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10.1 The problem of radiative exchange

Conduction and Convection require a physical medium to transport heat.
Thermal radiation however requires NO medium and can travel through
vacuum and the various type of physical mediums.

Applications and examples
Sun light heating the earth
The greenhouse effect (both environmental and actual greenhouses)
Heat dissipation from high temperature processes such as in combustion,
high temperature equipment, space heating in buildings, etc
Cooling of/in space vehicles
Heat shields for very low temperature processes
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10.1 The problem of radiative exchange
The heat exchange problem

Figure 10.1 shows two arbitrary surfaces radiating energy to one another.

Figure 10.1 Thermal radiation between two arbitrary surfaces.
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10.1 The problem of radiative exchange

The net heat exchange from the hotter surface (1) to the cooler surface (2)
depends on the following influences :

T1 and T2

The areas of (1) and (2), A1 and A2

The shape, orientation, and spacing of (1) and (2)
The radiative properties of the surfaces
Additional surfaces in the environment, whose radiation may be reflected by
one surface to the other
The medium between (1) and (2) if it absorbs, emits, or "reflects" radiation
(When the medium is air, we can usually neglect these effects)
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10.1 The problem of radiative exchange

Some definitions

Emittance A real body at temperature T does not emit with the black body
emissive power e− b = σT 4 but rather with some fraction, ε, of eb.

The same is true of the monochromatic emissive power, eλ(T ), which is always
lower for a real body.

ελ(λ,T ) =
eλ(λ,T )

eλ,b(λ,T )
(10.3)

The total emittance

ε(T ) =
e(T )

eb(T )
=

∫∞
0 ελ(λ,T ) eλ,b(λ,T ) dλ

σT 4 (10.4)

For real bodies 0 < ε, ελ < 1
For black bodies ε, ελ = 1
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10.1 The problem of radiative exchange

Table 10.1 Total emittances for a variety of surfaces.
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10.1 The problem of radiative exchange

for a gray body, ελ = ε (independent of λ)

Figure 10.2 Comparison of the sun’s energy as typically seen through the earth’s
atmosphere with that of a black body having the same mean temperature, size,

and distance from the earth.
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10.1 The problem of radiative exchange

By using it, we can write the emissive power as if the body were gray, without
integrating over wavelength (gray body approximation)

e(T ) = εσT 4 (10.5)

Figure 10.3 Specular and diffuse reflection of radiation. (Arrows indicate
magnitude of the heat flux in the directions indicated.)
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10.1 The problem of radiative exchange

Diffuse and specular emittance and reflection

The energy emitted by a non-black surface, together with that portion of an
incoming ray of energy that is reflected by the surface, may leave the body
diffusely or specularly, as shown in Figure 10.3. That energy may also be emitted
or reflected. Black body emission is always diffuse.

Emittance and reflectance depend on wavelength, temperature, and angles of
incidence and/or departure. But in this chapter, we shall assume diffuse behavior
for most surfaces.
Intensity of radiation

To account for the effects of geometry on radiant exchange, we must think about
how angles of orientation affect the radiation between surfaces.
If it were non-black but diffuse, the heat flux leaving the surface would again be
independent of direction. Thus, the rate at which energy is emitted in any
direction from this diffuse element is proportional to the projected area of dA
normal to the direction of view, as shown in the upper right side of Figure 10.4.
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10.1 The problem of radiative exchange
If an aperture of area dAa is placed at a radius r and angle θ from dA and is
normal to the radius, it will see dA as having an area cosθ dA. Radiation that
leaves dA within the solid angle dω stays within dω as it travels to dAa.

