Processing of Nanostructured Ceramics:
Shaping, Sintering and Properties

Mehdi Mazaheri
Nov 2009

Introduction - Ceramics?
low density, low sensitivity to corrosion, high rigidity and hardness even at high temperature

Introduction (1)- Ceramics?
Toughening Mechanism in Ceramics

Crack deflection

Introduction (1)- Ceramics?
(1) Crack deflection
(2) Crack bridging
(3) Fibers pullout

(1) Crack blunting
(2) Crack bridging
Introduction (1)- Ceramics?

Grain refining

- Increasing of fracture toughness at room temperature
- High temperature mechanical properties (e.g., sliding accommodated by diffusion or interface reaction mechanisms)

\[\epsilon(\sigma, T) = A \left(\frac{\sigma}{E} \right) \left(\frac{T}{T_0} \right)^p \]

Nano-structured ceramics reinforced by nano-particles or fibers

- 3 times higher fracture toughness (Zhang et al., Nature Materials, 2003)

Interest on Nanostructured Ceramics

Functional Ceramics

Structural Ceramics

Problems

From: Nanopowders

Shaping

Sintering

To: Nanostructured

Particle porosity

Shaping?

Sintering of n-3Y.TZP
Master Sintering Curve

Non-Isothermal Sintering
(Dilatometric Study)

ρ = ρ0 [(1/T) - (1/T)]

Temperature (°C)
Density vs. (1/T)

Non-Isothermal Sintering (Dilatometric Study)
Master Sintering Curve for n-3Y.TZP

Sintering of n-3Y.TZP - Mechanical Behaviour

HARDNESS

Effect of Sintering Techniques
- Spark Plasma Sintering (SPS)
- Phase Transformation Assisted
- Pressure Assisted Sintering (HP & HIP)
- Using Additives
- Millimeter and Microwave Sintering
- Two-step Sintering (TSS)

Grain Growth Suppression
Two Step Sintering

Simple!
Physically Powerful!

<table>
<thead>
<tr>
<th>Nano Ceramics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yttria</td>
<td>Chen et al., Nature</td>
</tr>
<tr>
<td>Zinc Oxide</td>
<td>Mazaheri et al., J. Am. Ceram. Soc.</td>
</tr>
<tr>
<td>ZnO Varistors</td>
<td>Duran et al., J. Am. Ceram. Soc.</td>
</tr>
<tr>
<td>YAG</td>
<td>Chen et al., J. Am. Ceram. Soc.</td>
</tr>
<tr>
<td>Titania</td>
<td>Mazaheri et al., Scripta Mat.</td>
</tr>
</tbody>
</table>

Experimental:

1. Raw Material
2. Shaping
3. Sintering
4. Mechanical properties
5. Microstructural Observation

- SEM-TEM
- BET
- XRD
- UP, CIP, Slip casting

Conventional Sintering of n-ZnO

Sintering of n-ZnO
CS-TSS and HP

Grain Growth Suppression

Effect of Shaping Techniques

- Experimental:
 - Raw Material
 - Shaping
 - Sintering
 - Mechanical properties
 - Microstructural Observation

- Conventional Sintering of n-ZnO

1. Conventional sintering (Non-isothermal and Isothermal)
2. Two-step sintering
3. Phase transformation sintering
4. Hot pressing
5. Microwave sintering

1) Conventional sintering (Non-isothermal and Isothermal)
2) Two-step sintering
3) Phase transformation sintering
4) Hot pressing
5) Microwave sintering

Effect of Shaping Techniques

- Experimental:
 - Raw Material
 - Shaping
 - Sintering
 - Mechanical properties
 - Microstructural Observation

- Conventional Sintering of n-ZnO

1. Conventional sintering (Non-isothermal and Isothermal)
2. Two-step sintering
3. Phase transformation sintering
4. Hot pressing
5. Microwave sintering

Effect of Shaping Techniques

- Experimental:
 - Raw Material
 - Shaping
 - Sintering
 - Mechanical properties
 - Microstructural Observation

- Conventional Sintering of n-ZnO

1. Conventional sintering (Non-isothermal and Isothermal)
2. Two-step sintering
3. Phase transformation sintering
4. Hot pressing
5. Microwave sintering

Effect of Shaping Techniques

- Experimental:
 - Raw Material
 - Shaping
 - Sintering
 - Mechanical properties
 - Microstructural Observation

- Conventional Sintering of n-ZnO

1. Conventional sintering (Non-isothermal and Isothermal)
2. Two-step sintering
3. Phase transformation sintering
4. Hot pressing
5. Microwave sintering

Effect of Shaping Techniques

- Experimental:
 - Raw Material
 - Shaping
 - Sintering
 - Mechanical properties
 - Microstructural Observation

