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1 A brief review on metric spaces

Recall that a metric space is a set X together with a function

d : X ×X → R

satisfying the following properties for any x, y and z in X:

i) d(x, y) = d(x, y);

ii) d(x, z) ≤ d(x, y) + d(y, z);

iii) d(x, y) = 0 if and only if x = y.

Such a function is called a distance function, or a metric on X and the second condition is
the triangle inequality. Note that distances are always non negative since we have

2d(x, y) = d(x, y) + d(y, x) ≥ d(x, x) = 0.

This definition is due to Maurice Frechet who introduced it in his famous 1906 paper named
Sur quelques points du calcul fonctionnel (On a few points in Functional Calculus). This
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simple definition makes metric spaces one of the most elementary mathematical concepts, yet
it leads to a rich array of concepts, problems and applications within all parts of mathematics.

A subset U ⊂ X in a metric space is said to be open if for any point x ∈ U and every ε > 0
the open ball centered at x with radius ε is contained in U :

B(x, ε) = {y ∈ X | d(x, y) < ε} ⊂ U.

A subset C ⊂ X is closed if its complement X \ C is open. The open subsets of a metric
spaces (X, d) form a topology on X. Recall that this means the following three properties
hold:

a) The whole space X and the empty set ∅ are open sets.

b) The intersection of a finite collection of open set is an open set.

c) The union of an arbitrary collection of open set is an open set.

Therefore all the usual topological notions apply to metric spaces. We now introduce some
more definitions.

Definitions. Let (X, d) be a metric space.

1. The diameter of a subset A ⊂ X is defined as

diam(A) = sup{d(x, y) | x, y ∈ A}.

2. The subset A is bounded if its diameter is finite.

3. A sequence {xk} ⊂ X converges to the point x if d(xk, x)→ 0 as k →∞. In that case
on writes lim

k→∞
xk = x.

4. A Cauchy sequence in X is a sequence {xk} ⊂ X such that

lim
n→∞

diam{xk | k ≥ n} = 0.

It is easy to prove that every convergent sequence is Cauchy. The converse is not true
in general and we define:

5. The metric space X is complete if every Cauchy sequence converges.

6. A subset K ⊂ X is compact if every sequence in K contains a convergent subsequence.
A subset A ⊂ X is relatively compact if it is contained in a compact subset.

7. X is locally compact if every point x in X admits a relatively compact neighborhood,
that is x is contained in a relatively compact open subset.

8. X is separable if it contains a countable dense subset: there is a countable set S ⊂ X
such that every point in X is the limit of a sequence contained in S.

9. The metric space X is proper (or boundedly compact) if every closed bounded set is
compact. Equivalently it satisfies the Bolzano-Weirstrass property: Every bounded
sequence contains a converging subsequence.

Proposition 1.1. A proper metric space is separable.

We live the proof as an exercise.
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2 Banach spaces

Definitions 1. Let E be a vector space over the field of real numbers. A norm on E is a
function ν : E → R such that

(i) ν(λx) = |λ|ν(x) for any x ∈ E and λ ∈ R.

(ii) ν(x) > 0 for any x ∈ E \ {0}.

(iii) ν(x+ y) ≤ ν(x) + ν(y) for any x, y ∈ E.

We conveniently write the norm of a vector as ‖x‖ = ν(x). Note that a normed vector space
(E, ‖ · ‖) is naturally a metric space for the distance defined by d(x, y) = ‖y − x‖.

2. A Banach space is a normed vector space that is complete for the above metric.
Let us give a few examples to illustrate the previous definitions on Banach spaces.

Examples.

(a) Every finite dimensional normed real vector space is a Banach space (by the classical
Bolzano-Weierstrass Theorem). It is also proper and separable (points with rational
coordinates in a given basis form a countable dense subspace).

(b) The vector space of all bounded sequences in R is a Banach space for the sup norm

‖(xk)‖∞ = sup
k
|xk|.

We denote this Banach space by `∞ or `∞(N). It is not locally compact.

(c) The space C0([a, b]) of bounded continuous functions on the interval [a, b] is a Banach
spaces for the sup norm

‖f‖L∞ = sup
a≤x≤b

|f(x)| = max
a≤x≤b

|f(x)|,

this follows from the fact that a uniformly convergent sequence of continuous function is
continuous.
This space is separable (proof: By Stone-Weierstrass Theorem real polynomials form
a dense subset in C0([a, b]), then polynomials with rational coefficients clearly form a
countable dense subset).