Figure 10.4 Radiation intensity through a unit sphere.
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10.1 The problem of radiative exchange

Radiant energy from dA that is intercepted by dAa

dQoutgoing = (i dω)(cosθ dA) [steradian] (10.6)

dividing equation (10.6) by dA and integrating over the entire hemisphere (r = 1
and dω = cosθ dθ dΦ)

qoutgoing =

∫ 2π

Φ=0

∫ π/2

θ=0
i cosθ (sinθdθ dφ) = πi (10.7a)

For a black body
ib =

eb
π

=
σT 4

π
= f (T ) (10.7b)

For a given wavelength, the monochromatic intensity is

iλ =
eλ
π

= f (T , λ) (10.7c)

John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Radiative heat transfer 28 avril 2008 11 / 55



10.2 Kirchhoff’s law
The problem of predicting α

α depends on the physical properties and temperatures of all bodies involved in
the heat exchange process. Kirchhoff’s law is an expression that allows α to be
determined under certain restrictions.

Kirchhoff’s law a body in thermodynamic equilibrium emits as much energy as it
absorbs in each direction and at each wavelength

ελ(T , θ,Φ) = αλ(T , θ,Φ) (10.8a)

For a diffuse body,(emittance and absorptance do not depend on the angles)
Kirchhoff’s law becomes

ελ(T ) = αλ(T ) (10.8b)

If, in addition, the body is gray

ε(T ) = α(T ) (10.8c)

It will be accurate either if the monochromatic emittance does not vary strongly
with wavelength or if the bodies exchanging radiation are at similar absolute
temperatures.
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10.2 Kirchhoff’s law

Total absorptance during radiant exchange

Diffuse surfaces.
Consider two plates as shown in Figure (10.5). The plate at T1 be non-black and
that at T2 be black.
Net heat transfer from plate 1 to plate 2

qnet =

∫ ∞
0

ελ, 1(T1) eλ, b(T1)dλ︸ ︷︷ ︸
emitted by plate 1

−
∫ ∞

0
αλ, 1(T1) eλ, b(T2)dλ︸ ︷︷ ︸

radiation form plate 2 absorbed by plate 1

(10.9)

We define the total absorptance, α1(T1,T2),

qnet = ε1(T1)σT 4
1︸ ︷︷ ︸

emitted by plate 1

− α1(T1,T2)σT 4
2︸ ︷︷ ︸

absorbed by plate 1

(10.10)
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10.2 Kirchhoff’s law

Figure 10.5 Heat transfer between two infinite parallel plates.

Total absorptance depends on T2 because the spectrum of radiation from plate 2
depends on the temperature of plate 2, and depends on T1 too because αλ, 1 is a
property of plate 1 that may be temperature dependent.
The gray body approximation

If we consider 2 plates. The net heat flux between the plates is

qnet = ε1σT 4
1 − α1(T1,T2)σT 4

2

If plate 1 is a gray body, ε1 = α1

qnet = ε1σ(T 4
1 − T 4

2 ) (10.11)
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10.3 Radiant heat exchange between 2 finite black bodies

Figure 10.6 Some configurations for which the value of the view factor is
immediately apparent.
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10.3 Radiant heat exchange between 2 finite black bodies

Some evident results

F1−2 is the fraction of field of view of (1) occupied by (2).
For an isothermal and diffuse surface
F1−2 is fraction of energy leaving (1) that reaches (2).
Conservation of energy

1 = F1−1 + F1−2 + F1−3 + ...F1−n (10.12)

where (2), (3),...,(n) are all of the bodies in the neighborhood of (1).

F1−(2+3) = F1−2 + F1−3

F(2+3)−1 6= F2−1 + F3−1
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10.3 Radiant heat exchange between 2 finite black bodies

Figure 10.7 A body (1) that views three other bodies and itself as well.
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10.3 Radiant heat exchange between 2 finite black bodies
View factor reciprocity

So far, we have referred to the net radiation from black surface (1) to black
surface (2) as Qnet. Let us refine our notation a bit

Qnet 1−2 = A1F1−2σ(T 4
1 − T 4

2 ) (10.13)

and
Qnet 2−1 = A2F2−1σ(T 4

2 − T 4
1 ) (10.14)

