Nearest Point Projection on Convex Set

Recall that a subset C of a geodesic metric space (X, d) is convex if for any geodesic segment $[p, q] \subset X$ we have

$$
p, q \in C \quad \Rightarrow \quad[p, q] \subset C .
$$

We say that the space has strictly convex balls if for any point $o \in X$ and any geodesic segment $[p, q] \subset X$, we have

$$
x \in[p, q], x \neq p, x \neq q \quad \Rightarrow \quad d(p, x), \max \{d(o, p), d(o, q)\} .
$$

In class we have proved the following:
Proposition 1. Let (X, d) be a metric space with strictly convex balls. Then for any closed convex set $C \subset X$ there exists a map $\pi_{C}: X \rightarrow C$ such that for any points $x \in X$ and $y \in C$ we have

$$
d\left(x, \pi_{C}(x)\right) \leq d(x, y)
$$

with equality if and only if $y=\pi_{C}(x)$.
The map π_{C} is called the nearest point projection map of X onto C.
It is obvious that any $\operatorname{CAT}(0)$ space has strictly convex balls. We will prove the following result:

Proposition 2. In a $\operatorname{CAT}(0)$ space (X, d) the nearest point projection map onto a closed convex subset C is 1-Lipschitz.

We will need the following lemma:
Lemma 3. Let x, u, v be three points in a CAT(0) space X. Assume that $d(x, u) \leq d(x, w)$ for all point $w \in[u, v]$. Then the Alexandrov angle at u of the triangle xuv satisfies

$$
\angle_{u}(x, v) \geq \frac{\pi}{2} .
$$

Proof. Observe first that for any point $z \in[x, u]$ and any $w \in[u, v]$ we have

$$
\begin{equation*}
d(z, u)=d(x, u)-d(x, z) \leq d(x, w)-d(x, z) \leq d(z, w) . \tag{1}
\end{equation*}
$$

We claim that

$$
\widetilde{Z}_{u}^{0}(z, w) \geq \frac{\pi}{2} .
$$

Suppose otherwise, that is the Euclidean comparison triangle $\triangle^{\prime} z^{\prime} u^{\prime} w^{\prime}$ of $\triangle z u w$ has an angle $<\frac{\pi}{2}$ at u^{\prime}. This would implies the existence of a point $\tilde{w}^{\prime} \in\left[u^{\prime}, w^{\prime}\right]$ such that $\left\|z^{\prime}-\tilde{w}^{\prime}\right\|<$ $\left\|z^{\prime}-u^{\prime}\right\|$ an the point $\tilde{w} \in[u, w] \subset[u, v]$ corresponding to \tilde{w}^{\prime} would satisfy:

$$
d(z, \tilde{w}) \leq\left\|z^{\prime}-\tilde{w}^{\prime}\right\|<\left\|z^{\prime}-u^{\prime}\right\|=d(z, u),
$$

contradicting (11). If we now let $z \in[y, u]$ and $w \in[u, v]$ converge to u we then have

$$
\angle_{u}(x, v)=\lim _{z, w \rightarrow u} \tilde{\angle}_{u}^{0}(z, w) \geq \frac{\pi}{2} .
$$

Proof of the Proposition. We first prove the proposition in the case $X=\mathbb{R}^{n}$. Let us consider a closed convex subset $C \subset \mathbb{R}^{n}$ with non empty complement and let $x, y \in \mathbb{R}^{n} \backslash C$. Let us denote by $u=\pi_{C}(x)$ and $v=\pi_{c}(y)$ their projections on C. We observe that the points u and v satisfy the conditions

$$
\langle x-u, w-u\rangle \leq 0, \quad \text { and } \quad\langle y-v, w-v\rangle \leq 0
$$

for any $w \in C$, where $\langle\cdot, \cdot\rangle$ is the standard scalar product. In particular we have

$$
\delta=\langle(x-u)-(y-v),(u-v)\rangle \geq 0 .
$$

We therefore have

$$
\begin{aligned}
\|x-y\|^{2} & =\|(x-u)-(y-v)+(u-v)\|^{2} \\
& =\|(x-u)-(y-v)\|^{2}+\|u-v\|^{2}+2 \delta \\
& \geq\|u-v\|^{2},
\end{aligned}
$$

that is $\left\|\pi_{C}(x)-\pi_{C}(y)\right\| \leq\|x-y\|$. The Corollary is proved in the Euclidean case.
Let us now consider a general $\operatorname{CAT}(0)$ space (X, d) and $C \subset X$ a closed convex subset. Given $x, y \in X \backslash C$ with projections $u=\pi_{C}(x)$ and $v=\pi_{c}(y)$. For any point $w \in[u, v]$ we have $d(x, w) \geq d(x, u)$ since $[u, v] \subset C$. Using previous Lemma we obtain:

$$
\begin{equation*}
\angle_{u}(x, v) \geq \frac{\pi}{2}, \tag{2}
\end{equation*}
$$

where $L_{u}(x, v)$ is the Alexandrov angle at u of the triangle $\triangle x u v$. Likewise we have

$$
\begin{equation*}
\angle_{v}(y, u) \geq \frac{\pi}{2} . \tag{3}
\end{equation*}
$$