(d) A measurable function f : [a, b] → R is essentially bounded if there is a real number
a ∈ R such that {x ∈ [a, b] | f(x) > a} has zero Lebesgue measure. Such a number a is
an essential upper bound for f . The vector space of all essentially bounded measurable
function on the interval [a, b] is a Banach space for the norm

‖f‖L∞ = ess supa≤x≤b|f(x)|
= inf{a ∈ R | a is an essential upper bound for f}.

This Banach space is denoted by L∞([a, b]), it is not separable. Observe that C0([a, b]) ⊂
L∞([a, b]) is a closed subset.

3



(e) C0([a, b]) is not a Banach spaces for the L1-norm:

‖f‖L1 =

∫ b

a
|f(x)|dx.

The following theorem characterizes finite dimensional Banach spaces.

Theorem 2.1. For a Banach space (E, ‖ ‖), the following conditions are equivalent:

(i) E is a proper metric space.

(ii) E is locally compact.

(iii) The closed unit ball B̄ = {x ∈ E | ‖x‖ ≤ 1} is compact.

(iv) dim(E) <∞.

Proof. The implication (i) ⇒ (ii) is obvious. Assume E to be locally compact, then there
exists ε > 0 such that the closed ball B̄ε = {x ∈ E | ‖x‖ ≤ ε} is compact. Therefore
(ii)⇒ (iii) since the unit ball is homeomorphic to B̄ε.

We prove (iii) ⇒ (iv) by contraposition. Assuming dim(E) = ∞, we shall construct a
sequence with no convergent subsequence in S = {x ∈ E | ‖x‖ = 1} = ∂B.
Suppose {x1, x2, . . . xm} ⊂ S is a family of unit vectors such that ‖xi − xj‖ ≥ 1 for all
1 ≤ i, j ≤ m. Such a family certainly exists for m = 1 (chose an arbitrary unit vector
x1). Denote by Fm ⊂ E the vector subspace generated by these vectors. This is a finite
dimensional subspace and it is therefore closed.
Chose a point y ∈ E \Fm. Because Fm is proper one can find a point z ∈ Fm minimizing the
distance to y, that is

‖z − y‖ = min{‖w − y‖ : w ∈ Fm}.

Set x =
z − y
‖z − y‖

, then for any u ∈ Fm we have

‖u− x‖ =
‖‖z − y‖ · u− (z − y)‖

‖z − y‖
=
‖w − y‖
‖z − y‖

≥ 1

where we have set w = z − ‖z − y‖ · u ∈ Fm.

We now set xm+1 = x, we then have ‖xi − xm+1‖ ≥ 1 for each 1 ≤ i ≤ m. Therefore the
(m+ 1) points {x1, x2, . . . xm+1} ⊂ S have pairwise distances ≥ 1.
Repeating the argument, we construct an infinite sequence of unit vectors with pairwise
distances ≥ 1. Such a sequence contains no convergent subsequence. It follows that the ball
B̄ is not compact.

(iv)⇒ (i) is Bolzano-Weierstrass Theorem.

Proposition 2.2. The Banach space `∞(N) is not separable.

Proof. The characteristic function 1A of an arbitrary subset A ⊂ N defines an element
in `∞(N) and if A and B are distinct subsets then ‖1A − 1B‖∞ = 1. If S ⊂ `∞(N) is a
dense subset, it contains for any non empty subset A ⊂ N an element sA ∈ S such that

‖1A − sA‖∞ <
1

2
. It follows from the triangle inequality that the sA are pairwise distinct,

therefore S is uncountable (it contains at least Card(P(N)) elements).
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Banach spaces play an important role in metric geometry. In fact every separable metric
space can be seen as a subset of a Banach space.

Theorem 2.3. Every separable metric space (X, d) admits an isometric embedding into
`∞(N), that is there is a map ψ : X → `∞(N) such that

‖ψ(x)− ψ(y)‖∞ = d(x, y)

for any x, y ∈ X.

