ME 412: Active components
- powered devices that change behavior when powered.

- A key example: the transistor. The name is concatenation of "Transfer" and "Resistor".

- A type of controlled resistor.

Transistors function like valves: modulate current with an input.
Transistors are 3-pole devices:

bipolar junction transistor (BJT):

\[I_c = \beta I_B \]

\[I_E = I_c + I_B \]

npn:

"Collector"

"Base"

"Emitter"

Rules of transistors: 2 types npn, pnp.
(reverse the polarities of these rules for pnp-type)

1. Collector must be "more positive" than the emitter

2. Base-Emitter & Base-Collector junctions behave like diodes:
4. $I_c \sim I_b$, where $I_c = h_{ce} I_b = \beta I_b$

β typ. >100. * β is typically not a precise value, even for same part #s

* No design should rely on β's value

* Diodes are non-linear passive devices. AoE P3.44.
Re-state rule #41: Small base current \rightarrow large collector current.

\[I_c = \beta I_b \]

\[I_E = I_c + I_B = (1+\beta)I_B \approx I_c. \]

Diodes \rightarrow transistor:
* CURRENT SOURCE:

\[V = 5.6V \]

\[V = 0.6V \]

\[V = 5V \]

\[1mA \to 5.1k \]

\[V = IR \]

\[I_E = \frac{5V}{5.1k} \approx 2mA. \]
Thought Experiment: Suppose $V_+ = 20V$, load is variable resistor $50k\Omega$ (trim pot).

- What happens as we vary the value of R_{load} from 0 to $50k\Omega$?
- Does the behavior denote from "Ideal curve" or not?

Ideal behavior breaks when $R_{load} > \frac{14V}{1mA} = 14k\Omega$.
EMITTER AMPLIFIER:

1. Apply Signal ΔV_b

2. $\Delta V_b \rightarrow \Delta V_{E}$
 $\Rightarrow \Delta I_E$; Small $R_E \Rightarrow 1g \cdot \Delta I_E$
 (Recall Ohm's Law: $\Delta I_E = \frac{\Delta V_E}{R_E}$)

3. $\Delta I_C \approx \Delta V_{out}$
 (1g, $R_C \approx 1g \cdot \Delta V_{out}$)

* Emitter-Follower:

Why do we use this? "Rose-colored lens" effect.

$V_{out} = V_{in} - 0.6V$
A closer look at the Emitter-Follower:

1. ΔV_m, ΔV_{out} are the same
2. ΔI_I, ΔI_E are very different

Generalized Ohm: \[\frac{\Delta V}{\Delta I} = Z \]

1. "Looking into" converter from output side: load "sees" ΔI_E from ΔV_m

$R_{eff} = \frac{\Delta V_m}{\Delta I_E} = \frac{\Delta V_m}{\beta DI_B} \approx \frac{R_b}{100}$
2. Looking into the transistor from the base, the 'sees' the 1kΩ load as:

\[R_{eq} = \frac{\Delta V_E}{\Delta I_B} = \frac{\beta \Delta V_E}{\Delta I_E} = \beta R_{load} \approx 100 \text{ } R_{load} \]

A different transistor device: The switch. (How computer & logic works)

V+ = 5V

* Binary response:
 - Lamp (non-linear resistor) on or off
 - Purposefully over-driven, 100x Ic
 - To obtain rigid Ic
 - Uce is kept low. (All power goes thru lamp)
All laboratories today: BJT, FET. (More common).

Lab exercises

\[A_{0\delta E} \approx 98 - 102 \] Eqs. - Model: §2.10 & 2.11.