We now construct a quadrilateral $x^{\prime}, y^{\prime}, v^{\prime}, u^{\prime}$ in \mathbb{R}^{2} such that $\triangle^{\prime} x^{\prime} u^{\prime} v^{\prime}$ is a comparison triangle for $\triangle x u y$ and $\triangle^{\prime} u^{\prime} y^{\prime} v^{\prime}$ is a comparison triangle for $\triangle u y v$ with the line through u and y separating x from v. Using the CAT(0) condition we have

$$
\angle_{v^{\prime}}\left(y^{\prime}, u^{\prime}\right) \geq \angle_{v}(y, u) \geq \frac{\pi}{2} .
$$

The proof now subdivides in two cases.
Case 1. The quadrilateral $x^{\prime} u^{\prime} v^{\prime} y^{\prime}$ is convex at u^{\prime}, that is $\angle_{u^{\prime}}\left(x^{\prime}, y^{\prime}\right)+\angle_{u^{\prime}}\left(y^{\prime}, v^{\prime}\right) \leq \pi$. In that case we have

$$
\begin{aligned}
\angle_{u^{\prime}}\left(x^{\prime}, v^{\prime}\right) & =\angle_{u^{\prime}}\left(x^{\prime}, y^{\prime}\right)+\angle_{u^{\prime}}\left(y^{\prime}, v^{\prime}\right) & & \\
& \geq \angle_{u}(x, y)+\angle_{u}(y, v) & & \text { from the } \operatorname{CAT}(0) \text { condition } \\
& \geq \angle_{u}(x, v) & & \text { from the triangle inequality for Alexandrov's angles } \\
& \geq \frac{\pi}{2} & & \text { from (2). }
\end{aligned}
$$

We therefore have

$$
\left\langle x^{\prime}-u^{\prime}, v^{\prime}-u^{\prime}\right\rangle \leq 0, \quad \text { and } \quad\left\langle y^{\prime}-v^{\prime}, u^{\prime}-v^{\prime}\right\rangle \leq 0,
$$

Figure 1: The configuration in case 1
and the previous proof implies that $\left\|u^{\prime}-v^{\prime}\right\| \leq\left\|x^{\prime}-y^{\prime}\right\|$. We then conclude that

$$
d_{X}(u, v)=\left\|u^{\prime}-v^{\prime}\right\| \leq\left\|x^{\prime}-y^{\prime}\right\|=d_{X}(x, y) .
$$

Case 2. The quadrilateral $x^{\prime} u^{\prime} v^{\prime} y^{\prime}$ is not convex at u^{\prime}, that is $\angle_{u^{\prime}}\left(x^{\prime}, y^{\prime}\right)+\angle_{u^{\prime}}\left(y^{\prime}, v^{\prime}\right)>\pi$. Let us denote by $\triangle \bar{x} \bar{y} \bar{v}$ the Euclidean triangle with side length

$$
\|\bar{x}-\bar{y}\|=\left\|x^{\prime}-y^{\prime}\right\|, \quad\|\bar{v}-\bar{y}\|=\left\|v^{\prime}-y^{\prime}\right\| \quad \text { and } \quad\|\bar{x}-\bar{v}\|=\left\|x^{\prime}-u^{\prime}\right\|+\left\|u^{\prime}-v^{\prime}\right\| .
$$

By Alexandrov's lemma we have

$$
\angle_{\bar{v}}(\bar{x}, \bar{y}) \geq \angle_{v^{\prime}}\left(u^{\prime}, y^{\prime}\right) \geq \frac{\pi}{2} .
$$

Therefore $\|\bar{x}-\bar{y}\|>\|\bar{x}-\bar{v}\|$ and we thus have

$$
\left\|u^{\prime}-v^{\prime}\right\| \leq\|\bar{x}-\bar{v}\| \leq\|\bar{x}-\bar{y}\|=\left\|x^{\prime}-y^{\prime}\right\|,
$$

which implies $d_{X}(u, v) \leq d_{X}(x, y)$.

Figure 2: The configuration in case 2