Proof. Let us fix a base point s0 and chose a countable dense subset S = {sk}k∈N ⊂ X.
Now to any point x ∈ X we associate the real sequence ψ(x) = (ψk(x))k∈N where

ψk(x) = d(x, sk)− d(s0, sk) ∈ R.

This sequence is bounded since by the triangle inequality we have for all k ∈ N

|ψk(x)| ≤ |d(x, sk)− d(s0, sk)| ≤ d(x, s0).

We therefore have defined map ψ : X → `∞; we need to prove this maps preserves distances.
Let us fix two points x and y in X, using again the triangle inequality we have

|ψk(x)− ψk(y)| = |(d(x, sk)− d(s0, sk))− (d(y, sk)− d(s0, sk))|
= |d(x, sk)− (d(y, sk)|
≤ d(x, y).

This inequality holds for any k ∈ N, therefore

‖ψ(x)− ψ(y)‖∞ = sup
k
|ψk(x)− ψk(y)| ≤ d(x, y).

To prove the reverse inequality we fix ε > 0 and chose a point sm ∈ S such that d(x, sm) ≤ ε
(here we use the density of S ⊂ X). We then have

|ψm(x)− ψm(y)| = |d(x, sm)− (d(y, sm)|
≥ d(x, sm) + d(y, sm)− 2ε

≥ d(x, y)− 2ε.

Since ε > 0 is arbitrary we have

‖ψ(x)− ψ(y)‖∞ ≥ d(x, y).

The theorem is proved.

Remarks 1. The maps ψ : X → `∞ we constructed in this proof is called the Kuratovski
embedding of X.

2. If the metric space X is bounded one can use instead the simpler map φ : X → `∞ defined
by φ(x) = (φk(x))k∈N where φk(x) = d(x, sk) ∈ R.
3. A non separable metric space (X, d) can also be isometrically embedded in a metric
space. Namely the map that associates to any point x the function fx : X → R defined by
fx(y) = d(x, y) − d(x0, y) is an isometric embedding of X into the Banach space Cb(X) of
bounded continuous functions on X with the sup norm. This is also called the Kuratowski
embedding. However we find it convenient to embed a (proper) metric space on `∞ since it
provides us with “coordinates” on X.
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3 BV functions and Rectifiables Curves

Definitions Let (X, d) be a metric space and [a, b] be a closed interval. A function f :
[a, b]→ X has bounded variation if

V b
a (f) = sup

σ

m−1∑
i=1

d(f(ti), f(ti+1)) <∞, (1)

where the supremum is taken over all the subdiviion σ = [a = t1 < t2 < · · · < tm = b] of the
interval [a, b]. The quantity V b

a (f) is then called the total variation of f on the interval [a, b].

A rectifiable curve in X is a continuous function γ : [a, b]→ X of bounded variation. In that
case, the total variation is called the length of the curve and is denoted by

`(γ) = `ba(γ) = V b
a (γ).

Each sum in equation (1) is sometimes called a discrete approximation, or a polygonal approx-
imation of the length of γ. If the continuous curve γ is not rectifiable, one notes `(γ) = ∞.
The notion of length leads to some additional definitions.

a) The metric space is rectifiably connected if any pair of points p, q in X can be joined by a
rectifiable curve.

b) The space X is totaly unrectifiable if it contains no non constant rectifiable curve (equiv-
alently no pair of distinct points in X can be joined by a rectifiable curve). A classical
example of a totally unrectifiable curve is the Von Koch snowflake curve.

c) The curve γ : [a, b] → X is a (minimal) geodesic if it is rectifiable and its length is the
distance between its endpoints:

`(γ) = d(γ(a), γ(b)).

(Note that this definition differs slightly from the notion of geodesics in Riemannian
geometry).

d) The distance d on X is intrinsic if for any pair of points p, q in X we have

d(p, q) = inf{`(γ) | γ is a rectifiable curve joining p to q}.

e) The metric space X is geodesic if any pair of points p, q in X can be joined by a geodesic.

Observe the following obvious implications

(X, d) is geodesic ⇒ (X, d) is intrinsic ⇒ (X, d) is rectifiably connected.

Exercice. Give examples showing that the converse implications fail.

Proposition 3.1. Let (X, d) be a rectifiably conneced metric space. Define a new function
d̃ : X ×X → R by

d̃(p, q) = inf{`(γ) | γ is a rectifiable curve joining p to q}.

