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Outline

* Data provenance by example
* Relational algebra for data provenance

* Datalog for data provenance
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explain how a particular
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Data Provenance

Data provenance aims to

explain how a particular
query result was obtained.

)4
RxS: A B C D E
join on B
a b c d e|p*g
q
means: was obtained

from both p and ¢4



Data Provenance (2)

C
C |p
Rus: A B C
union o
C a b Cc




Data Provenance (2)

C
means: was obtained
from either p or ¢4
C |p
RuS: A B C
union o b ¢ | prg
C




Data Provenance (3)

c//

projection

ﬂAB(R):

b prg+r

means: was obtained
from either p, g, or r



Data Provenance (4)

A B C

a b c | p
d b e r
f g e s

H Qo  » o | P

® ®6 Q0 0O Q|Q

190
(pr) * 1
(rp) *o
(2 +rs+r2) *1

GZ+rs+52)*1



Data Provenance (4)

A B C

a b c | p
b e |r

f g e s

H Qo  » o | P

z2+rs+12) *1

C

c [@p2+p)*o
e |@r)*r

c |p)*o

e

e

GZ+rs+52)*1

for selection, multiply
by 1 or o.



Why would this be usetful?

Q = OCc=e Tl'Ac( 7Z'AcR X ﬂBcR U TL'ABR X T[BcR)

A B C

a b c |p
d b e |r
£ g e k)

H Qo  » o | P

rz+rs+1r2) *1

C

c [@p2+p)*o
e |((pr)*1

c |p)*o

e

e

GZ+rs+52)*1

for selection, multiply
by 1 or o.



Why would this be usetful?

Q: A C
a c |@pr+p)*o=0
a e |@pr)*r=10
d c [Gp)*o=0
Q = 0c-c ac( macR i 7scR U xR 7scR) d e |(ers+r)*r=s5
£ e |[(+rs+s)*1=7
A B C
a b cC | p=2
b e ri=yg
£ g e P for bag semantics,

consider annotations as
multiplicities



Why would this be usetful?

Q: A C
a c |+ pD)*o=((b.AD) Vv (b:nD)) A false
a e |(r)*1=(b:rb) Atrue
d C |[(p)*o=(b.nb) A false
d e |(r+rs+r)*1= b,V (boAD) Vv b)) A true
f e |(Z+rs+52)*1=(b;v (boADy) Vv by) Atrue
B C
b c | p=b
b e |r=b for incomplete databases, consider
g e | s=¢ annotations as boolean values,

*as A, +as vV, I as true, and o as false



Data Structure

Relations are mappings from tuples to annotations in K; we require that

R(®) # o for only finitely many tuples £.
intuitively, “+” means “alternative use” corresponds to union
“*” means “joint use” and corresponds to join

“0” and “1” are special annotations

But what is a query languages for such relations?



Data Structure

Relations are mappings from tuples to annotations in K; we

require that R(#) + o for only finitely many tuples ¢.

«

intuitively, “+” means “alternative use” corresponds to union
TR

means “joint use” and corresponds to join

“0” and “1” are special annotations

But what is (K,+,*0,1) and how are annotations computed?



Positive Algebra



Positive Algebra

DEFINITION 3.2. Let (K,+,-,0,1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U, there is () :
U-Tup — K such that O(t) = 0.

union If Ri, R : U-Tup — K then Ri UR2 : U-Tup — K
15 defined by

def

(R1UR2)(t) = Ri(t)+ Ra(t)

projection If R : U-Tup — K and V C U then Ty R :
V-Tup — K 1s defined by

(TvR)(t) = ) R(t)
t=t’ on V and R(t’)#0

(here t =t on V means t' is a U-tuple whose restric-
tion to V' 1is the same as the V-tuple t; note also that
the sum is finite since R has finite support)



Positive Algebra (2)

selection If R : U-Tup — K and the selection predicate
P maps each U-tuple to either 0 or 1 then OpR :
U-Tup — K 1s defined by

(OpR)(t) = R(t)-P(t)

Which {0, 1}-valued functions are used as selection pred-
wcates 1s left unspecified, except that we assume that

false—the constantly 0 predicate, and true—the con-

stantly 1 predicate, are always available.

natural join If R; : U;-Tup — K 1 =1,2 then R1 X Ry is
the K-relation over Uy U Uz defined by

(R1 X R2)(t) & Ri(t1) - Ra(tz)

where t1 =t on Uy and t2 =t on Us (recall that t is a

Uy U Us-tuple).

renaming [f R:U-Tup — K and B :U — U’ is a bijection
then ,%R is a K -relation over U’ defined by

def

(PsR)(t) = R(top)



What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity 0;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) = (0 and Utrue<R) = R.

hold for the positive algebra on K-relations if and only if
(K,+,-,0,1) is a commutative semiring.