With Qnet 1−2 = −Qnet 2−1, we get the view factor reciprocity

A1F1−2 = A2F2−1 (10.15)

Example 10.1

A jet of liquid metal at 2000°C pours from a crucible. It is 3 mm in diameter. A
long cylindrical radiation shield, 5 cm diameter, surrounds the jet through an
angle of 330°, but there is a 30° slit in it. The jet and the shield radiate as black
bodies. They sit in a room at 30°C, and the shield has a temperature of 700°C.
Calculate the net heat transfer : from the jet to the room through the slit ; from
the jet to the shield ; and from the inside of the shield to the room.
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10.3 Radiant heat exchange between 2 finite black bodies
Solution

By inspection, we see that Fjet−room = 30/360 = 0.08333 and Fjet−shield =
330/360 = 0.9167. Thus,

Qnet jet−room = AjetFjet−room σ(T 4
jet − T 4

room) = 1, 188W /m

Likewise,

Qnet jet−shield = AjetFjet−shield σ(T 4
jet − T 4

shield ) = 12, 637W /m

Find the radiation from the inside of the shield to the room. We can find this view
factor equating view factors to the room with view factors to the slit
(Aslit = π ∗ 0.05 ∗ 30/360 = 0.01309m2/m length).
With equations (10.12) and (10.15),

Fslit−jet =
Ajet
Aslit

Fjet−room = 0.06

Fslit−shield = 1− Fslit−jet − Fslit−slit︸ ︷︷ ︸
∼=0

= 0.94
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10.3 Radiant heat exchange between 2 finite black bodies

Fshield−room =
Aslit
Ashield

Fslit−shield = 0.08545

Qnet shield−room = AshieldFshield−room σ(T 4
shield − T 4

room) = 619W /m

Both the jet and the inside of the shield have relatively small view factors to the
room, so that comparatively little heat is lost through the slit.
Calculation of the black-body view factor F1−2

Figure (10.8) shows two bodies dA1 and dA2 who are large black bodies and
isothermal. Since element dA2 subtends a solid angle dω, equation (10.6) gives

dQ1 to 2 = (i1dω1)(cosβ1dA1)

from eqn. (10.7b)

i1 =
σT 4

1
π

Note that because black bodies radiate diffusely, i1 does not vary with angle ; and
because these bodies are isothermal, it does not vary with position.
John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Radiative heat transfer 28 avril 2008 20 / 55



10.3 Radiant heat exchange between 2 finite black bodies
Solid angle is given by

dω1 =
cosβ2 dA2

s2

where s is the distance from (1) to (2) and cosβ2 enters because dA2 is not
necessarily normal to s.

Figure 10.8 Radiant exchange between two black elements that are part of the
bodies (1) and (2).
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10.3 Radiant heat exchange between 2 finite black bodies

dQ1 to 2 =
σT 4

1
π

(
cosβ1cosβ2 dA1dA2

s2

)
By the same token,

dQ2 to 1 =
σT 4

2
π

(
cosβ2cosβ1 dA2dA1

s2

)
Then

Qnet 1−2 = σ(T 4
1 − T 4

2 )

∫
A1

∫
A2

cosβ1cosβ2
πs2 dA1dA2 (10.16)

From equation (10.16). If we compare this result with
Qnet 1−2 = A1F1−2σ(T 4

1 − T 4
2 ), we get

F1−2 =
1
A1

∫
A1

∫
A2

cosβ1cosβ2
πs2 dA1dA2 (10.17a)

From the inherent symmetry of the problem,

F2−1 =
1
A2

∫
A2

∫
A1

cosβ2cosβ1
πs2 dA2dA1 (10.17b)

Equations (10.17a) and (10.17b) are consistent with the reciprocity relation,
equation (10.15).
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10.3 Radiant heat exchange between 2 finite black bodies

