihop traffic respectively.

• The CLC1 policy was developed for general stochastic net-
works in [108, 115]. We note that alternative approaches
to stochastic network optimization have recently been con-
sidered in [46, 136] using fluid limit models, and in [84]



90 Utility Optimization and Fairness

using stochastic gradient theory (see, for example, [68]). The
Lyapunov optimization technique of this section is related
to the theory of static and stochastic gradients, as the drift
metric (5.25) is analogous to an iterative gradient projection
for a static convex program (see Sections 4.7–5.7 of [115]).

5.4 Flow control for arbitrary input rates

Here we consider the general flow control problem (5.4 )–(5.6), without
the infinite backlog assumption. The transport layer storage buffers are
assumed to have either infinite or finite capacity (possibly zero). In the
special case of a size-zero storage reservoir, all data that is not immedi-
ately admitted to the network layer is necessarily dropped. Let L

(c)
n (t)

represent the current backlog of commodity c data in the transport
layer storage reservoir at node n (where L

(c)
n (t) = 0 for all t in the case

of a size-zero storage reservoir). Flow control decisions are now sub-
ject to the additional scheduling constraint R

(c)
n (t) ≤ L

(c)
n (t) + A

(c)
n (t).

This constraint is particularly challenging, as it varies with time and
so the stationary algorithm R

(c)
n (t) = r

∗(c)
n (ε) cannot be used as a valid

comparison every slot.
Assume that the A

(c)
n (t) arrivals are i.i.d. over timeslots with arrival

rates λ
(c)
n = E

{
A

(c)
n (t)

}
. It can be shown that for any matrix (λ(c)

n )
(either inside or outside the capacity region), modifying the CLC1 algo-
rithm to maximize (5.7) subject to the additional reservoir backlog con-
straint yields the same performance guarantees (5.10) and (5.11) when
utility functions are linear [115]. For nonlinear utilities, such a strat-
egy can be shown to maximize

∑
n,c E

{
g
(c)
n

(
R

(c)
n (t)

)}
over all strate-

gies that make immediate admission/rejection decisions upon arrival,
but may not necessarily maximize

∑
n,c g

(c)
n

(
E

{
R

(c)
n (t)

})
, which is the

utility metric of interest.
In this section, we solve the problem by introducing two new tech-

niques. The first is the use of auxiliary variables that hold additional
network flow state information helpful for solving nonlinear problems
[108]. The second is the use of virtual cost queues that transform
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stochastic constraints involving time averages into simple queueing
stability problems [108, 116, 121, 136] .

5.4.1 Problem transformation via auxiliary variables

We begin with the following transformation of the problem (5.4)–(5.6),
which introduces new variables γ

(c)
n for each input stream R

(c)
n (t):

Maximize:
∑
n,c

g(c)
n

(
γ(c)

n

)
(5.37)

Subject to: r(c)
n ≥ γ(c)

n , (5.38)(
r(c)
n

)
∈ Λ, (5.39)

0 ≤ r(c)
n ≤ λ(c)

n . (5.40)

It is not difficult to show that the optimal solution of the above prob-
lem is exactly the same as the optimal solution of the original problem
(5.4)–(5.6).4 Note that if the r

(c)
n variables are associated with time

averages of the flow control inputs R
(c)
n (t), then any control policy

that stabilizes the system will naturally lead to time averages that
satisfy (5.39 ) and (5.40). Furthermore, the utility optimization is now
expressed entirely in terms of the new variables γ

(c)
n , while the addi-

tional inequality (5.38) expresses a linear constraint between the time
average flow control decisions and the γ

(c)
n variables.

To solve the above problem, for each active input stream A
(c)
n (t) we

define additional flow state queues Y
(c)
n (t) that ensure the additional

constraint (5.38) is satisfied. Specifically, we define Y
(c)
n (0) = 0 for all

(n,c), and update the flow state queues every timeslot as follows:

Y (c)
n (t + 1) = max

[
Y (c)

n (t) − R(c)
n (t),0

]
+ γ(c)

n (t), (5.41)

where γ
(c)
n (t) represents a process of non-negative auxiliary variables

that the flow controller computes on every timeslot. The Y
(c)
n (t) process

can also be viewed as a virtual queue with “arrivals” γ
(c)
n (t) and “server

rate” R
(c)
n (t) (see Fig. 5.1). Let Y (t) = (Y (c)

n (t)) represent the matrix

4 Recall that the g
(c)
n (r) utility functions are non-decreasing.
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Fig. 5.1 A queueing illustration of the dynamic equation (5.41) for the Y
(c)
n (t) queues.

of these flow state queues, and let Θ(t) = [Y (t);U(t)] represent the
combined matrix of flow state queues and actual queues.

To motivate the control algorithm, suppose that the R
(c)
n (t)

and γ
(c)
n (t) processes have well defined time averages r

(c)
n and γ

(c)
n ,

respectively.
Observation: If a control algorithm stabilizes all actual queues U(t)

and flow state queues Y (t) of the system, then the resulting time aver-
ages r

(c)
i and γ

(c)
i must satisfy all inequality conditions (5.38)–(5.40).

That (5.39) and (5.40) hold if the U(t) queues are stable is clear
because the admitted rates must always be less than or equal to the
actual arrival rates, and because the admitted rate matrix must be
within the network capacity region Λ for stability of the network
queues. The key component of the above observation is that the con-
straints (5.38) hold if all virtual queues Y (t) are stable. This follows
from Lemma 3.3 and the basic queueing inequality,

t−1∑
τ=0

R(c)
n (t) + Y (c)

n (t) ≥
t−1∑
τ=0

γ(c)
n (t).

The above observation was introduced in [116] for the purpose of design-
ing optimal scheduling algorithms for wireless networks with average
power constraints, where virtual power queues were used to transform
stochastic inequality constraints into queueing stability problems. Sim-
ilar techniques have recently been used to treat other stochastic cost
constraints in [119, 120, 136].

The above observation suggests the approach of designing a network
control algorithm to stabilize all queues U(t) and Y (t) while maximiz-
ing the utility function g(·). To this end, define the Lyapunov function
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L(Θ) as follows:

L(Θ) =
1
2

∑
n,c

(
U (c)

n

)2
+

η

2

∑
n,c

(
Y (c)

n

)2
,

where η is a parameter that satisfies 0 < η ≤ 1 and determines the
relative weight of virtual queues in the control problem. It turns out
that choosing η small decreases the time average backlog in the actual
queues while increasing the time average backlog in the virtual flow
state queues. The actual queues determine the actual congestion and
delay in the network, while the virtual queues play a role in determin-
ing the transient time or “learning time” required for the system to
approach optimal performance.

The conditional Lyapunov drift is given by:

∆(Θ(t))�=E{L(Θ(t + 1)) − L(Θ(t)) |Θ(t)} .

Motivated by the drift condition of the Lyapunov Optimization
Theorem (Theorem 5.4), we design a control policy to minimize the
following metric:

Minimize: ∆(Θ(t)) − V E

{∑
n,c

g(c)
n

(
γ(c)

n (t)
)

|Θ(t)

}
.

5.4.2 The cross-layer control algorithm

To simplify exposition, suppose that the exogenous arrivals to a given
node n are deterministically bounded by a constant Rmax

n every times-
lot, so that: ∑

c

A(c)
n (t) ≤ Rmax

n for all t.

Further, we shall use the “Type 2” flow control constraints, so that:

R(c)
n (t) ≤ min

[
L(c)

n (t) + A(c)
n (t), R̂(c)

n

]
,

where R̂
(c)
n are suitably large constants that satisfy:

A(c)
n (t) ≤ R̂(c)

n for all t
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(note that choosing R̂
(c)
n = Rmax

n for all n ensures the above inequality is
satisfied). This “Type 2” flow control constraint simplifies the algorithm
at the expense of increasing the average congestion bound.

Using the queueing equations (5.41) and (5.3), the following drift
bound can be computed:

∆(Θ(t)) − V E

{∑
n,c

g(c)
n

(
γ(c)

n (t)
)

|Θ(t)

}
≤ C2

−
∑
n,c

U (c)
n (t)E

{[∑
b

µ
(c)
nb (t) −

∑
a

µ(c)
an(t)

]
|Θ(t)

}
+
∑
n,c

U (c)
n (t)E

{
R(c)

n (t) |Θ(t)
}

−η
∑
n,c

Y (c)
n (t)E

{[
R(c)

n (t) − γ(c)
n (t)

]
|Θ(t)

}
−V E

{∑
n,c

g(c)
n

(
γ(c)

n (t)
)

|Θ(t)

}
, (5.42)

where C2 is a constant that depends on µin
max,n,µout

max,n, and R̂
(c)
n . Choos-

ing the control decision variables to minimize the right hand side of the
above inequality leads to the following Cross Layer Control algorithm:5

Cross Layer Control Algorithm (CLC2b): Every timeslot, the topo-
logy state S(t) and the queue values U(t), Y (t) are observed, and cont-
rollers perform the following actions:

(1) Flow Control: Every timeslot and for each active input
stream (n,c), observe U

(c)
n (t) and Y

(c)
n (t) and choose:

R(c)
n (t) =

{
min

[
L

(c)
n (t) + A

(c)
n (t), R̂(c)

n

]
if ηY

(c)
n (t) > U

(c)
n (t)

0 otherwise
.