Then d̃ is a new metric on X. Furthermore d̃ is intrinsic and d̃(p, q) ≥ d(p, q) for any
p, q ∈ X.
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The metric d̃ is called the intrinsic metric on X associated to d. Note that d is intrinsic if
and only if d = d̃.

Exercice. Prove the Proposition (hint: use the fact that d(p, q) ≤ `(γ) for any curve joining
p to q).

Proposition 3.2. An intrinsic connected proper metric space is geodesic.

We live the proof as an exercise. This result is sometimes called the Hopf-Rinow Theorem
for metric spaces.

4 Real valued functions with bounded variation.

In this section we cover some basic facts on BV functions. Let us denote by BV ([a, b]) the
set of functions f : [a, b]→ R with bounded variation. We start with the following

Lemma 4.1 (Jordan decomposition). A function f : [a, b]→ R has bounded variation if and
only if it is the difference of two monotone functions.

Proof. Assume f = g − h where g, h : [a, b] → R are monotone non decreasing. We then
have for any subdivision σ of [a, b]:

m−1∑
i=1

|f(ti+1)− f(ti)| =

m−1∑
i=1

|(g(ti+1)− h(ti+1))− (g(ti)− h(ti))|

≤
m−1∑
i=1

|g(ti+1)− g(ti)|+
m−1∑
i=1

|h(ti+1)− h(ti)|

≤
m−1∑
i=1

(g(ti+1)− g(ti)) +
m−1∑
i=1

(h(ti+1)− h(ti))

= (g(b)− g(a)) + (h(b)− h(a)).

It follows that f has bounded variation with

V b
a (f) ≤ (g(b)− g(a)) + (h(b)− h(a)).

Assume conversely that f ∈ BV ([a, b]), then we can write this function as

f(x) = V x
a (f)− (V x

a (f)− f(x))

where V x
a (f) is the variation of the restriction f |[a,x]. Clearly x 7→ V x

a (f) is monotone non
decreasing and the function (V x

a (f)− f(x)) is also non decreasing since for x < y we have

(V y
a (f)− f(y))− (V x

a (f)− f(x)) = V y
x (f)− (f(y)− f(x)) ≥ 0.

As an immediate consequence, we observe that the set of functions with bounded variation
on [a, b] is a real vector space. We shall denote it by BV [a, b].

Corollary 4.2. A BV function has at most countably many discontinuities.
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We leave the proof as an exercice.

Theorem 4.3. A monotone function f : [a, b] → R is almost everywhere differentiable.
Furthermore the derivative f ′ is Lebesgues integrable on [a, b] and∣∣∣∣∫ b

a
f ′(x)dx

∣∣∣∣ ≤ |f(b)− f(a)|.

The proof of this theorem is quite involved, see e.g. [2, §9.7]

Corollary 4.4. Any function f ∈ BV [a, b] is almost everywhere differentiable and the deriva-
tive f ′ is Lebesgues integrable.

The strict inequality is possible. The classical example is the Cantor-Vitalli function (also
known as the devil staircase). This is a continuous surjective monotone function f : [0, 1]→
[0, 1] such that f ′(x) = 0 on the complement of the cantor set. In particuler f ′(x) = 0 almost
everywhere, yet we have

0 =

∣∣∣∣∫ 1

0
f ′(x)dx

∣∣∣∣ = |f(1)− f(0)| = 1.

Figure 1: The Cantor-Vitali function

The next result relates rectifiable curves in Rn to BV functions:

Theorem 4.5. A continuous curve γ(t) = (x1(t), . . . , xn(t)) in Rn is rectifiable if and only
if every componant xj : [a, b]→ R is a function of bounded variation. Furthermore we have∫ b

a
‖γ̇‖dt ≤ `(γ).

This inequality can again be a strict inequality.

Returning to absolutely continuous curves, we state the following

Proposition 4.6. Let γ : [a, b] → X be a rectifiable curve in a metric space X then the
arclength function

t 7→ `ta(γ)

is continuous on [a, b].
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5 Absolutely continuous function

Theorem 3 leads us to the following natural question: for which class of function the funda-
mental theorem of calculus hold? This question has been answered by Henri Lebesgue and is
given by the class of absolutely continuous functions.