Table 10.2 View factors (infinite in extent normal to the paper)
John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Radiative heat transfer 28 avril 2008 23 / 55



10.3 Radiant heat exchange between 2 finite black bodies

Table 10.3 View factors for some three-dimensional configurations
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10.3 Radiant heat exchange between 2 finite black bodies

Figure 10.10 View factor for 3 very small surfaces "looking at" 3 large surfaces.
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10.3 Radiant heat exchange between 2 finite black bodies
Example 10.2

A heater (h) as shown in Figure 10.11 radiates to the partially conical shield (s)
that surrounds it. If the heater and shield are black, calculate the net heat transfer
from the heater to the shield.

Figure 10.11 Heat transfer from a disc heater to its radiation shield.
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10.3 Radiant heat exchange between 2 finite black bodies

Solution

First imagine a plane (i) laid across the open top of the shield :

Fh−s + Fh−i = 1

But Fh−i can be obtained from Figure 10.9 or case 3 of Table 10.3.

For R1 = r1/h = 0.25 and R2 = r2/h = 0.5. The result is Fh−i = 0.192. Then

Fh−s = 0.808

Thus,
Qnet h−s = AhFh−sσ(T 4

h − T 4
s ) = 1687W
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10.3 Radiant heat exchange between 2 finite black bodies

Example 10.4

Find F1−2 for the configuration of two offset squares of area A, as shown in Figure
10.12.

Figure 10.12 Radiation between 2 offset perpendicular squares.
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10.3 Radiant heat exchange between 2 finite black bodies

Solution

Consider two fictitious areas 3 and 4 as indicated by the dotted lines. The view
factor between the combined areas, (1+3) and (2+4), can be obtained from
Figure 10.9. In addition, we can write that view factor in terms of the unknown
F1−2 and other known view factors.

(2A)F(1+3)−(4+2) = AF1−4 + AF1−2 + AF3−4 + AF3−2

2F(1+3)−(4+2) = 2F1−4 + 2F1−2

F1−2 = F(1+3)−(4+2) − F1−4

F(1+3)−(4+2) and F1−4 can be read from Figure 10.9.

F1−2 = 0.045
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10.4 Heat transfer among gray bodies

Electrical analogy for gray body heat exchange

An electric circuit analogy for heat exchange among diffuse gray bodies was
developed by Oppenheim in 1956.
Irradiance, H [W/m2] is the flux of energy that irradiates the surface.

Radiosity, B [W/m2] is the total flux of radiative energy away from the surface.

B = ρH + εeb (10.18)

Net heat flux leaving any particular surface as the difference between B and H for
that surface

qnet = B − H = B − B − εeb
ρ

(10.19)

This can be rearranged as

qnet =
ε

ρ
eb −

1− ρ
ρ

B (10.20)
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10.4 Heat transfer among gray bodies
If the surface is opaque (τ = 0), 1-ρ = α, and if it is gray, α = ε. Then, equation
(10.20) gives a form of Ohm’s law

qnetA = Qnet =
eb − B

(1− ε)/εA (10.21)

(eb − B) can be viewed as a driving potential for transferring heat away from a
surface through an effective surface resistance, (1− ε)/εA.
Now consider heat transfer from one infinite gray plate to another parallel to it.
Radiant energy flows past an imaginary surface. If the gray plate is diffuse, its
radiation has the same geometrical distribution as that from a black body, and it
will travel to other objects in the same way that black body radiation would.