5 This control algorithm is a modified version of the original CLC2 algorithm from [108],
and hence we label it “CLC2b.”
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Furthermore, for each (n,c), choose γ
(c)
n (t) = γ

(c)
n , where γ

(c)
n

solves:

Maximize: V g(c)
n (γ) − ηY (c)

n (t)γ,

Subject to: 0 ≤ γ ≤ R̂(c)
n .

The flow state queues Y
(c)
n (t) are then updated according to

(5.41).
(2) Routing and Resource Allocation: Same as the dynamic back-

pressure algorithm of CLC1.

The following theorem assumes arrival matrices A(t) and topology
states S(t) are i.i.d. over timeslots, and assumes that Gmax is a para-
meter such that

∑
n,c g

(c)
n

(
R

(c)
n (t)

)
≤ Gmax for all t.

Theorem 5.8. For arbitrary rate matrices
(
λ

(c)
n

)
(possibly outside

of the capacity region), for any V > 0, and for any reservoir buffer size
(possibly zero), the CLC2b algorithm stabilizes the network and yields
the following congestion and utility bounds:

limsup
t→∞

1
t

t−1∑
τ=0

∑
n,c

U (c)
n (τ) ≤ C2 + V Gmax

µsym
, (5.43)

liminf
t→∞

∑
n,c

g(c)
n

(
R

(c)
n (t)

)
≥
∑
n,c

g(c)
n

(
r∗(c)
n

)
− C2

V
. (5.44)

We note that in the special case when the input rate matrix is inside
the capacity region, a tighter bound than (5.43) can be computed that
does not depend on the V parameter and has a form similar to the
bound derived in Theorem 4.5 in Section 4.5 for the differential backlog
policy without flow control.

Proof. The proof follows because, given a particular queue state Θ(t) =
[U(t),Y (t)] at time t, the CLC2b algorithm maximizes the right
hand side of (5.42) over all alternate choices of the decision vari-
ables R

(c)
n (t),µ(c)

ab (t), γ
(c)
n (t). It is not difficult to construct alternate
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polices that choose R
∗(c)
n (t),µ∗(c)

ab (t),γ∗(c)
n (t) to yield for all (n,c) ∈ D

(see [108]):

E

{∑
b

µ
∗(c)
nb (t) −

∑
a

µ∗(c)
an (t) |Θ(t)

}
= r∗(c)

n (ε) + ε1(c)
n

γ∗(c)
n (t) = r∗(c)

n , E

{
R∗(c)

n (t) |Θ(t)
}

= r∗(c)
n

Plugging these particular decision variables into the right hand side of
(5.42) thus preserves the inequality and creates many terms that can
be cancelled, yielding:

∆(Θ(t)) − V E

{∑
n,c

g(c)
n

(
γ(c)

n (t)
)

|Θ(t)

}
≤ C2

−ε
∑
n,c

U (c)
n (t) − V

∑
n,c

g(c)
n

(
r∗(c)
n (ε)

)
.

The above inequality is in the exact for for application of the Lya-
punov Optimization Theorem (Theorem 5.4), and holds for any value
ε such that 0 < ε ≤ µsym. Applying the theorem and optimizing over
all ε shows that the queues U(t) are strongly stable with the conges-
tion bound (5.43), and that a utility bound similar to (5.44) holds.
A similar argument can be used to prove strong stability of the Y (t)
queues, which relates this utility bound directly to (5.44) and proves
the theorem (see [108] for details).

We note that if the constants Rmax
n and R̂

(c)
n are chosen to be equal

to some fixed constant R̂, then the C2 constant in Theorem 5.8 is
O(MR̂), where M is the number of active sessions (n,c) throughout
the network. The constant can be reduced by replacing the Type 2
flow control constraints with Type 1 constraints, so that every time-
slot and for each node n the R

(c)
n (t) variables are chosen to maxi-

mize
∑K

c=1 R
(c)
n (t)[ηY

(c)
n (t) − U

(c)
n (t)] subject to

∑
c R

(c)
n (t) ≤ R̂, 0 ≤

R
(c)
n (t) ≤ L

(c)
n (t) + A

(c)
n (t). The solution of this optimization is still

quite simple, as it amounts to admitting as much data as possi-
ble from the commodities c with the largest (positive) values of
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ηY
(c)
n (t) − U

(c)
n (t). This modification would yield a constant C2 that is

O((ηM + N)R̂), which can be pushed to O(NR̂) by choosing η appro-
priately small.

The average backlog in the virtual queues can also be decreased if,
for each source node n, the γ

(c)
n (t) optimization were replaced by the

more complex optimization of maximizing
∑

c g
(c)
n (γ(c)

n ) subject to the
simplex constraint γ

(c)
n ≥ 0,

∑
c γ

(c)
n ≤ R̂. In this case, we could choose

η = 1 and still have C2 = O(NR̂). Reducing the average virtual queue
backlog is advantageous as it reduces the time required for the network
to adapt to possible changes in traffic rates or channel statistics.

5.4.3 An alternative construction on flow state queues

Our presentation of the CLC2b algorithm is somewhat different than
the original CLC2 algorithm developed in [108]. The original CLC2
algorithm used Type 1 flow control constraints, and used a different
transformation. Specifically, for each utility function g

(c)
n

(
r
(c)
n

)
, a new

function h
(c)
n

(
α

(c)
n

)
was formed:

h(c)
n

(
α(c)

n

)
�=g(c)

n (Rin
max) − g(c)

n

(
Rin

max − α(c)
n

)
,

where α
(c)
n (t) represents a process of auxiliary variables. Letting r

(c)
n

represent the time average of the flow control decisions R
(c)
n (t) and

letting α
(c)
n represent the time average of the auxiliary processes α

(c)
n (t),

we observe the following:
Minimizing

∑
n,c h

(c)
n

(
α

(c)
n

)
subject to network stability and to the

additional constraint α
(c)
n ≥ Rin

max − r
(c)
n for all (n,c) is equivalent to

maximizing
∑

n,c g
(c)
n

(
r
(c)
n

)
subject to network stability.

To ensure that α
(c)
n ≥ Rin

max − r
(c)
n , the algorithm of [108] uses a set

of flow state queues Ỹ
(c)
n (t) with update equations as follows:

Ỹ (c)
n (t + 1) = max

[
Ỹ (c)

n (t) − α(c)
n (t),0

]
+ Rin

max − R(c)
n (t). (5.45)
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The CLC2 algorithm performs resource allocation and routing in
the same manner as in CLC2b, but chooses flow control values R

(c)
n (t)

for each source node n to maximize
∑K

c=1

[
ηỸ

(c)
n (t) − U

(c)
n (t)

]
R

(c)
n (t)

subject to the Type 1 flow control constraints. The auxiliary vari-
ables α

(c)
n (t) are then computed by maximizing V g

(c)
n

(
Rin

max − α
(c)
n

)
+

ηỸ
(c)
n (t)α(c)

n subject to 0 ≤ α
(c)
n ≤ Rin

max.

5.4.4 Notes

• Simulation results of the CLC2 algorithm for downlinks,
N × N packet switches, and multi-hop networks are found
in [108].

• The method of introducing auxiliary variables and flow state
queues to solve the flow control problem was developed in
[108]. The transformation (5.37)–(5.40) was later considered
in [121, 120], and a related use of auxiliary variables is pre-
sented in [93]. An alternative approach to utility optimiza-
tion is developed in [136] using fluid model transformations.
It is interesting to note that the algorithm in [136] also keeps
additional variables to solve the nonlinear optimization prob-
lem, similar to the auxiliary variables and flow state queues
developed in this section. A more direct comparison of the
two methods is presented in the next section.

• The [O(1/V ),O(V )] utility-delay tradeoff achieved by
CLC2b is not the optimal tradeoff. A recent result in [120]
demonstrates that an improved tradeoff [O(1/V ),O(log(V ))]
is achievable using a more sophisticated flow control algo-
rithm. Further, [120] shows that, for the special case of
one-hop networks, this logarithmic structure of the utility-
delay tradeoff cannot be improved by any alternative control
strategy. Related work in [15, 119] considers the fundamen-
tal energy-delay tradeoff for single-user and multi-user wire-
less systems, where a square-root tradeoff law is established.
Energy optimal networking is considered in more detail in
the next section.
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• When the exogenous traffic arrival rates are outside the
capacity region, it may be of interest to control the rate
of increase of node queues in order to delay buffer fill-up
as long as possible. It turns out that the dynamic back-
pressure policy has desirable properties in this respect as
well. The study of this problem for networks with fixed link
capacities is presented in [53]. For networks with changing
link capacities the problem can be dealt with using the
methodologies developed in this text. In this case, instead
of flow control of exogenous traffic each of the nodes of the
network can exercise control of its queues by adding extra
“overflow” buffers. A step towards this direction has been
taken in [52].



6
Networking with General Costs and Rewards

Here we use Lyapunov optimization theory to develop a framework for
optimizing stochastic networks with general cost and reward metrics.
The results in this section are well suited to solve problems of energy
optimal networking, including problems of minimizing average power
expenditure in mobile ad-hoc networks, and problems of maximizing
network throughput utility subject to average power constraints. The
general solution to these problems integrates the basic Lyapunov stabil-
ity and optimization concepts developed in previous sections, including
the use of auxiliary variables and virtual cost queues.

6.1 The network model assumptions

We consider the same network as in the previous section, with N nodes,
K commodities (denoted by a node set N and a commodity set K),
a topology state process S(t), and a link transmission rate function
C(I(t),S(t)). Exogenous arrivals are given by A(t) = (A(c)

n (t)). For sim-
plicity, we continue to assume that the pair [S(t);A(t)] is i.i.d. over
timeslots, with the understanding that similar results can be extended
to non-i.i.d. systems using T -slot analysis.

