Electron Microscopy

4. TEM

Basics: interactions, basic modes,
Diffraction: elastic scattering theory, reciprocal space, diffraction pattern,
Laue zones
Diffraction phenomena

Image formation: contrasts,
Signals from a thin sample

Interaction of high energetic electrons with matter

- **Auger electrons**
- **Backscattered electrons (BSE)**
- **Secondary electrons (SE)**
- **Characteristic X-rays**
- **Bremsstrahlung X-rays**
- **Inelastically scattered electrons**
- **Elastic scattering** in crystalline specimens
- **Elastic scattering** in amorphous specimens
- **Inelastic scattering** at specimen atoms

Sample Applications:
- Biological samples, polymers
- Crystalline structure, defect analysis, high-resolution TEM
- Chemical analysis, spectroscopy
Interaction -> contrast

Thin section of mouse brain: mass contrast of stained membrane structures (G. Knott)

Two basic operation modes

Diffraction <-> Image

Diffraction Mode

Image Mode
(K,Nb)TaO₃ Nano-rods

SEM

TEM
holey Carbon film

Diffraction pattern

Shape, lattice parameters, defects, lattice planes

(K,Nb)O₃ Nano-rods

Bright field image

Dark field image

High-resolution image
Diffraction theory

- Introduction to electron diffraction
- Elastic scattering theory
- Basic crystallography & symmetry
- Electron diffraction theory
- Intensity in the electron diffraction pattern

Thanks to Dr. Duncan Alexander for slides

Why use electron diffraction?

Diffraction: constructive and destructive interference of waves

- Wavelength of fast moving electrons much smaller than spacing of atomic planes ⇒ diffraction from atomic planes (e.g. 200 kV e^-, $\lambda = 0.0025$ nm)
- Electrons interact very strongly with matter ⇒ strong diffraction intensity (can take patterns in seconds, unlike X-ray diffraction)

 - Spatially-localized information
 (≥ 200 nm for selected-area diffraction; 2 nm possible with convergent-beam electron diffraction)
 - Close relationship to diffraction contrast in imaging
 - Orientation information
 - Immediate in the TEM!

 (Diffraction from only selected set of planes in one pattern - e.g. only 2D information)

 (Limited accuracy of measurement - e.g. 2-3%)

 (Intensity of reflections difficult to interpret because of dynamical effects)
Image formation

BaTiO₃ nanocrystals (Psaltis lab)

Area selection

BaTiO₃ nanocrystals (Psaltis lab)

Insert selected area aperture to choose region of interest
Press "D" for diffraction on microscope console - alter strength of intermediate lens and focus diffraction pattern on to screen.

Find cubic BaTiO$_3$ aligned on [0 0 1] zone axis.

Autumn 2011 Experimental Methods in Physics Marco Cantoni 4-13

Scatter range of electrons, neutrons and X-rays

(99% of intensity lost)

<table>
<thead>
<tr>
<th>Élément (masse spécifique)</th>
<th>4-Be 1.84 g/cm3</th>
<th>13-Al 2.7 g/cm3</th>
<th>29-Cu 8.93 g/cm3</th>
<th>82-Pb 11.3 g/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayons X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-Kα $\lambda=1.54$ Å</td>
<td>16 mm 83 mm</td>
<td>0.35 mm 3.3 mm</td>
<td>0.10 mm 0.10 mm</td>
<td>0.017 mm 0.034 mm</td>
</tr>
<tr>
<td>Mo-Kα $\lambda=0.71$ Å</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrons thermiques $\lambda=1.08$ Å</td>
<td>89 m 6 m</td>
<td>0.26 m 14 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>électrons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda=0.037$ Å à 100 kV</td>
<td>39 µm 42 µm ~330 µm</td>
<td>11 µm 0.6 µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda=0.020$ Å à 300 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consider coherent elastic scattering of electrons from atom

Differential elastic scattering cross section:

\[\frac{d\sigma(\theta)}{d\Omega} = |f(\theta)|^2 \]

Atomic scattering factor for electrons

The Mott-Bethe formula is used to calculate electron form factors from X-ray form factors \(f_x \)
Scattering theory - Huygen’s principle

Periodic array of scattering centres (atoms)
Plane electron wave generates secondary wavelets

Secondary wavelets interfere =>
strong direct beam and multiple orders of diffracted beams from constructive interference

Atoms closer together => scattering angles greater

=> Reciprocity!