- Conventional Sintering of n-ZnO

1. Conventional sintering (Non-isothermal and Isothermal)
2. Two-step sintering
3. Phase transformation sintering
4. Hot pressing
5. Microwave sintering

Effect of Shaping Techniques
2 Step Sintering of n-ZnO

Discussion

Summarizes Results of TSS

Hot Pressing of n-ZnO

Application?
Sintering of n-Titania
CS, TSS and assisted by phase-transformation

Processing of 8YSZ
Sintering methods: CS, TSS and Microwave Sintering
Shaping methods: Uniaxial pressing, Slipcasting
Processing of 8YSZ
Sintering methods: CS, TSS, MS

Microstructure and Mechanical behaviour

Conclusion 1
Spark Plasma Sintering

&

Thermo-Mechanical Properties
Pressure effect

For Coble creep based grain boundary sliding

In intermediate stage
\[
\frac{d(\Delta L/L_0)}{dt} = \frac{95}{2} \left(\frac{D_0 \delta T G}{kT} \right) \left(\frac{\rho \phi + \gamma_{sv}}{r} \right)
\]

In final stage
\[
\frac{d(\Delta L/L_0)}{dt} = \frac{15}{2} \left(\frac{D_0 \delta T G}{kT} \right) \left(\frac{\rho \phi + 2\gamma_{sv}}{r} \right)
\]

\(D_0\): GB diffusion coefficient, \(\delta\): GB width, \(G\): atomic volume, \(\rho\): grain size, \(k\): Boltzmann constant, \(T\): the absolute temperature, \(\gamma_{sv}\): the solid-vapour surface energy, \(r\): pore size, \(\rho_a\): applied stress.

Sintering or packing?

MgO Superplasticity

— Grain boundary sliding

0.3 T_m vs 0.5T_m

Strain rate: 10^7 s^-1

Compressive deformation under constant cross-head speed
Consolidating YAG under high pressure

In intermediate stage, $32\% \leq V_p \leq 10\%$, no linear relation

Final stage, $V_p \leq 10\%$, no linear relation

$$\frac{d(-\Delta L/L_0)}{dt} = \frac{9D_{\text{av}}\rho_0^2}{2G(K')^{1/2}}P_{\phi + \frac{1}{2}r}$$

Intermediate stage, $32\% \leq V_p \leq 10\%$, no linear relation

Final stage, $V_p \leq 10\%$, no linear relation

$$\frac{d(-\Delta L/L_0)}{dt} = \frac{15D_{\text{av}}\rho_0^2}{2G(K')^{1/2}}P_{\phi + \frac{1}{2}r}$$

Densification rate

- Grain sliding
- Diffusion

Densification rate: P at T_f

Strain rate: $10^{-2} s^{-1}$

- $100P$
- $75P$
- $50P$
- $25P$

Relative Density

<table>
<thead>
<tr>
<th>Density [%]</th>
<th>SPS Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1200</td>
</tr>
<tr>
<td>80</td>
<td>1300</td>
</tr>
<tr>
<td>80</td>
<td>1400</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
</tr>
<tr>
<td>80</td>
<td>1600</td>
</tr>
</tbody>
</table>

Relative Density [%]

<table>
<thead>
<tr>
<th>Relative Density [%]</th>
<th>SPS Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1200</td>
</tr>
<tr>
<td>80</td>
<td>1300</td>
</tr>
<tr>
<td>80</td>
<td>1400</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
</tr>
<tr>
<td>80</td>
<td>1600</td>
</tr>
</tbody>
</table>

Strain rate: $>10^{-4} s^{-1}$

- $100MPa$
- $75MPa$
- $50MPa$
- $25MPa$

Grain Sliding

Diffusion

J. of Euro Ceram. Soc. (2007), 27(11), 3331-3337
Densification while retarding solution-reprecipitation

Bright-field TEM image, beta-powder, grain size: 76 nm, SPS 1500°C under 50 MPa for 3 min. Note the aggregate feature of the large grains.

Introduction 2- Anelasticity

Anelastic Relaxation

\[\Delta \sigma = \sigma - \sigma_e = \Delta \sigma + \Delta \sigma_e \]

Introduction 2- Mechanical spectroscopy

Periodic stress: \(\sigma = \sigma_e + \sigma_d \)

Strain response: \(\varepsilon = \varepsilon_e + \varepsilon_d \)

Mechanical spectroscopy is applicable for investigations of significant features such as local distortion of lattice (point defect relaxation), dislocation motions and grain-boundary sliding processes.

Debye equations

\[\tan \theta = \frac{\lambda}{\beta n} = \frac{\lambda}{\beta} n \]

Introduction (2)- Ceramics?