100
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Control decision variables I(t), µ
(c)
ab (t), and R

(c)
n (t) for resource

allocation, routing, and flow control are also the same as in previous
sections, with the exception that we restrict attention to the “Type 2”
flow control constraints (see Section 5.1) for simplicity, so that

R(c)
n (t) ≤ min[A(c)

n (t) + L(c)
n (t), R̂(c)

n ],

for suitably large constants R̂
(c)
n . Specifically, for simplicity we continue

to assume that arrivals are deterministically bounded, and choose R̂
(c)
n

so that A
(c)
n (t) ≤ R̂

(c)
n for all t. The I(t) decisions satisfy I(t) ∈ IS(t)

for all t, and the µ
(c)
ab (t) variables satisfy (5.1) and (5.2). Transport

layer storage reservoirs have arbitrary storage space (infinite, finite, or
zero). Network layer queueing dynamics are given in (5.3) of Section 5.
This general framework can also be used to treat networks without flow
control by simply adding the additional constraint A

(c)
n (t) = R

(c)
n (t) for

all t. Recall that the sets Lc restrict routing decisions, and the set D
consists of all (n,c) pairs for which there is a valid queue U

(c)
n (t).

6.1.1 Network penalties and rewards

Let x(t) = (x1(t), . . . ,xMx(t)) represent a vector of Mx penalties
incurred by the network control decisions I(t), µ

(c)
ab (t), R

(c)
n (t) at times-

lot t, and let y(t) = (y1(t), . . . ,yMy(t)) represent a vector of My rewards
earned at timeslot t (where Mx and My are arbitrary integers). For
example, in a network with power allocation decisions, a penalty xm(t)
might represent an arbitrary function of the power expended at one or
more nodes during slot t, such as:

• xm(t) =
∑

b Pnb(t) for a given node n ∈ N associated with
penalty m.

• xm(t) =
∑

b (Pnb(t))
2 + Pab(t)Pc,d(t) for a given node n ∈ N

and some given links (a,b), (c,d) associated with penalty m.
• xm(t) = ePab(t) + µ

(c)
ab (t) for some link (a,b) and some com-

modity c associated with penalty m.

Likewise, a reward ym(t) can be defined arbitrarily, and is usu-
ally associated with the flow control variables R

(c)
n (t). This abstract
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use of network penalties was introduced in [136], where a fluid model
transformation was used to analyze performance (the result of [136] is
considered in more detail in Section 6.4). Here, we demonstrate how
these general penalty and reward functions can be treated using the
Lyapunov optimization techniques developed in the previous sections.

We assume that penalties and rewards are non-negative and upper
bounded by positive vectors Xmax and Y max, so that 0 ≤ x(t) ≤ Xmax

and 0 ≤ y(t) ≤ Y max for all time t (inequalities taken entrywise). Let
x = (x1, . . . ,xMx) and y = (y1, . . . ,yMy

) represent the vector of time
average penalties and rewards (assuming for now that such time aver-
ages exist). We consider the problem of minimizing the sum of a convex
increasing function of the long term average penalty vector and a con-
vex decreasing function of the long term average reward vector, subject
to network stability and also subject to an additional set of convex con-
straints on the long term average penalties and rewards.

Specifically, let f(x) represent a scalar valued cost function asso-
ciated with the penalty vector x. We assume that f(x) is non-
negative, continuous, convex in the multi-dimensional vector x, and
entrywise non-decreasing (so that f(x) ≤ f(y) whenever x ≤ y, where
inequality is taken entrywise). We assume there is a value fmax such
that f(x(t)) ≤ fmax for all t. Let the vector valued function q(x) =
(q1(x), . . . , qJx(x)) represent an additional set of cost functions, where
each component function qj(x) is similarly non-negative, continuous,
bounded, convex, and entrywise non-decreasing.

Similarly, we let g(y), h(y) = (h1(y), . . . ,hJy(y)), represent utility
functions associated with the rewards y. These functions are assumed
to be non-negative, continuous, bounded, concave, and entrywise non-
decreasing. The generalized stochastic optimal networking problem is:

Minimize: f(x) − g(y) (6.1)

Subject to: 1) q(x) ≤ Q,

2) h(y) ≥ H,

3) Network Stability,

where Q = (Q1, . . . ,QJx) is a vector of required upper bounds on the
cost functions q(x), and likewise H is a vector of lower bounds on the
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utility functions h(y). We define ΛQ as the modified capacity region for
this network, consisting of all arrival rate matrices that can be stably
supported by the network layer under the additional cost constraints
q(x) ≤ Q, h(y) ≥ H imposed on the network penalties and rewards.

Note that the general problem can be stated purely in terms of
penalties. Indeed, the reward objective is equivalent to minimizing the
function f̃(x̃(t)), where x̃(t) �= Y max − y(t), and where:

f̃(x̃(t)) �= g(Y max) − g(Y max − x̃(t)). (6.2)

Because g(y) is concave and entrywise non-decreasing, the function
f̃(x̃) is convex and entrywise non-decreasing, and therefore fits into
our general framework. This transformation is used to treat the prob-
lem of fair flow control in [108] (as discussed in Section 5, Section 5.4.3).
Likewise, penalties can be changed into rewards through a similar trans-
formation. However, it is often useful to maintain a distinction between
penalties and rewards, especially for implementation purposes.

6.1.2 Assumptions on optimal stationary control

Let c∗ = f∗ − g∗ represent the optimal cost associated with the problem
(6.1), and let x∗, y∗ represent the optimal time average penalty and
reward vectors, so that f(x∗) = f∗, g(y∗) = g∗. We consider the class of
systems for which optimality can be achieved within the class of S-only
algorithms, defined as follows:

Definition 6.1. An S-only algorithm is a stationary randomized
algorithm that chooses control variables I(t), {R

(c)
n (t)}, {µ

(c)
ab (t)} based

only on the current topology state S(t).

While our dynamic control algorithm will base decisions on current
queue backlog and hence is not S-only, its performance will be evaluated
by comparison to S-only algorithms. Specifically, we assume:

Assumption 1: (Optimality of an S-only Policy) There exists an
S-only algorithm such that for all t and all node-commodity pairs
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(n,c) ∈ D we have:∑
a

E

{
µ(c)

an(t)
}

+ E

{
R(c)

n (t)
}

=
∑

b

E

{
µ

(c)
nb (t)

}
, (6.3)

q (E{x(t)}) ≤ Q, h(E{y(t)}) ≥ H,

f (E{x(t)}) − g(E{y(t)}) = f∗ − g∗, (6.4)

where the expectations above are taken over the random topology state
S(t) and the potentially randomized control decisions.

Further, we make the following interior point and slackness assump-
tions (which hold for all of the networks considered in this text):

Assumption 2: (Interior Point) There exists a value εmax > 0
together with an S-only algorithm such that for all t and all node-
commodity pairs (n,c) ∈ D we have:∑

a

E

{
µ(c)

an(t)
}

+ εmax + E

{
R(c)

n (t)
}

=
∑

b

E

{
µ

(c)
nb (t)

}
,

q(E{x(t)}) ≤ Q, h(E{y(t)}) ≥ H.

Assumption 3: (Slackness 1) There exist positive values δ1, δ2

together with an S-only algorithm that yields (6.3) and that simul-
taneously yields:

q(E{x(t)}) ≤ Q − δ11q, h(E{y(t)}) ≥ H + δ21h.

where 1q is a vector with all entries equal to 0 or 1, with entry i equal
to 1 if and only if function qi(·) is not identically zero, and 1h is a 0/1
vector with entry j equal to 1 if and only of hj(·) is not identically zero.

Assumption 4: (Slackness 2) There exist positive values δ3, δ4 and
vectors α, γ such that q(α) ≤ Q, h(γ) ≥ H and 0 ≤ α ≤ Xmax, 0 ≤
γ ≤ Y max, such that there exists an S-only algorithm yielding (6.3)
while simultaneously yielding:

E{x(t)} ≤ α − δ31x, E{y(t)} ≥ γ + δ41y.

where 1x is a 0/1 vector with entry i equal to 1 if and only if penalty
xi(t) is not identically zero for all t, and 1y is a 0/1 vector with entry
j equal to 1 if and only if reward yj(t) is not identically zero for all t.

Note that the quantities E{µ
(c)
nb (t)} can be viewed as flows f

(c)
nb ,

and hence the control decisions of the S-only policy of Assumption 1
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yield flows that satisfy the flow conservation constraints, while also
satisfying the cost and utility inequality constraints and yielding time
average penalties and rewards that achieve the minimum network cost
f(x) − g(y) = f∗ − g∗. The value c∗ = f∗ − g∗ can thus be interpreted
as the optimal cost over all S-only policies. For a large class of network
flow problems, including the fairness problems of the previous section
and the energy problems to be presented in this section, c∗ is also the
optimal cost over all possible (perhaps not S-only) policies [116].

