
Nearest Point Projection on Convex Set

Recall that a subset C of a geodesic metric space (X, d) is convex if for any geodesic segment
[p, q] ⊂ X we have

p, q ∈ C ⇒ [p, q] ⊂ C.

We say that the space has strictly convex balls if for any point o ∈ X and any geodesic
segment [p, q] ⊂ X, we have

x ∈ [p, q], x 6= p, x 6= q ⇒ d(p, x),max{d(o, p), d(o, q)}.

In class we have proved the following:

Proposition 1. Let (X, d) be a metric space with strictly convex balls. Then for any closed
convex set C ⊂ X there exists a map πC : X → C such that for any points x ∈ X and y ∈ C
we have

d(x, πC(x)) ≤ d(x, y),

with equality if and only if y = πC(x).

The map πC is called the nearest point projection map of X onto C.
It is obvious that any CAT(0) space has strictly convex balls. We will prove the following
result:

Proposition 2. In a CAT(0) space (X, d) the nearest point projection map onto a closed
convex subset C is 1-Lipschitz.

We will need the following lemma:

Lemma 3. Let x, u, v be three points in a CAT(0) space X. Assume that d(x, u) ≤ d(x,w)
for all point w ∈ [u, v]. Then the Alexandrov angle at u of the triangle xuv satisfies

∠u(x, v) ≥ π

2
.

Proof. Observe first that for any point z ∈ [x, u] and any w ∈ [u, v] we have

d(z, u) = d(x, u)− d(x, z) ≤ d(x,w)− d(x, z) ≤ d(z, w). (1)

We claim that
∠̃0
u(z, w) ≥ π

2
.

Suppose otherwise, that is the Euclidean comparison triangle 4′z′u′w′ of 4zuw has an angle

<
π

2
at u′. This would implies the existence of a point w̃′ ∈ [u′, w′] such that ‖z′ − w̃′‖ <

‖z′ − u′‖ an the point w̃ ∈ [u,w] ⊂ [u, v] corresponding to w̃′ would satisfy:

d(z, w̃) ≤ ‖z′ − w̃′‖ < ‖z′ − u′‖ = d(z, u),

contradicting (1). If we now let z ∈ [y, u] and w ∈ [u, v] converge to u we then have

∠u(x, v) = lim
z,w→u

∠̃0
u(z, w) ≥ π

2
.
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Proof of the Proposition. We first prove the proposition in the case X = Rn. Let us
consider a closed convex subset C ⊂ Rn with non empty complement and let x, y ∈ Rn \ C.
Let us denote by u = πC(x) and v = πc(y) their projections on C. We observe that the points
u and v satisfy the conditions

〈x− u,w − u〉 ≤ 0, and 〈y − v, w − v〉 ≤ 0

for any w ∈ C, where 〈·, ·〉 is the standard scalar product. In particular we have

δ = 〈(x− u)− (y − v), (u− v)〉 ≥ 0.

We therefore have

‖x− y‖2 = ‖(x− u)− (y − v) + (u− v)‖2

= ‖(x− u)− (y − v)‖2 + ‖u− v‖2 + 2δ

≥ ‖u− v‖2,

that is ‖πC(x)− πC(y)‖ ≤ ‖x− y‖. The Corollary is proved in the Euclidean case.

Let us now consider a general CAT(0) space (X, d) and C ⊂ X a closed convex subset. Given
x, y ∈ X \ C with projections u = πC(x) and v = πc(y). For any point w ∈ [u, v] we have
d(x,w) ≥ d(x, u) since [u, v] ⊂ C. Using previous Lemma we obtain:

∠u(x, v) ≥ π

2
, (2)

where ∠u(x, v) is the Alexandrov angle at u of the triangle 4xuv. Likewise we have

∠v(y, u) ≥ π

2
. (3)

We now construct a quadrilateral x′, y′, v′, u′ in R2 such that4′x′u′v′ is a comparison triangle
for 4xuy and 4′u′y′v′ is a comparison triangle for 4uyv with the line through u and y
separating x from v. Using the CAT(0) condition we have

∠v′(y
′, u′) ≥ ∠v(y, u) ≥ π

2
.

The proof now subdivides in two cases.

Case 1. The quadrilateral x′u′v′y′ is convex at u′, that is ∠u′(x′, y′) +∠u′(y′, v′) ≤ π. In that
case we have

∠u′(x′, v′) = ∠u′(x′, y′) + ∠u′(y′, v′)
≥ ∠u(x, y) + ∠u(y, v) from the CAT(0) condition
≥ ∠u(x, v) from the triangle inequality for Alexandrov’s angles

≥ π

2
from (2).

We therefore have

〈x′ − u′, v′ − u′〉 ≤ 0, and 〈y′ − v′, u′ − v′〉 ≤ 0,
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Figure 1: The configuration in case 1

and the previous proof implies that ‖u′ − v′‖ ≤ ‖x′ − y′‖. We then conclude that

dX(u, v) = ‖u′ − v′‖ ≤ ‖x′ − y′‖ = dX(x, y).

Case 2. The quadrilateral x′u′v′y′ is not convex at u′, that is ∠u′(x′, y′) + ∠u′(y′, v′) > π.
Let us denote by 4x̄ȳv̄ the Euclidean triangle with side length

‖x̄− ȳ‖ = ‖x′ − y′‖, ‖v̄ − ȳ‖ = ‖v′ − y′‖ and ‖x̄− v̄‖ = ‖x′ − u′‖+ ‖u′ − v′‖.

By Alexandrov’s lemma we have

∠v̄(x̄, ȳ) ≥ ∠v′(u
′, y′) ≥ π

2
.

Therefore ‖x̄− ȳ‖ > ‖x̄− v̄‖ and we thus have

‖u′ − v′‖ ≤ ‖x̄− v̄‖ ≤ ‖x̄− ȳ‖ = ‖x′ − y′‖,

which implies dX(u, v) ≤ dX(x, y).
�
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Figure 2: The configuration in case 2
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