Definition. The function f : [a, b] → R is absolutely continuous if for any ε > 0 there is
a δ > 0 such that for any finite set of pairwise disjoint intervals (a1, b1), (a2, b2), . . . (am, bm)
contained in [a, b] we have

m∑
i=1

(bi − ai) < δ =⇒
m∑
i=1

|f(bi)− f(ai)| < ε.

We denote by AC[a, b]) the set of absolutely continuous functions on [a, b]. It is not difficult
to check that this is a real vector space. Observe that AC[a, b] ⊂ BV [a, b]: every absolutely
continuous function has bounded variation.

Examples. 1. Any Lipschitz function f is absolutely continuous.
2. The Cantor-Vitally function is not absolutely continuous.

Theorem 5.1. Let f be an arbitrary function defined on the interval [a, b], then the following
conditions are equivalent:

i) f is absolutely continuous.

ii) There exists a function g ∈ L1([a, b]) such that for any a ≤ x1 ≤ x2 ≤ b we have

|f(x2)− f(x1)| ≤
∫ x2

x1

g(x)dx

iii) f is almost everywhere differentiable, with derivative f ′ ∈ L1([a, b]) and∫ x2

x1

f ′(x)dx = f(x2)− f(x1)

for any a ≤ x1 ≤ x2 ≤ b.

iv) The function f has bounded variation and it maps sets of zero Lebesgue measure to sets
of zero Lebesgue measure.

The proof is delicate. The last condition is known as the Banach-Zaredski Theorem.

Theorem 5.2. Let γ(t) = (x1(t), . . . , xn(t)) in Rn be a rectifiable curve. Then∫ b

a
‖γ̇‖dt = `(γ).

if and only if each component xj : [a, b]→ R is an absolutely continuous function.

A more general version of this result later will be given in Theorem 6.4 below.
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6 Metric derivative of curves in metric spaces

In this section we consider the following notion:

Definition. Let γ : [0, 1] → X be an arbitrary curve in the metric space (X, d). On says
that γ is metrically differentiable at t ∈ [a, b] if the following limit exists

vγ(t) = lim
ε→0

d(γ(t), γ(t+ ε))

|ε|

This limit is then called the metric derivative or the speed of γ at t.

Remark. If (E, ‖ ‖) is a Banach space and γ : [0, 1] → E is a curve that is differentiable at
t ∈ [a, b], then it is metrically differentiable at t and

vγ(t) = ‖γ̇(t)‖.

Indeed we have ∣∣∣∣‖γ(t+ ε)− γ(t)‖
|ε|

− ‖γ̇(t)‖
∣∣∣∣ ≤ ∥∥∥∥γ(t)− γ(t+ ε)

ε
− γ̇(t)

∥∥∥∥→ 0

as ε→ 0.

The following Stepanov type theorem is a useful criterion for the existence of metric derivative
(see [1, Theorem 2.5]):

Proposition 6.1. Let γ : [a, b]→ X be a curve in a separable metric space. Assume that for
a.e. t ∈ [a, b] we have

lim sup
ε→0

d(γ(t), γ(t+ ε))

|ε|
<∞,

then γ is almost everywhere metrically differentiable.

Corollary 6.2. A rectifiable curve in an arbitrary metric space is a.e. metrically differen-
tiable.

Proof. Let X be a metric space and γ : [a, b] → X be a rectifiable curve. The function
s(t) = `ta(γ) is continuous and monotonous, therefore it is a.e. differentiable. The corollary
then follows immediately from the Proposition since for any point t ∈ [a, b] of differentiability
of s(t) we have

lim sup
ε→0

d(γ(t), γ(t+ ε))

|ε|
≤ lim sup

ε→0

`t+εt (γ)

|ε|
= lim sup

ε→0

|s(t+ ε)− s(t)|
|ε|

= |s′(t)| <∞.

Definition. The curve γ : [a, b] → X is absolutely continuous if there exists g ∈ L1([a, b])
such that

d(γ(t1), γ(t2)) ≤
∫ t2

t1

g(t)dt (2)

for any a ≤ t1 ≤ t2 ≤ b. Any function g satisfying the above inequality is called a dominating
function for γ.
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Proposition 6.3. Let γ : [0, 1]→ X be an absolutely continuous curve in a separable metric
space (X, d), then it is metrically differentiable almost everywhere. Furthermore the function
t→ vγ(t) is integrable and it is the smallest dominating function for γ.