Assumption 2 effectively states that there exists an S-only policy
that meets all inequality constraints while supporting a traffic matrix
(E{R

(c)
n (t)} + ε1(c)

n ) (where 1(c)
n is equal to 1 if (n,c) ∈ D, and zero

else). Suppose S-only policies can be used to support any traffic matrix
within the relative interior of the network capacity region ΛQ, and
define µsym as the edge size of the largest D-dimensional hypercube
that can fit inside the effective dimensions of ΛQ (with one vertex at
the origin). If µsym > 0 and if the functions q(x) and h(y) do not
depend on penalties or rewards associated with the flow control decision
variables R

(c)
n (t), then Assumption 2 is satisfied. This can be seen by

setting R
(c)
n (t) = 0 for all (n,c) and all t, so that εmax is equal to µsym.

In the case when there are no flow controllers (so that A
(c)
n (t) = R

(c)
n (t)

for all (n,c) and all t), the value of εmax is the largest value of ε such
that (λ(c)

n + ε1(c)
n ) ∈ ΛQ.

Assumption 3 states that there exists an S-only algorithm that
satisfies the flow constraints while also yielding the strict inequalities
qi (E{x(t)}) < Qi and hi(E{y(t)}) > Hi whenever the corresponding
qi(·) and hi(·) functions are not identically zero and hence define legiti-
mate constraints. Assumption 4 is similar. In many networks with flow
control and/or without cost or utility constraint functions q(·),h(·),
assumptions 3 and 4 can be shown to trivially hold simply by consid-
ering the policy that sets all control variables to zero or near-zero.

6.1.3 Example: A wireless uplink with power constraints

Consider a wireless uplink where L users transmit to a base-
station over L time varying channels. Let C(P (t), S(t)) = (C1(P (t),
S(t)), . . . ,CL(P (t),S(t))) represent the link transmission rate vector
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as a function of the current topology state S(t) and the power
allocation vector P (t) = (P1(t), . . . ,PL(t)). The particular form of the
C(P (t),S(t)) function depends on the physical layer transmission and
multi-user detection schemes used by this system. Suppose that power
allocation is restricted so that 0 ≤ Pi(t) ≤ Pmax for all users i and for
all t. Separate queues are maintained at each user, and we let Ri(t)
represent the amount of data user i decides to add to its queue on
timeslot t. We assume that 0 ≤ Ri(t) ≤ Rmax for some constant Rmax.
Suppose that the transport layer reservoirs at each user are infinite
with infinite backlog.

Consider the following network parameters, with penalties x(t) and
rewards y(t) defined according to power allocation and flow control
decisions:

• x(t) = (P1(t), . . . ,PL(t)), y(t) = (R1(t), . . . ,RL(t))
• q(x) = x, Q = (.1, .1, . . . , .1) Watts; h(y) = H = 0
• f(x) − g(y) = β1

∑L
i=1 x2

i − β2
∑L

i=1 log(1 + yi)

where β1,β2 are non-negative constants that weight the relative impor-
tance of energy cost and throughput utility. Thus, in this simple
example, the penalties x(t) correspond to power allocations and
the rewards y(t) correspond to transport layer admission decisions.
The inequality constraint q(x) ≤ Q ensures that the average power
expended by each user is no more than 0.1 Watts. The global cost
function f(x) − g(y) contains a negative throughput utility term and a
positive term that is quadratic in the power penalties. Such a quadratic
cost on power expenditure might be defined to provide a measure of
“energy fairness” among the different users, so that the resulting aver-
age power costs are balanced more evenly across users.

It can be shown that Assumption 1 holds for this example, and
that Assumption 2 holds whenever the capacity region ΛQ contains a
positive vector (ε, . . . , ε) [116]. If C(0,S(t)) = 0 for all S(t) (so that zero
power yields zero transmission rate), then Assumption 3 trivially holds
by assigning R(t) = 0, P (t) = 0, (µ(c)

ab (t)) = (0) for all t, so that (6.3)
holds, and

q(E{x(t)}) = q(0) = 0 < Q = (0.1, . . . ,0.1),
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and hence Assumption 3 is satisfied for δ1 = 0.1. Further, choosing
α = Q, γ = 0, and choosing positive δ3, δ4 values such that there exists
an S-only algorithm to support a throughput vector (δ4, . . . , δ4) sub-
ject to the reduced average power constraint Q − δ31x ensures that
Assumption 4 is satisfied.

6.2 Algorithm design

Here we specify a dynamic control algorithm that does not require
knowledge of traffic statistics or topology state probabilities, yet meets
all network constraints while yielding a total network cost that is arbi-
trarily close to the minimum cost c∗ = f∗ − g∗, with a corresponding
trade-off in average end-to-end network delay. To motivate the control
algorithm, note that the optimization problem (6.1) is equivalent to
the following modified problem that introduces new variables α and γ:

Minimize: f(α) − g(γ)

Subject to: 1) q(α) ≤ Q, h(γ) ≥ H,

2) x ≤ α, y ≥ γ,

3) Network Stability.

As in Section 5, we have introduced a new vector α to decouple
the penalty variables x from the cost functions f(·) and q(·), and have
similarly introduced a new vector γ to decouple the rewards from the
utility functions. The decoupling vector α is not necessary in the special
case when cost functions f(·) and q(·) are both linear.1 Likewise, the
vector γ is not necessary when h(·) and g(·) are both linear. However,
these extra vectors are important for the treatment of general (poten-
tially non-linear) convex cost functions and concave utility functions.
Let α(t) and γ(t) represent a process of these new vector variables, to
be chosen as control parameters on each timeslot. To ensure that the
first set of inequality constraints in the above problem are satisfied,

1 Using decoupling vectors α in the case of linear costs cannot hurt, but linearity can be
exploited to design a somewhat simpler algorithm (see Section 6.3).
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we define virtual cost queues Dq(t), Dh(t), with update equations as
follows:

Dq(t + 1) = max[Dq(t) − Q,0] + q(α(t)), (6.5)

Dh(t + 1) = max[Dh(t) − h(γ(t)),0] + H. (6.6)

Likewise, to ensure the second set of inequality constraints are satis-
fied, we define virtual queues Zx(t) and Zy(t), which are generalized
versions of the flow state queues developed in the previous section, and
have update equations:

Zx(t + 1) = max[Zx(t) − α(t),0] + x(t), (6.7)

Zy(t + 1) = max[Zy(t) − y(t),0] + γ(t). (6.8)

Note that the Dq(t) variables can be viewed as backlogs in a virtual
queue with input process q(α(t)) and constant service rate Q. Thus,
if the Dq(t) process is strongly stable then the time average expected
arrival rate is less than or equal to Q (ensuring the inequality constraint
Q ≥ q(α) ≥ q(α)). Similarly, stabilizing the other queues ensures the
other inequality constraints are satisfied. This technique of transform-
ing stochastic inequality constraints into queueing stability problems
generalizes the virtual power queue technique introduced in [116] for
stabilizing wireless networks subject to average power constraints.

The goal of the network controller is to minimize f(α) − g(γ) while
stabilizing all actual and virtual queues in the network. To this end,
let Θ(t) = [U(t),Dq(t),Dh(t),Zx(t),Zy(t)] represent the combined
network state vector, and define the following quadratic Lyapunov
function:

L(Θ) =
1
2

∑
n,c

(U (c)
n )2 +

Jq∑
i=1

D2
i,q +

Jh∑
j=1

D2
j,h

+
Mx∑

m=1

Z2
m,x +

My∑
l=1

Z2
l,y

 , (6.9)

where Di,q,Dj,h represent the i and j entries of vectors Dq and Dh,
respectively, and Zm,x,Zl,y represent the m and l entries of vectors Zx
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and Zy, respectively. Define the one-step Lyapunov drift ∆(Θ(t)) as
follows:

∆(Θ(t)) �= E{L(Θ(t + 1)) − L(Θ(t)) |Θ(t)} .

Motivated by the Lyapunov Optimization Theorem (Theorem 5.4 of
Section 5), we proceed by designing a controller that, every timeslot,
minimizes a bound on the following metric:

Minimize: ∆(Θ(t)) + V E{f(α(t)) − g(γ(t)) |Θ(t)} , (6.10)

where V > 0 is a control parameter that affects a performance-delay
trade-off.

6.2.1 The generalized CLC algorithm (GCLC)

An expression for the drift metric (6.10) can be computed using the
dynamic queueing laws (5.3), (6.5)–(6.8) in the same manner as in
previous sections. Below we state the result, omitting the details for
brevity:

∆(Θ(t)) + V E{f(α(t)) − g(γ(t)) |Θ(t)}

≤ B −
∑
n,c

U (c)
n (t)E

{∑
b

µ
(c)
nb (t) −

∑
a

µ(c)
an(t) − R(c)

n (t)

∣∣∣∣∣Θ(t)

}

−
Jq∑
i=1

Di,q(t) [Qi − E{qi(α(t)) |Θ(t)}]

−
Jh∑
j=1

Dj,h(t) [E{hj(γ(t)) |Θ(t)} − Hj ]

−
Mx∑

m=1

Zm,x(t)E{αm(t) − xm(t) |Θ(t)}

−
My∑
l=1

Zl,y(t)E{yl(t) − γl(t) |Θ(t)}

+ V E{f(α(t)) − g(γ(t)) |Θ(t)} , (6.11)

where B is a finite and positive constant. Every timeslot, the control
decision variables are chosen to minimize the right hand side of the
above inequality.
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In order to express the algorithm as a decoupled set of flow control
decisions and routing/resource allocation decisions, we assume the fol-
lowing separability criteria:

• The penalty vector x(t) depends only on the routing and
resource allocation variables I(t) and µ

(c)
ab (t) (and not on the

flow control variables).
• The reward vector y(t) depends only on the flow control vari-

ables R
(c)
n (t) (and not on the resource allocation and routing

variables).