What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity 0;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) =0 and Utrue(R) = R.

hold for the positive algebra on K-relations if and only if
(K,+,-,0,1) is a commutative semiring.

Note that the list does not con.ta.m
idempotence of union and self join,
as these fail for set semantics



What is K?
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What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity (;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) =0 and Utrue<R) = R.
hold for the positive algebra on K-relations if and only if

(K,+,-,0,1) is a commutative semiring.

Def. A commutative semiring is a structure (K,+,* 0,1) where

® .+ is commutative, associative, with identity o
® *js associative with identity 1
e * distributes over +

® s*0=0%a=0



What is K?

Def. A commutative semiring is a structure (K,+,* 0,1) where
® .+ is commutative, associative, with identity o
® *js associative with identity 1
e * distributes over +

® s*0=0%a=0

Examples:

e the natural numbers: (N, +, * o, 1)
o the booleans: (B, A, v, true, false)

® subsets of a set: (P(12), U, n, J, 2

e the naturals with infinity: (N=, +, * 0, 1)

e polynomials in X: (N[X/, +,* 0, 1)



The fundamental property of RA

For every query g and every homomorphism of
commutative semirings h : K, — K, the following

“commutes”:
h
K,-data » K,-data
q q
¥ h K.-d
K,-data » K,-data

Recall, semiring homomorphism is mapping »:K; — K, such that

h(ix) = 1k h(oxs) = ok
h(a+x: b) = h(@ +x. h(B) h(a*c: b) = h(@ *. h(B)



The fundamental property of RA

For every query g and every homomorphism of
commutative semirings h : K, — K, the following

“commutes”:
h
K,-data K, dats
q q
Works only if 4 in I}A*.
L Does not generalize
o 26 e.g. to negation.

Recall, semiring homomorphism is mapping »:K; — K, such that

h(ix) = 1k h(oxs) = ok
h(a+x: b) = h(@ +x. h(B) h(a*c: b) = h(@ *. h(B)



Which semiring do we choose?

DEFINITION 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomaals with variables

(a.k.a. indeterminates) from X and coefficients from N, with
the operations defined as usual*: (N[X],+,-,0,1).



Which semiring do we choose?

DEFINITION 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomaals with variables

(a.k.a. indeterminates) from X and coefficients from N, with
the operations defined as usual*: (N[X],+,-,0,1).

But why?



A nice property of N{X}

If K is a commutative semiring, then any function
on tokens, f: X — K extends uniquely to a
homomorphism h: N[X] — K.

Example: K= (N, + % 0, 1), X= .9},
f{pgl — Kbe f(p)=3 and f(q?= 5.
Then the extension of fis
bh: N[X} — K and “evaluates” the
polynomial

(e.g bh(p+29)=13)



Nice + Fundamental

query ma

ma(R): A

R: A B
homomorphism A a b
a d

——

Example: K= (N, + % 0, 1), X= g, s
f{pgl — Kbe f(p)=3 and flg-=s-
Then the extension of fis
h- N[XJ — K and “evaluates” the
polynomial

(e.g bh(p+29)=13)

homom




Nice + Fundamental

query ma

ma(R): A

R: A B
homomorphism A a b
a d
Example: K= (N, + % 0, 1), X= .9},
f{pgl — K be f(p)=3 and f(@)=5.
Then the extension of f is
- N{X] — K and “evaluates” the
polynomial quety 7
(e.g. h(p+29)=13)
ma(R): A
a

homomorphism 5




Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.



Free the semiring!

“Nice” implies: For every commutative semiring K, and every

K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

qR):

A B
a b
a
query q
A B
a b

15)
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Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

2 R: A B
b P Eval, a b
d a

query q

qR): A B

15)
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q(R):

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

A B R: A
a b P Eval, a
a d a
query q query q
A B qR): A

a b Pq Eval, a

15)



~|

q(R):

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

A B R: A
a b p Eval, a
a d a

>
o

THEOREM 4.3. For any RAT query q¢ we have

query q . query q

qg(R) = Eval, oq(R)

qR): A

a b Pq Eval, a

15)



Instantiation of Positive Algebra

(B, A, v, true, false) Set semantics
(N, +,%0,1) Bag semantics
(P(2), u,n, 3, ) Probabilistic events

(BoolExp(P), v, A, true, false) Conditional tables

(A, min, max, o, P) where

A=P<C<S<T<0O

Access control levels



More nice...

Example: 2x%y + xy + 5% + z

NIX]

drop coefficients / \ drop exponents
X2y +xy+yr+z B[X] Trio(X) 3xy+ 5y +z

drop both exp. and coeff. /
Xy +y+2z Why(X)

/ \ apply absorption

b+b=>b
Lin(X) PosBool(X) (b + )

y+z

collapse terms
Xyz

A path downward from K, to K, indicates that there exists an
onto (surjective) semiring homomorphism h: K, — K,



More nice...