Fig. 10.13 Electrical circuit analogy for radiation between two gray infinite plates.
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10.4 Heat transfer among gray bodies
By analogy to equation (10.13)

Qnet 1−2 = A1F1−2(B1 − B2) =
B1 − B2

1
A1F1−2

(10.22)

radiosity difference (B1 − B2), can be said to drive heat through the geometrical
resistance, 1/A1F1−2 that describes the field of view between the two surfaces.
When two gray surfaces exchange radiation only with each other, the net radiation
flows through a surface resistance for each surface and a geometric resistance for
the configuration.
Recalling that eb = σT4, we obtain

Qnet 1−2 =
eb, 1 − eb, 2∑

resistances
=

σ(T 4
1 − T 4

2 )( 1−ε
εA
)

1 + 1
A1F1−2

+
( 1−ε
εA
)

2
(10.23)

For infinite parallel plates, F1−2 = 1 and A1 = A2 with qnet 1−2 = Qnet 1−2/A1

qnet 1−2 =
1(

1
ε1

+ 1
ε2
− 1
)σ(T 4

1 − T 4
2 ) (10.24)
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10.4 Heat transfer among gray bodies
Comparing equation (10.24) with equation (10.2), we may identify

F1−2 =
1(

1
ε1

+ 1
ε2
− 1
) (10.25)

for infinite parallel plates.
If the plates are both black (ε1 = ε2 = 1)

F1−2 = 1 = F1−2

Example 10.5 One gray body enclosed by another
Evaluate the Qnet 1−2 and F1−2 for 1 gray body enclosed by another.
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10.4 Heat transfer among gray bodies

Solution

The electrical circuit analogy is exactly the same as that shown in Figure 10.13,
and F1−2 is still unity. Therefore, with equation (10.23)

Qnet 1−2 = A1qnet 1−2 =
σ(T 4

1 − T 4
2 )(

1−ε1
ε1A1

)
+ 1

A1
+
(

1−ε2
ε2A2

) (10.26)

Transfer factor may again be identified by comparison to equation (10.2)

Qnet 1−2 = A1
1(

1
ε1

)
+ A1

A2

(
1
ε2
− 1
)

︸ ︷︷ ︸
=F1−2

σ(T 4
1 − T 4

2 ) (10.27)

This calculation assumes that body (1) does not view itself.
Example 10.6 Transfer factor reciprocity
Derive F2−1 for the enclosed bodies shown in the previous figure .
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10.4 Heat transfer among gray bodies

Solution

Qnet 1−2 = −Qnet 2−1

A1F1−2 σ(T 4
1 − T 4

2 ) = A2F2−1 σ(T 4
2 − T 4

1 )

We obtain the reciprocity relationship for transfer factors.

A1F1−2 = A2F2−1 (10.28)

with the result of Example 10.5, we have

F2−1 =
A1
A2
F1−2 =

1
1
ε1

A2
A1

+
(

1
ε2
− 1
) (10.29)

Example 10.7 Small gray object in a large environment
Derive F1−2 for a small gray object (1) in a large isothermal environment (2), the
result that was given as equation (1.35).
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10.4 Heat transfer among gray bodies

Solution

We may use equation (10.27) with A1/A2 � 1

F1−2 =
1

1
ε1

+
A1
A2︸︷︷︸
�1

(
1
ε2
− 1
) ∼= ε1 (10.30)

Note that the same result is obtained for any value of A1/A2 if the enclosure is
black (ε2 = 1). A large enclosure does not reflect much radiation back to the
small object, and therefore becomes like a perfect absorber of the small object’s
radiation - a black body.
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10.4 Heat transfer among gray bodies

Radiation shields

A radiation shield is a surface, usually of high reflectance, that is placed between a
high-temperature source and its cooler environment.
Consider a gray body (1) surrounded by another gray body (2) with a thin sheet
of reflective material placed between the 2 bodies as a radiation shield. We may
put the various radiation resistances in series

Qnet 1−2 =
σ(T 4

1 − T 4
2 )(

1−ε1
ε1A1

+ 1
A1

+ 1−ε2
ε2A2

)
+ 2

(
1− εs
εsAs

)
+

1
As︸ ︷︷ ︸

added by shield

(10.31)

assuming F1−s = Fs−2 = 1. Note that the radiation shield reduces Qnet 1−2 more
if its emittance is smaller, i.e., if it is highly reflective.
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10.4 Heat transfer among gray bodies

Specular surfaces

If the two gray surfaces in Figure 10.14 are diffuse emitters but are perfectly
specular reflectors then the transfer factor become.