The above separability criteria leads to the following dynamic con-
trol algorithm.

Generalized Cross-Layer Control Algorithm (GCLC):
Flow Control: The flow controllers for each active input (n,c)

observe the virtual and actual queue backlogs, and variables R
(c)
n (t)

are chosen to solve the following optimization problem:

Minimize:
∑
n,c

U (c)
n (t)R(c)

n (t) −
My∑
l=1

yl(t)Zl,y(t),

Subject to: 0 ≤ R(c)
n (t) ≤ min[A(c)

n (t) + L(c)
n (t), R̂(c)

n ],

The values γl(t) are then computed as follows:

Minimize: − V g(γ) +
My∑
l=1

γlZl,y(t) −
Jh∑
j=1

Dj,h(t)hj(γ),

Subject to: 0 ≤ γl ≤ Y max
l for all l ∈ {1, . . . ,My}.

The virtual queues Zy(t) and Dh(t) are then updated according to
(6.8) and (6.6 ), using the γ(t) values computed above, and using
the y(t) rewards associated with the flow control decisions computed
above.

Routing/Resource Allocation: The topology state S(t) and queue
backlogs are observed, and the control input I(t) ∈ IS(t) and routing
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variables µ
(c)
ab (t) are chosen according to the following optimization:

Minimize: −
∑
n,b,c

W
(c)
nb (t)µ(c)

nb (t) +
Mx∑

m=1

Zm,x(t)xm(t),

Subject to:
∑

c

µ
(c)
nb (t) ≤ Cnb(I(t),S(t)) for all (n,b),

I ∈ IS(t), µ
(c)
nb (t) = 0 if (n,b) /∈ Lc,

where:

W
(c)
nb (t) �= max

[
U (c)

n (t) − U
(c)
b (t),0

]
.

Each link (n,b) then transmits µ
(c)
nb (t) units of commodity c data (using

idle fill if necessary), provided that W
(c)
nb (t) > 0 and (n,b) ∈ Lc.

The α(t) values are then computed as solutions of the following
optimization problem:

Minimize: V f(α) −
Mx∑

m=1

αmZm,x(t) +
Jq∑
i=1

Di,q(t)qi(α),

Subject to: 0 ≤ αm ≤ Xmax
m for all m ∈ {1, . . . ,Mx}.

The virtual queues Dq(t) and Zx(t) are then updated according to
(6.5) and (6.7).

Assuming the flow control rewards yl(t) are associated with distinct
nodes, and that the utility functions g(y) and h(y) are sums of indi-
vidual utilities for each node, it is not difficult to show that the flow
control optimization can be distributed node by node, using only the
local (virtual and actual) queue backlog information for that node. The
routing algorithm can be further decoupled from resource allocation if
penalties depend only on I(t) (and not on the variables µ

(c)
nb (t) if I(t)

is given), in which case an optimal commodity c∗
nb can be found as in

previous sections, and the resulting resource allocation problem reduces
to the backpressure algorithm of maximizing:∑

nb

W ∗
nb(t)Cnb(I(t),S(t)) −

Mx∑
m=1

Zm,x(t)xm(t). (6.12)
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The algorithm for choosing α(t) can be distributed node-by-node
provided that cost functions are separable. The resource allocation
algorithm for choosing I(t) to maximize (6.12) is the most complex
part of the algorithm, but is easily distributed in the case when trans-
mission penalty functions are separable and each node transmits over
orthogonal frequency bands, or is approximated via methods discussed
in previous sections.

6.2.2 Algorithm performance

Let Assumptions 1-4 from Section 6.1.2 hold. It is important to note
that Assumption 1 is valid if we assume either of the following two
cases:

(1) The flow control rewards y(t) are linear functions of the deci-
sion variables R(t) (the utilities h(·) and g(·) can still be non-
linear). The reservoir buffer size is arbitrary (infinite, finite,
or zero).

(2) The flow control rewards y(t) are arbitrary functions of the
decision variables R(t). In this case, the reservoir buffer size
possibly affects optimality, but Assumption 1 holds if we
assume zero reservoir space (so that all admission/rejection
decisions are made immediately upon arrival) or assume infi-
nite and always full reservoir space.

Theorem 6.2. (Algorithm Performance) Under Assumptions 1-4, the
GCLC algorithm stabilizes all actual and virtual queues in the network.
Furthermore, there exists a finite constant B (which can be explicitly
found by computing the Lyapunov drift of the system), such that:

limsup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E

{
U (c)

n (τ)
}

≤ B + V (fmax + gmax)
εmax

,

limsup
t→∞

q(x(t)) ≤ Q,

liminf
t→∞ h(y(t)) ≥ H,
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limsup
t→∞

[f(x(t)) − g(y(t))] ≤ f∗ − g∗ + B/V,

where xm(t)�=1
t

∑t−1
τ=0 E{xm(τ)} and yl(t)

�=1
t

∑t−1
τ=0 E{yl(τ)}, and where

fmax and gmax are constants such that f(x(t)) ≤ fmax and g(y(t)) ≤
gmax for all t.

The proof of the above theorem uses techniques similar to those
presented in the previous section and developed in [108, 115, 116], and
is omitted for brevity. It is important to note that the proof works for
any system that satisfies Assumptions 1-4 (for a given, potentially sub-
optimal constant c∗ = f∗ − g∗ on the right hand side of (6.4)), provided
that the virtual queues are maintained as in (6.5)–(6.8) and that control
decision variables are chosen every timeslot to minimize the right hand
side of (6.11).

6.3 Energy optimal networking examples

Here we apply the general framework to several important problems in
the area of energy-aware wireless networking.

6.3.1 Max throughput with average power constraints

Consider a multi-user wireless downlink that transmits to L users over
L distinct channels. Let S(t) describe the collective channel state pro-
cess, and let C(P (t),S(t)) = (C1(P (t),S(t)), . . . ,CL(P (t),S(t))) repre-
sent the link transmission rate function, where P (t) = (P1(t), . . . ,PL(t))
is the vector of power allocations for each link. Power is constrained
so that

∑L
i=1 Pi(t) ≤ Pmax for all t. The goal is to maximize through-

put subject to an average power constraint Pav (where Pav < Pmax).
Arrival processes Ai(t) satisfy Ai(t) ≤ R̂ for all i. Assume there are
no transport layer storage reservoirs, so that all arriving data is either
admitted or dropped. Let Ri(t) represent the flow control decision for
queue i at time t, and let Ui(t) represent the current backlog in queue i.
In this case, we have:

• x(t) = (P1(t), . . . ,PL(t)), y(t) = (R1(t), . . . ,RL(t))
• q(P ) =

∑L
i=1 Pi, Q = Pav ; h(R) = H = 0

• f(P ) = 0, g(R) =
∑L

i=1 Ri
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Because h(R) = 0, there is no utility constraint and hence we do
not use any Dh(t) queues. A further simplification results by noticing
that the cost functions q(P ),f(P ) are linear. Hence, we can avoid the
virtual queues Zx(t) and simply use α(t) = x(t) = P (t) everywhere
(including the virtual queue definitions, and in the right hand side of
the drift bound (6.11)), without loss of optimality. Likewise, the utility
function g(R) is linear, and hence we can avoid the virtual queues Zy(t)
and simply use γ(t) = y(t) = R(t).

For the average power constraint, we define a virtual power queue
Dq(t) (we shall use D(t) for simplicity here) with a queueing law (6.5)
that reduces to the following by setting α(t) = P (t):

D(t + 1) = max[D(t) − Pav,0] +
L∑

i=1

Pi(t). (6.13)

with initial condition D(0) = 0. In this context, D(t) has the intuitive
interpretation of being the accumulated excess power expenditure over
and above the average power constraint. With these simplifications,
minimizing the right hand side of (6.11) leads to the following Energy
Constrained Control Algorithm (ECCA) from [116]:

Energy Constrained Control Algorithm (ECCA) [116]:
Flow Control: Minimize

∑L
i=1[Ui(t) − V ]Ri(t) such that 0 ≤

Ri(t) ≤ Ai(t) for all i. That is, every timeslot and for each queue i,
we allow the full set of new arrivals Ai(t) into the queue whenever
Ui(t) ≤ V . Else, we drop all new arrivals for queue i entering on that
timeslot.

Power Allocation: Every timeslot, observe the current topology
state S(t) and the current queue backlogs U(t) and D(t), and allocate
power P (t) = (P1(t), . . . ,PL(t)) according to the following optimization:

Maximize:
L∑

i=1

[Ui(t)Ci(P ,S(t)) − D(t)Pi(t)] (6.14)

Subject to:
L∑

i=1

Pi(t) ≤ Pmax.

The virtual power queue D(t) is then updated via (6.13).
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From the nature of the flow control algorithm, we have that Ui(t) ≤
V + R̂ for all i and all t, and hence the above algorithm trivially stabi-
lizes all actual queues. Using this fact, it is not difficult to show that the
power allocation algorithm (6.14) allocates zero power on any timeslot
in which the virtual queue D(t) is sufficiently large. Specifically, assume
there exists a constant β > 0 such that for any link i, any topology state
S(t), and any power vector P such that

∑
i Pi ≤ Pmax, we have:

Ci(P ,S(t)) ≤ Ci(P [i],S(t)) + βPi,

where P = (P1, . . . ,PL), and P [i] is equal to P with the exception
that the ith entry is set to zero. It follows that if D(t) > Ui(t)β, then
Pi(t) = 0. This leads to the following theorem.