Example: 2x%y + xy + 5% + z

most informative
NI[X]

drop coefficients / \ drop exponents
X2y +xy+yr+z B[X] Trio(X) 3xy+ 5y +z

/

drop both exp. and coeff.

Xy +y+2z Why(X)
/ \ apply absorption
collapse terms . (ab + b = b)
2 Lin(X) PosBool(X) y+z least informative

A path downward from K, to K, indicates that there exists an
onto (surjective) semiring homomorphism h: K, — K,



Datalog



Syntax and Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q: a a ldb
a b a b
edb bb bb
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edb bb bb
Q(a,b)

Q(wv y) - R(LU, Z)v R(Za y)

/ AN
R(a,a) R(a,b)
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Syntax and Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q: aa idb
ab ab
edb bb bb
Q(a,b) Q(a,b)
| |
Q(xay) = R(LU,Z),R(Z,:(/) Q(xay) = R(LU,Z),R(Z,:(/)
yd AN / AN
R(a,a) R(a,b) R(a,b) R(b,b)
Q(a,a) Q(b,b)
| |
Q(xay) - R(CIZ,Z),R(Z,y) Q(CIZ,y) = R(CC,Z),R(Z,y)
yd AN / AN

R(a,a) R(a,a) R(b,b) R(b,b)



Datalog with Bag Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q:l aa
ab ab
bb bb

Q(a,b)
|
Q(xa y) = R(LU, Z)a R(Za y)
/ AN
R(a,a) R(a,b)
Q(a,a)

Q(CE‘, y) - R(CIZ, Z)? R(Z, y)

/ AN
R(a,a) R(a,a)

Q(a,b)
|
Q(wv y) - R(LU, Z)v R(Za y)

/N
R(a,b) R(b,b)

Q(b,b)
|
Q(CIZ, y) - R(CE, Z)? R(Z, y)

N\
R(b,b) R(b,b)



Datalog with Bag Semantics

Q(a,b)

Q(ZL’, y) - R(CE, Z)? R(Za y)

/ AN
R(@a,a) R(a,b)

Qa,a)

Q(CE, y) = R(.QZ, Z)? R(Z7 y)

/ AN
R(a,a) R(a,a)

Q(mv y) -~ R(Jj, Z)v R(Za y)

laal 2 Q| aa
ab |3 ab
bb | 4 bb Q(a,b)

Q(QZ, y) .- R(ZL‘, Z)? R(Zv y)

/ AN
R(a,b) R(b,b)

Q(b,b)
|

Q(CB, y) - R(SC, Z)? R(Z, y)

N\
R(b,b) R(b,b)



Datalog with Bag Semantics

Q(a,b)

Q(ZL’, y) - R(CE, Z)? R(Za y)

/ AN
R(@a,a) R(a,b)

Qa,a)

Q(CC, y) = R(.QZ, Z)? R(Zv y)

/ AN
R(a,a) R(a,a)

Q(mv y) -~ R(Jj, Z)v R(Za y)

laa|2] Qlaa|2-2=4
ab |3 ab|2-3+3-4=18
bb |4 bb|4-4=16

Q(@a,b)
|

Q(QZ, y) .- R(ZL‘, Z)? R(Zv y)

/ AN
R(a,b) R(b,b)

Q(b,b)
|

Q(CU, y) - R(SC, Z)? R(Z, y)

N\
R(b,b) R(b,b)



What annotations do we need?

Q(a,b)

Q(ZL’, y) - R(CE, Z)? R(Za y)

/ AN
R(@a,a) R(a,b)

Qa,a)

Q(CC, y) = R(.QZ, Z)? R(Zv y)

/ AN
R(a,a) R(a,a)

Q(mv y) -~ R(Jj, Z)v R(Za y)

laa|2] Qlaa|2-2=4
ab |3 ab|2-3+3-4=18
bb |4 bb|4-4=16

Q(@a,b)
|

Q(QZ, y) .- R(ZL‘, Z)? R(Zv y)

/ AN
R(a,b) R(b,b)

Q(b,b)
|

Q(CU, y) - R(SC, Z)? R(Z, y)

N\
R(b,b) R(b,b)



What annotations do we need?

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:laa |2 Qlaal|2-2=4
ab|3 ab|2-34+3-4=18
Q(‘i"b) bb |4 bb [4-4=16 Q(Tab)

Q(z,y) - R(z, 2), R(z,y) Q(x,y) - R(z, z), R(z,y)
/ N / N
R(a,a) R(a,b) R(a.b) R(b,b)

How about: the tag of an answer tuple is the % ’
(a.0) sum over all derivation trees and the product
Q T’a of the tags of each leat. Q(b,b)
: |
) (R)(t) = R(t)
Q(x’y)/ R(a}72)\,R(Z’y) q T yi%is t ( t’elel;)J;zS(T) ) Q(xay) - R(x,z),R(z,y)
R(a,a) R(a,a) - p

R(b,b) R(b,b)



What annotations do we need?