F1−2 =
1(

1
ε1

+ 1
ε2
− 1
) (10.30)

identical to equation (10.25) for parallel plates.
Since parallel plates are a special case of the situation in Figure 10.14, equation
(10.25) is true for either specular or diffuse reflection.
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10.4 Heat transfer among gray bodies

Example 10.8

A physics experiment uses liquid nitrogen as a coolant. Saturated liquid nitrogen
at 80 K flows through 6.35 mm O.D. stainless steel line (εl = 0.2) inside a vacuum
chamber. The chamber walls are at Tc = 230 K and are at some distance from
the line. Determine the heat gain of the line per unit length. If a second stainless
steel tube, 12.7 mm in diameter, is placed around the line to act as radiation
shield, to what rate is the heat gain reduced ? Find the temperature of the shield.

Solution

The nitrogen coolant will hold the surface of the line at essentially 80 K, since the
thermal resistances of the tube wall and the internal convection or boiling process
are small. Without the shield, we can model the line as a small object in a large
enclosure, as in Example 10.7 :

Qgain = (πDl )εlσ(T 4
c − T 4

l ) = 0.0624W /m
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10.4 Heat transfer among gray bodies

Assuming Ac � Al

Qgain =
σ(T 4

c − T 4
l ) 1−εl

εl Al
+ 1

Al
+

1− εc
εcAc︸ ︷︷ ︸

neglect

+ 2
(
1− εs
εsAs

)
+

1
As︸ ︷︷ ︸

added by shield

= 0.328W /m

The radiation shield would cut the heat gain by 47 %.
The temperature of the shield, Ts , may be found using the heat loss and
considering the heat flow from the chamber to the shield (small object in a large
enclosure)

Qgain = (πDs)εsσ(T 4
c − T 4

s )⇒ Ts = 213K
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10.4 Heat transfer among gray bodies
The electrical circuit analogy when more than two gray bodies are involved
in heat exchange

Consider a three-body transaction, as pictured Figure 10.15.

Figure 10.15 Electrical circuit analogy for radiation among 3 gray surfaces.
John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Radiative heat transfer 28 avril 2008 41 / 55



10.4 Heat transfer among gray bodies
The basic approach is to apply energy conservation at each radiosity node in the
circuit, setting the net heat transfer from any one of the surfaces.

Qnet, i =
eb, i − Bi

1−εi
εi Ai

(10.33a)

equal to the sum of the net radiation to each of the other surfaces

Qnet, i =
∑

j

(
Bi − Bj
1/AiFi−j

)
(10.33b)

For the three body situation shown in Fig. 10.15

Qnet, 1, at the node B1 :
eb, 1 − B1

1−ε1
ε1A1

=
B1 − B2
1/A1F1−2

+
B1 − B3
1/A1F1−3

(10.34a)

Qnet, 2, at the node B2 :
eb, 2 − B2

1−ε2
ε2A2

=
B2 − B1
1/A1F1−2

+
B2 − B3
1/A2F2−3

(10.34b)

Qnet 3, at the node B3 :
eb, 3 − B3

1−ε3
ε3A3

=
B3 − B1
1/A1F1−3

+
B3 − B2
1/A2F2−3

(10.34c)
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10.4 Heat transfer among gray bodies

If the temperatures T1, T2, and T3 are known, equations (10.34) can be solved
simultaneously for the three unknowns, B1, B2, and B3. the net heat transfer to or
from any body (i) is given by equations (10.33).
An insulated wall

If a wall is adiabatic, Qnet = 0 at that wall.
If wall (3) in Figure 10.15 is insulated, then equation (10.33b) is

eb 3 = B3

We can eliminate one leg of the circuit. The left-hand side of equation (10.34c)
equals zero. (all radiation absorbed by an adiabatic wall is immediately reemitted,
refractory surfaces)