Theorem 6.3. (ECCA Performance [116]) For any topology state
process S(t) and any input process A(t) that satisfies Ai(t) ≤ R̂ for all
t, the ECCA algorithm ensures:

Ui(t) ≤ Umax
�= V + R̂ for all i and all t,

D(t) ≤ Dmax
�= βV + βR̂ + Pmax for all t.

Consequently, the energy expended over any interval of T slots is never
more than PavT + Dmax (and so the average power constraint clearly
holds). Further, if the arrival vector A(t) and topology state S(t) is
i.i.d. over timeslots, then achieved throughput satisfies:

liminf
t→∞

1
t

t−1∑
τ=0

L∑
i=1

E{Ri(τ)} ≥
∑

i

r∗
i − B/V,

where
∑

i r
∗
i is the optimal throughput over all possible policies, and

B is a constant that can be computed from the Lyapunov drift of the
system [116].

The maximum throughput objective can be replaced by a con-
cave fairness objective, such as g(R) =

∑
i log(1 + Ri), in which case

the flow control portion of the ECCA algorithm can be modified
by using auxiliary variables (γ1(t), . . . ,γL(t)) and flow state queues
Zy(t) = (Z1,y(t), . . . ,ZL,y(t)) according to the GCLC algorithm.
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6.3.2 Minimizing power expenditure in mobile networks

Consider a mobile wireless network with topology state S(t) and link
transmission rate function C(P (t),S(t)) = (Cab(P (t),S(t))), where
P (t) = (Pab(t)) is the matrix of power allocations over each link. Let P
represent the set of feasible power allocation vectors, so that P (t) ∈ P
for all t. Suppose that, without average power constraints on each node,
the network capacity region is given by the set Λ.

Suppose that there is no flow control, so that all arriving data is
admitted immediately into the network layer (so that A

(c)
n (t) = R

(c)
n (t)

for all t). Assume that the resulting traffic matrix (λ(c)
n ) is in the relative

interior of Λ, and define εmax to be the largest scalar such that (λ(c)
n +

εmax1(c)
n ) ∈ Λ (where 1(c)

n is an indicator function that takes the value
“1” when (n,c) ∈ D, and “0” else). The goal is to design a joint strategy
for resource allocation, scheduling, and routing, so that the network is
stable and total average power expenditure is minimized.

This objective can be stated within our general framework by defin-
ing penalties to be the power expended on each link: xab(t) = Pab(t).
There are no rewards, and there is only a single cost function f(P ) =∑

ab Pab. Because this function is linear and there are no additional
cost constraints, we do not require any virtual queues for this system.
Setting the virtual queue backlogs to zero, assigning y(t) = γ(t) = 0,
and letting α(t) = P (t) in (6.11) leads to the following Energy Efficient
Control Algorithm (EECA) from [116]:

Multi-hop EECA for Minimizing Average Power [116]: Every
timeslot, the current U(t) backlog and the current topology state S(t)
is observed. Then:

(1) For all links (a,b), find the commodity c∗
ab(t) such that:

c∗
ab(t) � arg max

c∈{1,...,K}

{
U (c)

a (t) − U
(c)
b (t)

}
,

and define:

W ∗
ab(t) � max[U (c∗

ab)
a (t) − U

(c∗
ab)

b (t),0].

(2) Power Allocation: Choose P (t) ∈ P to maximize:∑
ab

[W ∗
ab(t)Cab(P ,S(t)) − V Pab(t)] .
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(3) Routing: Over each link (a,b) such that W ∗
ab > 0, transmit

Cab(P (t),S(t)) units of commodity c∗
ab(t) data (using idle fill

if necessary).

The above algorithm stabilizes the network whenever εmax > 0, and

yields a total average congestion of
∑

n,c U
(c)
n ≤ (B + V Pmax)/εmax and

ensures total average power expenditure is within B/V of the minimum
power required for stability. If power reception costs are also significant,
the algorithm can easily be modified by augmenting the penalty func-
tions to account for power costs expended by each receiver.

6.3.2.1 Simulation of a 2-queue downlink under EECA

Consider the special case of a 2-queue downlink with time varying chan-
nels and “Good,” “Medium,” and “Bad” states on each of the two
links. At most one link can be activated for transmission every slot,
and exactly 1 unit of power is used on each activation. Every timeslot
the network controller must choose to activate either link 1, link 2, or
to remain idle (in order to save power). A single packet can be trans-
mitted when a link is in the “Bad” state, two packets can be trans-
mitted in the “Medium” state, and three can be transmitted in the
“Good” state. An example set of arrivals over the course of 9 timeslots
is given in Fig. 6.1, where the choices associated with the MWM policy
described in Section 4.1 are shown, along with a more energy efficient
set of choices, both of which leave the system empty on timeslot t = 9.

The EECA algorithm in this case reduces to serving the queue with
the largest value of Ui(t)µi(t) − V P (where P = 1 unit) whenever this
value is positive, and remaining idle otherwise. In our simulation, pack-
ets arrived according to Poisson processes with rates λ1 = 8/9,λ2 =
5/9, which are the same as the empirical rates obtained by averaging
over the first 9 timeslots of the example in Fig. 6.1. Channel states arise
as i.i.d. vectors (S1(t),S2(t)) every slot. The probability of each vector
state is matched to the empirical occurrence frequency in the example,
so that Pr[(G,M)] = 3/9,P r[(M,B)] = 2/9,P r[(M,M)] = 1/9, etc.

We simulated the EECA algorithm for 20 different values of the
control parameter V , ranging from 0 to 104. Each simulation was run
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t 0 1 2 3 4 5 6 7 8
Arrivals A1(t) 3 0 3 0 0 1 0 1 0

A2(t) 2 0 1 0 1 1 0 0 0
Channels S1(t) G G M M G G M M G

S2(t) M M B M B M B G B

MWM 0 3 0 3 1 0 1 1 2
Policy U2(t) 0 2 2 2 2 3 2 1 0

Better U1(t) 0 3 3 6 6 3 1 1 2
Choices U2(t) 0 2 2 3 1 2 3 3 0

Fig. 6.1 An example set of arrivals, channel conditions, and queue backlogs for a two queue
wireless downlink under two different scheduling algorithms, illustrating the power efficiency
gains enabled by having full knowledge of future arrivals and channel states.

Fig. 6.2 Average power versus average backlog for a two queue downlink under the EECA
algorithm (from [116]).

for 10 million timeslots. In Fig. 6.2 the resulting average power is
plotted against the time average backlog. The corresponding upper
bound derived in [116] is also shown in the figure. We find that average
power is equal to 0.898 Watts and average sum backlog is 2.50 pack-
ets when V = 0 (corresponding to the original MWM policy). Average
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power decreases to its minimum value of 0.518 Watts as the control
parameter V is increased, with a corresponding tradeoff in average
delay. As a point of reference, we note that at V = 50, the average
power is 0.53 Watts and the average sum backlog in the system is 21.0
packets.

6.3.2.2 Minimum energy scheduling for mobile networks

Here we consider an ad-hoc mobile network with 28 users and a cell
structure arranged as a 4 × 4 grid, as shown in Fig. 6.3. For simplicity,
we assume there can be at most one transmission per cell per times-
lot, and that all transmissions use full power of 1 Watt. We assume
transmission rates are adaptive, and that 3 packets can be transferred
if the receiver is in the same cell as the transmitter, while only 1 packet
can be transferred if the receiver is in one of the adjacent cells to the
North, South, East, or West. Data arrives to each node according to a
Bernoulli arrival process with rate λ = 0.5 packets/slot (so that a single
packet arrives with probability 0.5, else no packet arrives). We assume
source-destination pairs are given by the grouping 1 ↔ 2, 3 ↔ 4, . . . ,
27 ↔ 28, so that node 1 packets are destined for node 2 and node 2

Fig. 6.3 An ad-hoc mobile network with adaptive transmission rates, and the resulting per
node average power expenditure versus average node congestion for V between 0 and 200.
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packets are destined for node 1, node 3 packets are destined for node
4 and node 4 packets are destined for node 3, etc.

We simulate the multi-hop EECA algorithm for both a Markovian
random walk model and an i.i.d. mobility model, with the objective of
minimizing total power expenditure. In the Markovian mobility model,
every timeslot nodes independently move to a neighboring cell either
to the North, South, East, or West, with equal probability. In the case
when a node on the edge of the network attempts to move in an infea-
sible direction, it simply stays in its current cell. In the i.i.d. mobility
model, nodes randomly choose new cell locations every timeslot inde-
pendently and uniformly over the set of all 16 cells. It is not difficult
to show that both mobility models have the same steady state node
location distribution. Hence, the network capacity region and the min-
imum average power required for stability are exactly the same for both
mobility models [115, 116]. In this case, the minimum average power
for stability under the given traffic load can be exactly computed, and
is equal to 0.303 Watts [160].