Proof. It is easy to check that if the curve γ is absolutely continuous with dominating
function g, then it is rectifiable and

`t2t1(γ) ≤
∫ t2

t1

g(t)dt

for any a ≤ t1 ≤ t2 ≤ b. From the Corollary 6.2, γ is a.e. metrically differentiable and we
have at any Lebesgue point of g:

vγ(t) = lim
ε→0

d(γ(t), γ(t+ ε))

|ε|
≤ lim

ε→0

∣∣∣∣1ε
∫ t+ε

t
g(u)du

∣∣∣∣ = g(t).

We now assume X to be separable. By Kuratowski’s embedding, we may assume X = `∞(N).
Then γ(t) = (γk(t))k∈N where γk : [a, b]→ R is the kth component of γ. We clearly have for
any a ≤ s < t ≤ b:

|γk(t)− γk(s)| ≤ sup
j∈N
|γj(t)− γj(s)| = d(γ(s), γ(t)) ≤

∫ s

t
g(r)dr

where g is a dominating function for γ. This implies in particular that γk is absolutely
continuous and |γ̇k(t)| ≤ g(t) almost everywhere. Let us denote by w : [a, b] → R the
function defined by

w(t) =

{
supk |γ̇k(t)| if γk is differentiable at t for all k,

0 else.

We then have almost everywhere

w(t) = sup
k

lim
ε→0

|γk(t+ ε)− γk(t)|
|ε|

≤ lim
ε→0

d(γ(t), γ(t+ ε))

|ε|
= vγ(t) ≤ g(t),

in particular w(t) is integrable. It is a dominating function for γ because

d(γ(t), γ(t+ ε)) = sup
k∈N
|γk(t+ ε)− γk(t)| ≤

∫ t+ε

t
w(u)du.

We have thus proved the following facts:

(i) vγ is smaller or equal than any dominating function for γ.

(ii) w ≤ vγ .

(iii) w is dominating function for γ.
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It follows that vγ = w and is therefore the smallest dominating function.

Remark. The above proposition says that the metric derivative of an absolutely continuous
curve in a separable metric space exists a.e., is an integrable function and satisfies

`t2t1(γ) ≤
∫ t2

t1

vγ(t)dt (3)

for any a ≤ t1 ≤ t2 ≤ b. Furthermore, if X = `∞, then we have a.e.

vγ(t) = sup
k∈N
|γ̇k(t)|.

Theorem 6.4. Let γ : [0, 1] → X be a continuous curve in a separable metric space (X, d).
Then it is absolutely continuous if and only if it is metrically differentiable almost everywhere,
the function vγ is integrable and we have

`t2t1(γ) =

∫ t2

t1

vγ(t)dt

for any a ≤ t1 ≤ t2 ≤ b.

Proof. Fix m ∈ N and consider the uniform subdivision σ = [a = t1 < t2, . . . , , < tm = b] of
the interval [a, b] defined by ti = a+ (b− a)ε, where ε = i−1

m−1 . We then have

1

ε

∫ a−ε

b
d(γ(t), γ(t+ ε))dt =

1

ε

m−2∑
i=1

∫ ε

0
d(γ(ti + s), γ(ti+1 + s))ds

≤ 1

ε

∫ ε

0
`(γ)dt = `(γ).

We therefore have∫ a

b
vγ(t)dt =

∫ a−ε

b
lim
ε→0

d(γ(t), γ(t+ ε))

ε
dt ≤ lim inf

ε→0

∫ a−ε

b

d(γ(t), γ(t+ ε))

ε
dt ≤ `(γ).

The reverse inequality has been proved above in (3), which concludes the proof of the Theo-
rem.

7 Reparametrization and natural parametrization of a recti-
fiable curve

Definition 7.1. One says that a curve γ̃ : [ã, b̃]→ X in a metric space (X, d) is a reparametriza-
tion of the curve γ : [a, b]→ X if there exists a function g : [a, b]→ [ã, b̃] such as

(i) g is continuous, monotone and surjective.

(ii) If g(t1) = g(t2) for some t1, t2 ∈ [a, b], then γ(t1) = γ(t2).
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(iii) γ = γ̃ ◦ g.

Unsurprisingly the length of a curve is invariant under reparametrization.