Basic crystallography
Crystals: translational periodicity & symmetry

Repetition of translated structure to infinity
Crystallography: the unit cell

Unit cell is the smallest repeating unit of the crystal lattice
Has a lattice point on each corner (and perhaps more elsewhere)
Defined by lattice parameters a, b, c along axes x, y, z
and angles between crystallographic axes: $\alpha = b^c$; $\beta = a^c$; $\gamma = a^b$

Building a crystal structure

Use example of CuZn brass
Choose the unit cell - for CuZn: primitive cubic (lattice point on each corner)
Choose the motif - Cu: 0, 0, 0; Zn: $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
Structure = lattice +motif => Start applying motif to each lattice point
Building a crystal structure

Use example of CuZn brass

Choose the unit cell - for CuZn: primitive cubic (lattice point on each corner)

Choose the motif - Cu: 0, 0, 0; Zn: \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)

Structure = lattice + motif => Start applying motif to each lattice point

Extend lattice further in to space

The seven crystal systems

7 possible unit cell shapes with different symmetries that can be repeated by translation in 3 dimensions

=> 7 crystal systems each defined by symmetry

<table>
<thead>
<tr>
<th>Triclinic</th>
<th>Monoclinic</th>
<th>Orthorhombic</th>
<th>Tetragonal</th>
<th>Rhombohedral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha, \beta, \gamma \neq 90^\circ)</td>
<td>(\alpha \neq 90^\circ), (\beta, \gamma = 90^\circ)</td>
<td>(a \neq b \neq c)</td>
<td>(a \neq c)</td>
<td>(\alpha, \beta, \gamma \neq 90^\circ)</td>
</tr>
</tbody>
</table>

Hexagonal

Cubic

Diagrams from www.Wikipedia.org
Four possible lattice centerings

P: Primitive - lattice points on cell corners

I: Body-centred - additional lattice point at cell centre

F: Face-centred - one additional lattice point at centre of each face

A/B/C: Centred on a single face - one additional lattice point centred on A, B or C face

Diagrams from www.Wikipedia.org

14 Bravais lattices

Combinations of crystal systems and lattice point centring that describe all possible crystals - Equivalent system/centring combinations eliminated => 14 (not $7 \times 4 = 28$) possibilities

Diagrams from www.Wikipedia.org
Crystallography - lattice vectors

A lattice vector is a vector joining any two lattice points
Written as linear combination of unit cell vectors \(a, b, c \):
\[t = Ua + Vb + Wc \]
Also written as: \(t = [U \ V \ W] \)

Examples:

- \([1 \ 0 \ 0]\)
- \([0 \ 3 \ 2]\)
- \([1 \ 2 \ 1]\)

Important in diffraction because we “look” down the lattice vectors (“zone axes”)

Crystallography - lattice planes

Lattice plane is a plane which passes through any 3 lattice points which are not in a straight line

Lattice planes are described using Miller indices \((h \ k \ l)\) where the first plane away from the origin intersects the \(x, y, z\) axes at distances:

- \(a/h\) on the \(x\) axis
- \(b/k\) on the \(y\) axis
- \(c/l\) on the \(z\) axis
Crystallography - lattice planes

Sets of planes intersecting the unit cell - examples:

\(\frac{a}{h} \) on the \(x \) axis
\(b/k \) on the \(y \) axis
\(c/l \) on the \(z \) axis

Diffraction theory - Bragg law

Path difference between reflection from planes distance \(d_{hkl} \) apart = \(2d_{hkl}\sin\theta \)

\[n\lambda = 2d_{hkl}\sin\theta \]

Electron diffraction: \(\lambda \sim 0.001 \text{ nm} \)

therefore: \(\lambda \ll d_{hkl} \)

\[n\lambda \approx 2d_{hkl}\theta \]

Reciprocity: scattering angle \(\theta \sim d_{hkl}^{-1} \)
Bragg’s law

\[2 \sin \theta \, d_{hkl} = n \lambda \]

\[d_{hkl} = n \lambda / 2 \sin \theta \]

Elastic diffraction

\[|k| = |k'| \]

Periodic arrangement of lattice planes:
\(g \): reciprocal lattice vector

Diffraction theory - 2-beam condition

2-beam condition: strong scattering from single set of planes
Multi-beam scattering condition

Electron beam parallel to low-index crystal orientation \([U \ V \ W]\) = zone axis
Crystal “viewed down” zone axis is like diffraction grating with planes parallel to e-beam
In diffraction pattern obtain spots perpendicular to plane orientation
Example: primitive cubic with e-beam parallel to \([0 \ 0 \ 1]\) zone axis