Simulations were conducted using control parameters V in the range
from 0 to 200, and the results are given in Fig. 6.3. In the figure,
each data point represents an independent simulation for a particular
value of V over the course of 4 million timeslots. The resulting per-
node average power is plotted against the resulting per-node average
queue congestion. From the figure, it is clear that under both mobility
models, average power expenditure quickly converges to the minimum
power level as the control parameter V is increased (and hence, delay
is increased). The average delay under Markovian mobility is slightly
larger than the delay under i.i.d. mobility. As an example set of data
points, we note that for the Markovian mobility model at V = 0 (cor-
responding to the Dynamic Backpressure strategy of Section 4), the
per-node average backlog is 89.2 packets (about 3.3 packets on average
in each of the 27 internal queues), and per-node average power expen-
diture is 0.477 Watts. At V = 40, the per-node average backlog is 263.6
packets, and per-node average power expenditure is 0.305 Watts. For
values of V beyond 50, average power expenditure differs from the opti-
mal value of 0.303 only in the fourth or fifth significant digits, while
average congestion continues to increase.
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6.3.3 Notes

• Related work by Liu, Chong, and Shroff in [95] considers
maximizing a time average utility function for an infinitely
backlogged downlink in the case when exactly one user must
transmit on each and every timeslot. The technique can be
used to address the minimum average power problem if all
transmissions consist of single packets and “utility” is mea-
sured by a negative power cost associated with transmit-
ting a packet in the current channel state. In this case,
the algorithm of [95] chooses to transmit over the link i

that maximizes v∗
i − Pi, where {v∗

i }L
i=1 are pre-computed

indices determined by the system constraints and the chan-
nel state probabilities. The EECA algorithm applied to this
setting would choose the link i that maximizes the index
Ui(t)/V − Pi, so that the pre-computed index v∗

i is replaced
by a time varying index Ui(t)/V that does not require any
pre-computation or prior knowledge of channel probabilities.
Note also that performance can be improved if the system is
allowed to be idle during some timeslots, in which case EECA
would enter idle mode whenever Ui(t)/V − Pi is non-positive
for all links i.

• The EECA and ECCA algorithms presented in this section
generalize several related results. Work in [155] describes the
information theoretic capacity region for multiple access fad-
ing channels, and a dynamic strategy is given there for the
case when all users are infinitely backlogged and all channel
probabilities are a-priori known. This can be viewed as a spe-
cial case of our framework, where rate-power curves C(P ,S)
are determined by an optimal receiver algorithm that uses
successive noise cancellation every slot. Broadcast capacities
for power limited downlinks are developed in [64, 96] assum-
ing infinite backlog and known channel probabilities, and
a capacity achieving queueing strategy with average energy
constraints is developed in [168] under the assumption that
channel probabilities are known.
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• Average power expenditure in an ad-hoc network with no
channel or topology state variation is considered in [20, 36,
77]. In [36], a periodic scheduling framework is developed for
minimizing energy expenditure subject to fixed time aver-
age rate requirements on each link. The solution is based
on an off-line computation of an optimization problem. The
work in [77] considers complexity issues for a similar problem,
and the work in [20] treats a network with simpler interfer-
ence constraints and provides an algorithm for computing
schedules that are within a constant factor of the minimum
energy solution. The EECA algorithm provides an on-line
solution strategy for all of these problems, which can also be
used as an off-line computation method for the scenarios of
[20, 36, 77].

• The [O(1/V ),O(V )] energy-delay tradeoff achieved by the
EECA algorithm is not the optimal tradeoff. Work by Berry
and Gallager in [15] considers the energy-delay tradeoff for
a single wireless link with a random arrival process, a fading
channel, and a concave rate-power curve. The fundamen-
tal tradeoff law is shown to have a square-root structure
with energy-delay parameters [O(1/V ),O(

√
V )]. This result

is recently extended to multi-user networks in [119]. An
improved tradeoff [O(1/V ),O(log(V ))] is achievable in the
exceptional cases when the system has a piecewise linear
structure [119] or when a small fraction of packets can be
dropped [117]. Related notions of delay limited capacities are
developed in [154] for the case when tolerable delay is no more
than one timeslot.

• Energy and delay issues for static wireless links are consid-
ered in [30, 161, 170], and a problem with a static link but
stochastic arrivals is treated using filter theory in [73]. Similar
problems of minimizing energy subject to delay constraints
or minimizing delay subject to energy constraints are treated
for single link satellite and wireless systems in [49, 50, 56, 170]
using stochastic differential equations, dynamic program-
ming, and Markov decision theory, and multi-link systems
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are considered in [141]. Related problems for wireless sensor
networks are considered in [37, 169], and delay efficient sleep
scheduling is considered in [99]. Asymptotic energy results as
network size is scaled to infinity are considered in [89].

6.4 A related algorithm

In this section we describe another approach for the solution to the
general optimization problem (6.1), proposed by Stolyar [136], under
modeling assumptions similar to those described above. We describe
next the assumptions in [136]. For consistency we employ the notation
used in the current text.

(1) The network model and the set of penalties xm, m ∈ M are
the same as those described in Section 6.1.1.

(2) The network topology state S(t) constitutes an irreducible
finite Markov Chain with state space S.

(3) For each state s ∈ S, the set of available controls Is is finite.
(4) When S (t) = s and a control I ∈ Is is chosen, the following

occurs.

(a) A penalty xm(I) is generated for all m ∈ M.

(b) An amount Rn(I) of exogenous traffic is admitted to
enter node i ∈ N .

(c) Each node i ∈ N selects up to µi(I) units of traffic
from its queue (if there are fewer units than µi(I),
the whole queue is emptied). Each of these units is
routed to the rest of the nodes in the network with
probabilities pij(I), j ∈ N .

(d) When a traffic unit reaches its destination, it is
removed from the network.

The penalties xm(I), the admitted traffic Rn(I), and the traffic
transmitted by each node µi(I) may also be random variables that
depend on the control chosen, but are independent of anything else.
The routing probabilities pik (I) may depend on the control but are also
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independent of anything else. Multicommodity flows can be taken care
of by considering multiple queues at each node, one for each commodity
along the lines described in earlier sections.

The Markovian assumption on the S(t) topology state is similar in
both our general framework and the framework of [136]. The assump-
tion that the available control sets Is (s ∈ S) are finite does not include
the case where controls may take continuous values, as for example,
when the control refers to transmission power of a node which may be
continuously varied. The assumption that Rn(I) depends only on the
control chosen excludes the case of using a reservoir for holding traf-
fic that has not been admitted to the network. These assumptions are
not very restrictive and they can probably be relaxed without affecting
the optimality of the proposed algorithm to be described below. The
assumption imposed on routing, i.e., the use of routing probabilities,
may be more restrictive as it does not seem easy to include in a sim-
ple manner the practical case where a deterministic part of the traffic
µi(I) selected by node i is routed to node j, rather than a random
amount with average µij (I) = µi(I)pij(I). However in several specific
problems, if one formally uses the average amount as the amounts actu-
ally routed, the algorithm seems to work. Therefore, it seems that this
assumption is mainly needed for the proofs in [136] and may also be
relaxed without affecting the optimality of the algorithm. Further, in
the special case when each node is restricted to sending over a single
outgoing link, the probabilistic routing can be designed to choose the
desired link with probability 1.

The system is slotted. The proposed algorithm performs the follow-
ing at the beginning of each slot.
(1) The weighted averages of penalties are measured,

xm(t) = (1 − β)xm(t − 1) + βxm(I(t − 1)), m ∈ M, (6.15)

where 0 < β < 1 is a typically small number. The smaller β is, the
closer the performance of the algorithm approaches the optimum, at
the expense of less adaptivity of the algorithm in case of parameter
changes.
(2) The queue sizes, Un(t), n ∈ N are measured and the network state
S (t) is observed. The control to be employed is obtained as the solution
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of the following optimization problem.

Max: β
∑
i,j

(Ui(t) − Uj (t))µij (I) − β
∑

i

Ui (t)Rn (I) (6.16)

−
∑

m∈M
(ϑf (xm(t))/ϑxm(t))xm(I),

subject to: I ∈ IS(t).

Here we are assuming that the algorithm transmits a deterministic
amount of bits µij(I) over each link (i, j), rather than the probabilistic
amount formally used in the framework of [136].

There are similarities as well as differences between this algorithm
and the algorithm presented in Section 6.2.1. These are best explained
by an example which we discuss below.

Example 6.1. Consider a wireless network with L transmission links
denoted by a link set L. The transmission rate for each link l depends
on a power allocation vector according to the function Cl(P (t),S(t)).
Suppose that power must satisfy P (t) ∈ P for all t, where P is a finite
collection of acceptable power allocation vectors. We consider single-
hop transmissions where exogenous arrivals Al(t) arrive to the network
at the source node of link l and must be transmitted over link l. The
exogenous arrival vectors (Al (t))l∈L are i.i.d. over timeslots, and we
assume that Al(t) ≤ Amax. At each timeslot, Rl (t) bits from this exoge-
nous traffic may enter the network, where Rl(t) ≤ Al (t). Traffic that
does not enter the network is dropped, i.e., we assume zero reservoir
space. The arrival rate vector may take arbitrary values, and in partic-
ular may lie outside the capacity region of the system. The goal is to
design a joint flow control and resource allocation algorithm that stabi-
lizes the network and yields an optimal throughput utility

∑
l∈L gl(rl),

where gl(r) denotes a concave utility function of the throughput over
link l, and rl represents the long term average admitted rate into link l

(assuming for now such time averages exist). In the following we will
refer to the GCLC algorithm presented in Section 6.2.1 as ALG1, and
to the Algorithm presented in [136] as ALG2. According to the descrip-
tion in Section 6.2.1, ALG1 consist of the following operations.
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Description of ALG1: In this example, the GCLC algorithm uses
rewards y(t) = R(t) (where 0 ≤ Rl(t) ≤ Amax), with utility function
g(R) =

∑
l∈L gl(Rl). There are no utility constraints, cost constraints,

or penalties, and so queues Dh(t), Dq(t), Zx(t) are not required. As the
utility function g(R) is non-linear and concave, the auxiliary variables
and flow state queues γ(t) and Zy(t) are used. For notational simplicity,
we drop the subscript on queue Zy(t) and use instead Z(t). The initial
condition is Z(0) = 0, and the queue update equation (6.8) in this
example is given by:

Z(t + 1) = max[Z(t) − R(t),0] + γ(t) (6.17)

This algorithm thus reduces to the CLC2b algorithm of Section 5.
In particular, every slot the flow control variables Rl(t) are chosen
such that Rl(t) = Al(t) whenever Ul(t) ≤ Zl(t), and Rl(t) = 0 else.
The values γl(t) are then computed as the solution to the following
optimization:

Minimize: − V gl(γl) + γlZl(t) (6.18)

Subject to: 0 ≤ γl ≤ Amax.