Qnet 1 =
eb, 1 − eb, 2

1−ε1
ε1A1

+ 1
1

1/(A1F1−3)+1/(A2F2−3)
+ 1

1/(A1F1−2)

+ 1−ε2
ε2A2

(10.35)
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10.4 Heat transfer among gray bodies

A specified wall heat flux

The heat flux leaving a surface may be known (example : electrically powered
radiant heater). So the lefthand side of one of equation (10.34) can be replaced
with the surface’s known Qnet, via equation (10.33b).
If surface (1) were adiabatic and had a specified heat flux, then equation (10.35)
could be solved for eb, 1 and the unknown temperature T1.
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10.4 Heat transfer among gray bodies
Example 10.9

Two very long strips 1 m wide and 2.40 m apart face each other, as shown in
Figure below.
(a) Find Qnet 1−2 (W/m) if the surroundings are black and at 250 K.
(b) Find Qnet 1−2 (W/m) if they are connected by an insulated diffuse reflector
between the edges on both sides.
Also evaluate the temperature of the reflector in part (b).

Figure 10.16
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10.4 Heat transfer among gray bodies
Solution

From Table 10.2, case 1, we find F1−2 = 0.2 = F2−1. In addition,
F2−3 = 1− F2−1 = 0.8, irrespective of whether surface (3) represents the
surroundings or the insulated shield. In case (a), the two nodal equations (10.34a)
and (10.34b) become

1451− B1
2.333 =

B1 − B2
1/0.2 +

B1 − B3
1/0.8

459.3− B2
1 =

B2 − B1
1/0.2 +

B2 − B3
1/0.8

For black suroundings, equation (10.34c) cannot be used because ε3 = 1 and the
surface resistance would be zero.

B3 = σT 4
3 = 221.5W /m2K

can be used directly in the two equations above. Thus

B1 = 612.1W /m2 B2 = 379.5W /m2
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10.4 Heat transfer among gray bodies
The net flow from (1) to (2) is quite small

Qnet 1−2 =
B1 − B2
1/A1F1−2

= 46.53W /m

Since each strip also loses heat to the surroundings
Qnet 1 6= Qnet 2 6= Qnet 1−2

For case (b), with the adiabatic shield in place, equation (10.34c)

0 =
B3 − B1
1/0.8 +

B3 − B2
1/0.8

The result is
B1 = 987.7W /m2 B2 = 657.4W /m2 B3 = 822.6W /m2

because surface (3) is adiabatic
Qnet 1 = Qnet 1−2

from equation (10.33a)

Qnet 1−2 = 198W /m
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10.4 Heat transfer among gray bodies

Because node (3) is insulated, it is much easier to use equation (10.35)

Qnet 1−2 = 198W /m

The result, of course, is the same. The presence of the reflector increases the net
heat flow from (1) to (2).
The temperature of the reflector (3) equation (10.33b) with Qnet 3 = 0

T3 = 347K
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10.4 Heat transfer among gray bodies

Algebraic solution of multisurface enclosure problems

The evaluation of radiant heat transfer among several surfaces proceeds in
essentially the same way as for three surfaces. In thise case, the electrical circuit
approach is less convenient than a formulation based on matrices.
An enclosure formed by n surfaces is shown in Figure 10.17. We will assume that :

Each surface is diffuse, gray and opaque, so that ε = α and ρ = 1− ε.
The temperature and net heat flux are uniform over each surface (more
precisely, the radiosity must be uniform and the other properties are averages
for each surface). Either temperature or flux must be specified on every
surface.
The view factor, Fi−j , between any two surfaces i and j is known.
Conduction and convection within the enclosure can be neglected, and any
fluid in the enclosure is transparent and nonradiating.