Note reciprocal relationship: smaller plane spacing => larger indices \((h \ k \ l)\)
& greater scattering angle on diffraction pattern from \((0 \ 0 \ 0)\) direct beam

\[2 \times 2\] unit cells

The reciprocal lattice

In diffraction we are working in “reciprocal space”; useful to transform the crystal lattice in to
a “reciprocal lattice” that represents the crystal in reciprocal space:

\[r_1 = n_1a + n_2b + n_3c\]

Real lattice vector:
\[r = m_1a^* + m_2b^* + m_3c^*\]
Reciprocal lattice vector:

\[a^*.b = a^*.c = b^*.c = b^*.a = c^*.a = c^*.b = 0\]
\[a^*.a = b^*.b = c^*.c = 1\]
\[\text{i.e. } a^* = (b \wedge c)/V_c \quad V_c: \text{ volume of unit cell}\]

For scattering from plane \((h \ k \ l)\) the diffraction vector:
\[g_{hkl} = ha^* + kb^* + lc^*\]
Plane spacing:
\[d_{hkl} = \frac{1}{|g_{hkl}|}\]
Ewald sphere

A vector in reciprocal space:
\[\mathbf{g}_{hkl} = h \mathbf{a}^* + k \mathbf{b}^* + l \mathbf{c}^* \]

diffraction if:
\[k_\mathbf{g} - k_\mathbf{0} = \mathbf{g} \quad \text{and} \quad |k| = |k_\mathbf{0}| \]
Bragg and elastic scattering

Reciprocal space: sphere radius \(1/\lambda\) represents possible scattering wave vectors intersecting reciprocal space

Electron diffraction: radius of sphere very large compared to reciprocal lattice
\[\Rightarrow \text{sphere circumference almost flat} \]

\[d_{hkl} = \frac{\lambda}{2 \sin \theta} = \frac{1}{|\mathbf{g}|} \]
Ewald sphere in “2-beam” condition

2-beam condition with one strong Bragg reflection corresponds to Ewald sphere intersecting one reciprocal lattice point.

Laue Zones
• Laue zones

Ewald Sphere: Laue Zones (ZOLZ + FOLZ)

Source: P.A. Buffat
Ewald Sphere: Laue Zones (ZOLZ+FOLZ) tilted sample

\[\alpha = 2.0 \text{ mrad} \]
\[s = 0.2 \]

Dynamical scattering

For interpretation of intensities in diffraction pattern, single scattering would be ideal - i.e. "kinematical" scattering

However, in electron diffraction there is often multiple elastic scattering: i.e. "dynamical" behaviour

This dynamical scattering has a high probability because a Bragg-scattered beam is at the perfect angle to be Bragg-scattered again (and again...)

As a result, scattering of different beams is not independent from each other
Symmetry information

Zone axis SADPs have symmetry closely related to symmetry of crystal lattice

Example: FCC aluminium

- [0 0 1] 4-fold rotation axis
- [1 1 0] 2-fold rotation axis
- [1 1 1] 6-fold rotation axis - but [1 1 1] actually 3-fold axis

Need third dimension for true symmetry!

Twinning in diffraction

Example: Co-Ni-Al shape memory FCC twins observed on [1 1 0] zone axis

(1 1 1) close-packed twin planes overlap in SADP

Images provided by Barbora Bartová, CIME
Epitaxy and orientation relationships

SADP excellent tool for studying orientation relationships across interfaces

Example: Mn-doped ZnO on sapphire

Zone axes:
\([1 -1 0]_{\text{ZnO}} \parallel [0 -1 0]_{\text{sapphire}}\)

Planes:
\(c\)-plane\(_{\text{ZnO}}\) // \(c\)-plane\(_{\text{sapphire}}\)

Ring diffraction patterns

If selected area aperture selects numerous, randomly-oriented nanocrystals, SADP consists of rings sampling all possible diffracting planes - like powder X-ray diffraction

Example: “needles” of contaminant cubic MnZnO\(_3\) - which XRD failed to observe!
Ring diffraction patterns

Larger crystals => more “spotty” patterns

Example: ZnO nanocrystals ~20 nm in diameter

References

“Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects”, Morniroli, Taylor & Francis Publishing

http://escher.epfl.ch/eCrystallography
http://www.doitpoms.ac.uk
JEMS Electron Microscopy Software Java version
http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html
Web-based Electron Microscopy APplication Software (WebEMAPS)
http://emaps.mrl.uiuc.edu/

http://crystals.ethz.ch/icsd - access to crystal structure file database
Can download CIF file and import to JEMS