The virtual queue Z(t) is then updated according to (6.17). The
resource allocation strategy is then the same as the Dynamic Back-
pressure strategy of Section 4.3, where P (t) ∈ P is chosen to maximize∑

l∈L Ul(t)Cl(P (t),S(t)).
Description of ALG2: To bring the problem into a cost-

minimization form we define penalty variables xl (t) = Amax − Rl (t)
and consider the equivalent problem of minimizing∑

l∈L
fl (xl) , (6.19)

where

fl (x) = gl(Amax) − gl(Amax − x). (6.20)

Hence the “penalties” are now (xl(t))l∈L . Since xl (t) ≤ Amax we may
set Xmax

l = Amax, l ∈ L. With the zero-reservoir assumption, and the
condition that Al (t) takes finite values, we may consider that the vector
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(Al(t))l∈L is part of network state S (t) and that Rl(t) is part of the
exercised control Îŝ(t) (interpreted as a control vector augmented with
the flow control choice and with a state that includes the new arrivals).
The ALG2 then keeps track of the weighted averages:

xl(t + 1) = (1 − β)xl(t) + β (Amax − Rl (t)) , l ∈ L, (6.21)

Taking into account the form of the function (6.19), the optimization
problem (6.16) for determining the optimal control Îŝ(t) becomes in
this case:

Max: β
∑
l∈L

Ul(t)Cl(P (t),S(t)) − β
∑
l∈L

Ul (t)rl

−
∑
l∈L

f ′
l (xl(t))(Amax − rl) ,

0 ≤ Rl ≤ Al (t) , l ∈ L, P (t) ∈ P, (6.22)

where f ′
l (x) denotes the derivative of fl (x). Observing the structure of

this problem it can be seen that it is decomposable into the following
subproblems.

Flow Control: The accepted traffic on link l, Rl(t), is given by the
solution to the following optimization problem,

Minimize: β
∑
l∈L

Ul(t)rl −
∑
l∈L

f ′
l (xl(t))rl,

0 ≤ rl ≤ Al(t), l ∈ L.

The solution to this problem is simply to accept all traffic Al (t) if
Ul (t) < f ′

l (xl(t))/β and reject it otherwise. Using the computed values
of (Rl (t))l∈L, the auxiliary queues are updated according to (6.21).

Resource Allocation: Same as in ALG1.
The main difference between the two algorithms is that ALG1 uses

the auxiliary queue updates (6.17), while ALG2 uses the weighted aver-
ages updates (6.21). It is remarkable that both algorithms introduce
additional state variables to solve the non-linear optimization. The
updates performed by either algorithm have an effect on the adap-
tivity of the system when channel state or arrival statistics change. It
would be interesting to assess the delay properties of both algorithms,
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and the adaptability capabilities of the two algorithms when statistical
parameters change. The ALG2 requires utility functions to have com-
putable derivatives in order to implement the flow control algorithm.
This is not a major assumption, as most utilities of interest are simple
differentiable functions. The ALG1 does not require the existence of a
derivative, but requires the solution of problem (6.18) to implement the
flow control. In this case, the problem is a simple concave maximization
over a single variable, and so the solution is either one of the two end-
points, or a local maximum in the interior. In the case when a derivative
exists, any such local maximum would satisfy g′

l(γl) = Zl(t)/V , which
can be solved in closed form if the inverse of the derivative is known.
In both cases, the flow control algorithms are quite simple. The main
computational complexity is in the solution to the Link Power Control
problem in an efficient and preferably distributed manner.



7
Final Remarks

The cross-layer resource allocation model presented in this text was
motivated by wireless communication networks. Nevertheless it has
within its scope a number of other application areas and it can be
extended in various ways. Some are outlined below.

High speed switches with input queueing is an area that attracted
a lot of attention [40, 72, 86, 88, 102, 103]. Packet scheduling in such
a switch falls within the scope of our resource allocation model. The
switch architecture imposes restrictions of a single packet transmission
per slot for each input and output port, a restriction that is captured by
the transmission conflict constraints of the resource allocation model.
The capacity region characterization as well as the optimal control
policies results apply in that case. Different applications pose different
requirements on the scheduling policy regarding tolerable complexity
and distributed versus centralized implementations. In the case of the
switch for instance, the computational burden of scheduling is severely
constrained by the time for packet transmission and the latter is shrink-
ing as the bandwidth increases. Another approach to deal with high
scheduling complexity is to resort to randomized scheduling policies
[54, 126, 150]. In these polices a randomized algorithm computes the
access schedule at each time and it updates the one used previously only

129
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if it is better. The randomized algorithm being of low computational
complexity simplifies the computational requirements, without sacri-
ficing any throughput but only with some increase of the delay. When
the network is geographically distributed, collecting state information
for the access controller might be cumbersome and might result in out-
dated information available to the controller. Recently there have been
several efforts to identify scheduling algorithms with low computational
complexity and amenable to distributed implementation. The impact
of imperfect scheduling on the throughput in cases where suboptimal
algorithms perform the scheduling is studied in [29, 45, 91] while fully
distributed scheduling policies are given as well.

Resource allocation problems in manufacturing and transportation
that have been considered recently fall within the scope of the model
we consider here as well. An extension of the back pressure policy that
is applicable in systems with random service times and non-preemptive
service is presented in [142]. The maximum pressure policy proposed in
[38, 39] follows similar principles with the adaptive back pressure policy
while it was shown to possess certain optimality properties. Other ser-
vice provisioning structures that fall within the scope of the presented
model have been considered in [9, 13, 14]. The analysis of the system in
the latter cases was done under general stationary ergodic assumptions
about the statistics.

Various load balancing and routing problems studied by the theo-
retical computer science community fall within the scope of the model
we consider here, while various policies proposed in that context rely
on the differential backlog rule for traffic forwarding. A policy similar
to adaptive back pressure policy was proposed and studied in [2, 8, 11],
in the context of adversarial queueing theory. That is, its performance
was analyzed under arrival traffic patterns that might be the worst pos-
sible within a certain family of arrival patterns, for instance all possible
arrival patterns at the output of a traffic regulator that produces traf-
fic constrained bursts. It was shown that the policy achieves maximum
throughput in that context as well.

The problem of paging a mobile user may be cast in the context
of our model and the adaptive back pressure strategy provides optimal
paging policies [6, 7].
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Multicasting can be viewed as a generalization of unicast
information transport, where the information generated at source node
sl needs to be transported to all nodes of the set of destinations Dl.
The capacity and maximum throughput results presented in the text
can be extended to the case of multicasting as is reported in [131, 132].
Information flows in multicasting are identified by the source node and
the group of receivers and typically there are several of them flow-
ing through the network (s1,D1), ..,(sL,DL). A multicast information
flow might be served by an eligible multicast tree, i.e. a directed tree
rooted at sl and including in its leaf or intermediate nodes, all nodes
of Dl. The information flows from the source to the destination nodes
through the unique paths designated by the multicast tree. In that
sense information transport in multicasting resembles more virtual cir-
cuit forwarding rather than datagram. The traffic of an information
flow might be split across all multicast trees eligible for the specific
flow that are designated to carry traffic from that flow. A vector of the
traffic loads of each information flow is feasible, if there is a way to split
the load of each information flow across the eligible trees for the flow
such that the aggregate load of the traffic of all trees results in traffic
loads for the links that do not exceed their capacities. The transport
capacity region is defined to include all feasible traffic load vectors as
above. A maximum throughput policy for the multicast case can be
obtained by a variation of the adaptive back pressure policy as follows.
Transmission priorities among the different trees crossing a certain link
are given according to the sizes of the differential backlogs, where the
differential backlog of a tree in a certain link is the difference of the
upstream node backlog minus the maximum of the backlogs at each
one of the links where the tree branches out at the downstream node.
The above rule, in combination with a load balancing rule for allocating
the traffic of an information flow to the various eligible trees that may
support it, gives a maximum throughput transmission control policy.

In the above discussion about multicasting the information of the
different flows after it enters the network remains intact until it reaches
the destinations. An alternative that promises capacity gains as well
as significant simplification of the mechanisms involved for multicast-
ing in particular, is to allow for combining of the information arriving



132 Final Remarks

at intermediate network nodes through linear or nonlinear operations.
That approach, referred to as network coding [1], has been intensely
investigated recently. It is possible to use an approach along the lines
of the adaptive back pressure control in order to achieve maximum
throughput in the case where network coding of information corres-
ponding to the same multicast session is allowed. That approach is
pursued in [62] where it is shown how the capacity region including
network coding can be achieved.
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