Grain refining

Increasing of fracture toughness at room temperature

High temperature mechanical properties (G.B. sliding accommodated by diffusion or interface reaction mechanisms)

\[\epsilon = A \left(\frac{\sigma}{E} \right)^n \]

Nano-structured ceramics reinforced by nano-particles or fibers

3 times higher fracture toughness (Zhang et al., Nature Materials, 2003)

\[f_1 \sigma + f_2 \theta = \varepsilon + \varepsilon_d \]
Introduction 2- Mechanical spectroscopy

High temp. mechanical behavior

Crystallization in glassy phase

Onset of creep

Mechanical spectroscopy

* Forced torsion pendulum in sub-resonant mode
* Temperature: RT - 1600 K
* Frequency: 10⁻⁴ and 10 Hz
* Vacuum: 10⁻³ Pa

Introduction (3) – Application of M.S. in ceramics

High-temperature plasticity of fine-grained ceramics proceeds by mutually accommodating grain boundary sliding and diffusion creep.

Grain boundary sliding creates voids or overlaps that have to be accommodated by diffusion.

Diffusion processes are:
- Nabarro-Herring creep
- Coble creep
First results (2) – 3Y.TZP

Donzel et al., Acta Mater. 2000

Theoretical model for GB sliding

Lakki’s model for GB sliding

\[\tan(\phi) = \frac{G}{d} \frac{\phi^2}{(\phi^2 + k^2)^{1/2} + \phi^2} \]

\[\sigma_y = \frac{\delta}{\eta} K_\gamma K^2 G \]

\[K(\phi) = \frac{\sigma_y}{\phi^2 + k^2} \]

\[K = \text{cat} \]

\[K = 0 \]
What is the aim of this work?

Silicon nitride based ceramics (SiAlON)

Yttria Stabilized Zirconia (3Y.TZP)

Spark plasma sintering (SPS)

Materials

Hot Press & Spark Plasma Sintering

Hot Press

2073 K, 35 MPa and 4 h

Materials

Ca-SiAlON (Si₃N₄, AlN, CaN)

Ca-SiAlON (Si₃N₄, AlN, CaO)

Ca₃Al₂O₆N₁₆₋ₓ

x=0.4, 1.4

Ca₃Si₃Al₂O₆Nₓ

x=0.4, 1.4

Si₃N₄ + 6wt% Al₂O₃ + 6wt% Y₂O₃

Two-step sintering

SPS apparatus in Lyon

Hot Press & Spark Plasma Sintering

1773 K, 50 MPa and only 3 min

Si₃N₄ + 6wt% Al₂O₃ + 6wt% Y₂O₃
Si$_3$N$_4$ based ceramics

1. Equiaxed grains (as same!)
2. Grain size (as same!)

(Y4O and Y4N)
Results (Yb\textsubscript{4}O and Yb\textsubscript{4}N)

Si\textsubscript{3}N\textsubscript{4} based ceramics

- Real Si\textsubscript{3}N\textsubscript{4} system

To be published in Acta Materialia
Results

Mechanical loss spectrum of Si$_3$N$_4$ Processed via SPS

First results (2) – 3Y.TZP

F= 1 Hz
Heating rate = 1 K/min
As received Si$_3$N$_4$

(1) Pure zirconia
(2) 3Y-TZP + 3 wt% CNTs
(3) 3Y-TZP + 3 wt% CNTs (2nd test) + 30h anneal
Power law equation of creep

\[\dot{\epsilon}(\sigma, T) = A \left(\frac{\sigma}{G} \right)^n \exp \left(\frac{-\Delta H_{\text{act}}}{R T} \right) \]

\[\ln(\dot{\epsilon}) = \ln(A) + n \ln \left(\frac{\sigma}{G} \right) - \frac{\Delta H_{\text{act}}}{R T} \]

\[\delta(\log(\dot{\epsilon})) = \delta(\log(\sigma)) - \frac{\Delta H_{\text{act}}}{R T} \delta(\log(T)) \]
Slope \(p/n = -0.319 \)

\[\log(\tan(\theta)) = 3Y-TZP + 1.5\% \text{CNTs} \]

As received

Aneal temperature = 1600 K

Creep model:
Interface reaction, \(p=1, n=3 \)

This model to be submitted by end of year

What is the plan for future?

Is the model correct?

1- More investigation on SPS results
2- Different additives and microstructures

Processing new nano-CMCs by
1- grow up CNTs directly (in collaboration with Dr. Magrez)
2- application of TSS and SPS (in collaboration with Prof. Shen and Prof. Fantozzi)
Acknowledgment

Prof. R. Schaller
Dr. Daniele Mari
Prof. Z. Shen
Prof. G. Fantozzi
Dr. C. Yanbing

Thanks for you attention