1. Exercises on metric spaces

1.1 Prove that for a metric space (X, d) we have the following implications:

$$
X \text { is proper } \Rightarrow X \text { is locally compact } \Rightarrow X \text { is complete. }
$$

1.2 Prove that every proper metric space is separable.
1.3 Find an example of a locally compact space that is not proper.
1.4 Find a bounded sequence in ℓ^{∞} containing no convergent subsequence.
1.5 Le (X, d) be a metric space and $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a concave function such that $h(0)=0$. Prove that $\rho(x, y)=h(d(x, y))$ is again a metric on X.
1.6 Prove that for any metric space (X, d) there is a new metric ρ that induces the same topology as d on X and such that (X, ρ) is bounded (that is the ρ-diameter of X is finite).
1.7 Prove that in an intrinsic connected proper metric space any pair of points can be joined by a minimal geodesic.
(Hint. The proof is standard and can be found in many books on metric geometry. Consider first compact metric spaces and use Arzelà-Ascoli's Theorem).

2. BV functions and length of curves

2.1 Prove that a function $f \in B V[a, b]$ has at most countably many disconitunuities.
2.2 Let $f:[0,1] \rightarrow[0,1]$ be the Cantor-Vitalli function, and consider the graph of this function, that is the curve $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ defined by $\gamma(t)=(t, f(t))$. Observe that γ is a continuous curve in the unit square joining $(0,0)$ to $(1,1)$. Prove that γ is rectifiable and

$$
\int_{0}^{1}\|\dot{\gamma}(t)\| d t=1<d((0,0),(1,1))=\sqrt{2}<\ell(\gamma)=1
$$

2.3 Give an exemple of a function $f \in B V([a, b])$ such that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-$ $f(a)$, yet $f \notin A C([a, b])$.
2.4 Let $\gamma:[a, b] \rightarrow X$ be a rectifiable curve in a metric space X. The arclength function of γ is the function $s=s_{\gamma}:[a, b] \rightarrow \mathbb{R}$ defined by $s_{\gamma}(t)=\ell_{a}^{t}(\gamma)$. Prove that s_{γ} is a continuous function.
(Hint. For the case $X=\mathbb{R}$ a proof can be found in Taylor, Theorem 9.2.V).
2.5 Let γ be a curve in a metric space. Prove that γ is metrically differentiable at t_{0} if and only if there exists $q \in \mathbb{R}$ such that

$$
d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)-q \cdot\left|t_{1}-t_{2}\right|=o\left(\left|t_{1}-t_{0}\right|+\left|t_{2}-t_{0}\right|\right)
$$

as $t_{1}, t_{2} \rightarrow t_{0}$. In that case $q=v_{\gamma}(t)$.

3. Hyperbolic Geometry

The first three exercices provides alternative formulas to compute the hyperbolic distances between two points
3.1 We denote by \mathbb{H}^{2} the upper half-plane with the Poincaré metric. Consider two points p and q in \mathbb{H}^{2} that are not vertically aligned (i.e. $\left.\operatorname{Im}(p) \neq \operatorname{Im}(p)\right)$ and let $a, b \in \mathbb{R}$ be the two ideal points (i.e. the "points at infinity") of the hyperbolic line through p and q. Prove that

$$
d_{\mathbb{H}^{2}}(p, q)=\left|\log \tan \left(\angle_{a} p b\right)-\log \tan \left(\angle_{a} q b\right)\right| .
$$

Where $\angle_{a} p b$ is the angle at a of the Euclidean triangle $a p b$ and likewise for $\angle{ }_{a} q b$.
3.2 Using the same notations, prove that

$$
d_{\mathbb{H}^{2}}(p, q)=\left|\log \tan \left(\frac{1}{2} \angle_{c} p b\right)-\log \tan \left(\frac{1}{2} \angle_{c} q b\right)\right|,
$$

where $c=\frac{1}{2}(a+b)$ is the Euclidean center of the segment $[a, b]$.
3.3 The hyperbolic distance between $z, w \in \mathbb{H}^{2}$ is also given by

$$
d_{\mathbb{H}^{2}}(z, w)=\log \left(\frac{|z-\bar{w}|+|z-w|}{|z-\bar{w}|-|z-w|}\right) .
$$

This formula is convenient because it does not involve the ideal points of the hyperbolic line through z and w.
(Hint. It is useful to check that the righthandside of this formula is invariant under the action of $\mathrm{PSL}_{2}(\mathbb{R})$).
3.4 Prove that the homography f_{θ} given by

$$
f_{\theta}(z)=\frac{\cos (\theta) z-\sin (\theta)}{\sin (\theta) z+\cos (\theta)}
$$

is a hyperbolic rotation of \mathbb{H}^{2} centered at i (that is $f_{\theta}(i)=i$) and rotation angle 2θ.
3.5 Prove that the group of orientation preserving isometries of the Poincaré disk \mathbb{D}^{2} is isomorphic to

$$
\operatorname{PSU}(1,1)=\left\{\left(\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1\right\} /\{ \pm 1\}\right.
$$

acting by homographies on the disk.