We will determine the heat fluxes at the surfaces where temperatures are
specified, and vice versa.
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10.4 Heat transfer among gray bodies

Figure 10.17 An enclosure composed of n diffuse, gray surfaces.
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10.4 Heat transfer among gray bodies
Equation (10.19) and (10.21) give the rate of heat loss from the ith surface of the
enclosure.

qnet, i = Bi − Hi =
εi

1− εi
(σT 4

i − Bi ) (10.36)

where
Bi = ρiHi + εieb, i = (1− εi )Hi + εiσT 4

i (10.37)

The irradiating heat transfer incident on surface i , is the sum of energies reaching
i from all other surfaces, including itself.

AiHi =
n∑

j=1
AjBjFj−i =

n∑
j=1

BjAiFi−j

Thus
Hi =

n∑
j=1

BjFi−j (10.38)

from equations (10.37) and (10.38)

Bi = (1− εi )
n∑

j=1
BjFi−j + εiσT 4

i for i = 1, ..., n (10.39)
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10.4 Heat transfer among gray bodies
If all the surface temperatures are specified, the result is a set of n linear
equations for the n unknown radiosities.
We introduce the Kronecker delta to rearrange equation (10.39)

n∑
j=1

[δĳ − (1− εi )Fi−j ]︸ ︷︷ ︸
Cĳ

Bj = εiσT 4
i for i = 1, ..., n (10.41)

The radiosities are then found by inverting the matrix Cĳ .
The rate of heat loss from the ith surface can be obtained from equation (10.36).
For those surfaces where heat fluxes are prescribed, we can eliminate the εiσT 4

i
term in equation (10.39) or (10.41) using equation (10.36).
Finally, equation (10.36) is solved for the unknown temperature of surface.
matrix equation for the n unknown values of Qnet, i :

n∑
j=1

[
δĳ
εi
− (1− εj)

εjAj
AiFi−j

]
Qnet, j =

n∑
j=1

AiFi−j(σT 4
i − σT 4

j ) (10.42)
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10.4 Heat transfer among gray bodies
Example 10.10

Two sides of a long triangular duct, as shown in Figure 10.18, are made of
stainless steel (ε = 0.5) and are maintained at 500.C. The third side is of copper
(ε = 0.15) and has a uniform temperature of 100°C.
Calculate the rate of heat transfer to the copper base per meter of length of the
duct.

Figure 10.18
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10.4 Heat transfer among gray bodies
Solution

Assume the duct walls to be gray and diffuse and that convection is negligible.
The view factors can be calculated from configuration 4 of Table 10.2

F1−2 = 0.4

Similary

F2−1 = 0.67, F1−3 = 0.6, F3−1 = 0.75, F2−3 = 0.33, F3−2 = 0.25

F1−1 = F2−2 = F3−3 = 0
From equation (10.39)

B1 = (1− ε1)(F1−1B1 + F1−2B2 + F1−3B3) + ε1σT 4
1

B2 = (1− ε2)(F2−1B1 + F2−2B2 + F2−3B3) + ε2σT 4
2

B3 = (1− ε3)(F3−1B1 + F3−2B2 + F3−3B3) + ε3σT 4
3

We find
B1 = 0.232σT 4

1 + 0.319σT 4
1 + 0.447σT 4

3
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10.4 Heat transfer among gray bodies

Equation (10.36) gives the rate of heat loss by surface (1)

Qnet, 1 = A1
ε1

1− ε1
(σT 4

1 − B1) = −1294W /m

The negative sign indicates that the copper base is gaining heat.

Enclosures with nonisothermal or nongray surfaces

If the primary surfaces in an enclosure are nonisothermal, they may be subdivided
into a larger number of smaller surfaces (approximately isothermal). Then either
equation may be used to calculate the heat exchange among the set of smaller
surfaces.
When the gray surface approximation cannot be applied, equations (10.41) and
(10.42) may be applied on a monochromatic basis, since equation (10.8b) remains
valid.
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