Solution to Exercise 1.5

We recall that h being concave means that for all $t \in [0,1]$ and for all $x, y \in \mathbb{R}_+$ we have

$$h(tx + (1 - t)y) \ge th(x) + (1 - t)h(y).$$

The proof is made in three steps.

- 1. First see that for all $x, y \in \mathbb{R}_+$, $h(x) + h(y) \ge h(x+y)$, indeed, suppose $t = \frac{x}{x+y}$, then t(x+y) = x and (1-t)(x+y) = y, thus
 - (a) $h(x) = h(t(x+y)+0) \ge th(x+y)$ since h(0) = 0.
 - (b) $h(y) = h(0 + (1 t)(x + y)) \ge (1 t)h(x + y)$ since h(0) = 0.

Adding (a) and (b) gives what we want.

2. We also need to prove that h is non-decreasing: Suppose it is not the case, then there would exist $t_0 \in \mathbb{R}_+$ where h'(t) changes its sign, i.e. there would exist $t_1 > t_0$ such that

$$h(t_0) > h(t_1) + \delta \tag{1}$$

for $\delta > 0$. Let $t_2 > t_1$, then $t_1 = t_0 + \lambda(t_2 - t_0)$ where $\lambda = \frac{t_1 - t_0}{t_2 - t_0} \le 1$. Thus:

$$h(t_1) = h(\lambda t_2 + (1 - \lambda)t_0) \ge \frac{t_1 - t_0}{t_2 - t_0}h(t_2) - (1 - \lambda)h(t_0)$$
(2)

but then, combining (1) and (2), we get

$$\delta < -\lambda h(t_2) + \lambda h(t_0) \le \lambda h(t_0).$$

Because $h(t_2) \ge 0$ and $\lambda \ge 0$. But λ goes to 0 as t_2 goes to infinity, so we get the contradiction since δ is positive.

- 3. We now can prove that $\rho := h \circ d$ is indeed a metric.
 - Symmetry is clear.
 - $\rho(x,x) = h(d(x,x)) = h(0) = 0.$
 - Since h is non decreasing, $\rho(x, y) = h(d(x, y)) > 0$ if $x \neq y$.
 - Let $x, y, z \in X$, then, using points 1) and 2), we have

$$\rho(x,z) = h(d(x,z)) \le h(d(x,y) + d(y,z)) \le h(d(x,y)) + h(d(y,z)) = \rho(x,y) + \rho(y,z).$$

Which proves that ρ is a metric.