Proposition 7.2. Let γ̃ be a reparametrization of the curve γ. Then γ̃ is rectifiable if and
only if so is γ. In that case both curves have the same length.

Proof. Let us assume γ = γ̃ ◦ g where the function g is as in the above definition.
Fix an arbitrary partition σ = [a = t0 ≤ t1 ≤ · · · ≤ tm = b] of the interval [a, b] and set
t̃j = g(tj), then σ̃ = [ã = t̃0 ≤ t̃1 ≤ · · · ≤ t̃m = b̃] is a partition of [ã, b̃] and we clearly have

m∑
k=1

d(γ(tk−1), γ(tk)) =
m∑
k=1

d(γ̃(t̃k−1), γ̃(t̃k)) ≤ `(γ̃).

Taking the supremum over all partitions of [a, b] gives us the inequality `(γ) ≤ `(γ̃).

The proof of the converse inequality is almost the same but we have to take care of the fact
that g might be non injective. Namely let us consider an arbitrary partition σ̃ = [ã = u0 ≤
u1 ≤ · · · ≤ um = b̃] of [ã, b̃]. For each k chose an element tk ∈ g−1(uk) with the convention
that t0 = a and tm = b. Then σ = [a = t0 ≤ t1 ≤ · · · ≤ tm = b] is a partition of [a, b] which
is mapped by g to σ and we have

m∑
k=1

d(γ̃(uk−1), γ̃(uk)) =
m∑
k=1

d(γ(tk−1), γ(tk)) ≤ `(γ).

Taking now the supremum over all partitions of [ã, b̃] yields `(γ̃) ≤ `(γ).

Definition. A rectifiable curve γ : [a, b] → X in a metric space is said to be naturally
parametrized, or parametrized by its arc length if for any a ≤ s1 < s2 ≤ b we have

`s2s1(γ) = s2 − s1.

Remark. A curve that is naturally parametrized is clearly 1-Lipschitz. In particular it is
absolutely continuous. Furthermore it follows from Theorem 6.4 that γ has almost everywhere
unit speed:

vγ(t) = lim
ε→0

d(γ(t), γ(t+ ε))

|ε|
= 1 for a.e. t ∈ [a, b].

In particular it is not constant on any (non trivial) interval. Observe also that `(γ) = b− a.

Theorem 7.3. Let γ : [a, b]→ X be an arbitrary rectifiable curve. Then γ can be reparametrized
by its arc length.

Proof. Let us set L = `(γ) and denote by g : [a, b] → [0, L] the arclength function of γ.
Recall that g(t) = `ta(γ) and g is continuous by Proposition 4.6. It is clearly monotone and
since g(a) = 0 and g(b) = L the function g is also surjective. Furthermore, if g(t1) = g(t2)
with a ≤ t1 ≤ t2 ≤ b, then γ(t1) = γ(t2) because

d(γ(t1), γ(t2)) ≤ `t2t1(γ) = `t2a (γ)− `t1a (γ) = g(t2)− g(t1) = 0.
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The function g is generally not injective, but it has a left inverse defined by

h(s) = inf{t ∈ [a, b] | `ta(γ) = s},

we indeed clearly have g(h(s)) = s for any s ∈ [a, b]. We claim that the function γ̃ = γ ◦ h :
[0, L]→ X is 1-Lipschitz. Indeed we have for any 0 ≤ s1 ≤ s2 ≤ L

d(γ̃(s1), γ̃(s2)) = d(γ(h(s1)), γ(h(s2)) ≤ `h(s2)h(s1)
(γ) = g(h(s2))− g(h(s1)) = s2 − s1.

In particular γ̃ is a continuous curve and it is a reparametrization of γ since γ = γ̃ ◦ g where
g satisfies the three conditions in Definition 7.1. Using the definition of h and the previous
Proposition we have for any s ∈ [0, L]

`s0(γ̃) = `h(s)a (γ) = s,

and therefore
`s2s1(γ̃) = `s20 (γ̃)− `s10 (γ̃) = s2 − s1

for any a ≤ s1 < s2 ≤ b.

Remark. Using Theorem 6.4 we observe that if the curve γ is absolutely continuous, then
the reparametrization function can be written as

g(t) =

∫ t

a
vγ(u)du.
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