
1. Exercises on metric spaces

1.1 Prove that for a metric space (X, d) we have the following implications:

X is proper⇒ X is locally compact⇒ X is complete.

1.2 Prove that every proper metric space is separable.

1.3 Find an example of a locally compact space that is not proper.

1.4 Find a bounded sequence in `∞ containing no convergent subsequence.

1.5 Le (X, d) be a metric space and h : R+ → R+ be a concave function such
that h(0) = 0. Prove that ρ(x, y) = h(d(x, y)) is again a metric on X.

1.6 Prove that for any metric space (X, d) there is a new metric ρ that induces
the same topology as d on X and such that (X, ρ) is bounded (that is the
ρ-diameter of X is finite).

1.7 Prove that in an intrinsic connected proper metric space any pair of points
can be joined by a minimal geodesic.
(Hint. The proof is standard and can be found in many books on metric
geometry. Consider first compact metric spaces and use Arzelà–Ascoli’s
Theorem).

2. BV functions and length of curves

2.1 Prove that a function f ∈ BV [a, b] has at most countably many disconitu-
nuities.

2.2 Let f : [0, 1]→ [0, 1] be the Cantor-Vitalli function, and consider the graph
of this function, that is the curve γ : [0, 1]→ R2 defined by γ(t) = (t, f(t)).
Observe that γ is a continuous curve in the unit square joining (0, 0) to
(1, 1). Prove that γ is rectifiable and∫ 1

0

‖γ̇(t)‖dt = 1 < d((0, 0), (1, 1)) =
√

2 < `(γ) = 1.

2.3 Give an exemple of a function f ∈ BV ([a, b]) such that
∫ b
a
f ′(x)dx = f(b)−

f(a), yet f 6∈ AC([a, b]).

2.4 Let γ : [a, b]→ X be a rectifiable curve in a metric space X. The arclength
function of γ is the function s = sγ : [a, b] → R defined by sγ(t) = `ta(γ).
Prove that sγ is a continuous function.
(Hint. For the case X = R a proof can be found in Taylor, Theorem 9.2.V).

2.5 Let γ be a curve in a metric space. Prove that γ is metrically differentiable
at t0 if and only if there exists q ∈ R such that

d(γ(t1), γ(t2))− q · |t1 − t2| = o(|t1 − t0|+ |t2 − t0|)

as t1, t2 → t0. In that case q = vγ(t).
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3. Hyperbolic Geometry
The first three exercices provides alternative formulas to compute the hy-

perbolic distances between two points

3.1 We denote by H2 the upper half-plane with the Poincaré metric. Consider
two points p and q in H2 that are not vertically aligned (i.e. Im(p) 6= Im(p))
and let a, b ∈ R be the two ideal points (i.e. the “points at infinity”) of the
hyperbolic line through p and q. Prove that

dH2(p, q) = | log tan(∠apb)− log tan(∠aqb)|.

Where ∠apb is the angle at a of the Euclidean triangle apb and likewise for
∠aqb.

3.2 Using the same notations, prove that

dH2(p, q) = | log tan(
1

2
∠cpb)− log tan(

1

2
∠cqb)|,

where c =
1

2
(a+ b) is the Euclidean center of the segment [a, b].

3.3 The hyperbolic distance between z, w ∈ H2 is also given by

dH2(z, w) = log

(
|z − w|+ |z − w|
|z − w| − |z − w|

)
.

This formula is convenient because it does not involve the ideal points of
the hyperbolic line through z and w.
(Hint. It is useful to check that the righthandside of this formula is invariant
under the action of PSL2(R)).

3.4 Prove that the homography fθ given by

fθ(z) =
cos(θ)z − sin(θ)

sin(θ)z + cos(θ)

is a hyperbolic rotation of H2 centered at i (that is fθ(i) = i) and rotation
angle 2θ.

3.5 Prove that the group of orientation preserving isometries of the Poincaré
disk D2 is isomorphic to

PSU(1, 1) =

{(
a b

b a

) ∣∣ a, b ∈ C, |a|2 − |b|2 = 1

}/
{±1}

acting by homographies on the disk.
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