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:laa | 2 Qlaal|2-2=4
(,b) CLb 2'3+3'4:18
QT bb |4 bb | 4-4=16 Qla,b)

— |
Q(xay) = R(CB,Z),R(Z,Q) Q(w,y) - R(a:,z),R(z,y)

o
S
S

R(a,a) R(a,b) R(a.b) R(b,b)

How about: the tag of an answer tuple is the % ’
(a.0) sum over all derivation trees and the product
Q T’a of the tags of each leaf. Q(b,b)
, |
_ q(R)(t) = R(t)
Q(z,y) - R(z,2), R(z,y) _ %S , ( t’Glel;)[es(T) ) Q(z,y) - R(z, 2), R(2,v)

R(a,a) R(a,a) R(b.b) R(b,b)

Problem: A tuple may have infinitely many ’ ’

derivation trees. Hence we need to work in
semirings in which infinite sums are defined.



(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (o-complete) when x; < x; < x < ... have suprema.

In naturally ordered semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def (w-continous) when * and + preserve suprema.
P P

(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.



(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring)

an order. Preorder: reflexive ar.ld trans1t1\.re.
Not necessarily antrsymme;nc
imoplies x=
Def- (w-complete) when x;< x, < x, < .. (x <y andy < ximp y

In naturally ordered semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def. (o-continous) when * and + preserve suprema.
(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.
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(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

when x; < x; < x, < ... have suprema.
urally ordere(d

< - . . . .
5= 75, but $#5 d semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def. (o-continous) when * and + preserve suprema.
(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.



(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (o-complete) when x; < x; < x < ... have suprema.

In naturally ordered semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def (w-continous) when * and + preserve suprema.
P P

(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.



Semantics of annotated Datalog

DEFINITION 5.1. Let (K,+,-,0,1) be a commutative
w-continuous semiring. 1o keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K -relation R define

amy= > ( I &)
T yields t ¢/ Eleaves(T)

where T ranges over all g-derivation trees for t and t' ranges
over all the leaves of T.



Semantics of annotated Datalog

DEFINITION 5.1. Let (K,+,-,0,1) be a commutative
w-continuous semiring. 1o keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K -relation R define

amy= > ( I &)
T yields t ¢/ Eleaves(T)

where T ranges over all g-derivation trees for t and t' ranges
over all the leaves of T.

For every query g and every homomorphism of
commutative semirings 1 : K, — K, the following

“commutes”;
h
K,-data K,-data
q q

K ,-data K,-data



Semantics of annotated Datalog

DEFINITION 5.1. Let (K,+,-,0,1) be a commutative
w-continuous semiring. 1o keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K -relation R define

amw= > ( II &)

T yields t t’ €leaves(T)

where T ranges over all g-derivation trees for t and t' ranges
over all the leaves of T.

fDatang w-continuos ~
For everyquery g and every homomorphism of

commutative semirings 1 : K, — K, the following
“commutes”:

h
K,-data K,-data

K ,-data K,-data



The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple
% infinite sums in annotations

In particular two kinds of infinite summations
* infinitely many copies of the same monomial —

coefhicients in N~ = IN U {co}

* infinitely many copies of different monomials — formal
power series K{{ X1}



The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple
% infinite sums in annotations

In particular two kinds of infinite summations
* infinitely many copies of the same monomial —

coefhicients in N~ = IN U {co}

* infinitely many copies of different monomials — formal
power series K{IX1} |
Formal power sertes:
basically polynomia.ls with
infinite summation



The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple

= infinite sums in annotations

In particular two kinds of infinite summations
* infinitely many copies of the same monomial —
coefficients in N>~ = N U {oo}

* infinitely many copies of different monomials — formal
power series K{{ X1}

DEFINITION 6.1. Let X be the set of tuple ids of a database
instance I. The datalog provenance semiring for I is the
commutative w-continuous semiring of formal power series

N=1X]).



Fixed Point Semantics

R:
Q(xay) - R(Zlﬁ,y)
Q(z,y) - Qz, 2),
Q(z,y)
(a)
R: ab | m Q(R):
acln
cb |p
bd | r
dd | s

(d)

=N W N

g|<|e|N|<|x

(e)

QR):l ab | 8
ac|3
cb |2
bd | oo * Transform immediate
dd | oo FO;
oo consequence Operator o Q.mto
(c) a union of conjunctive queries;
U X 2=
‘< —m it yz here RU (Q 1 Q) } }
y=n * Apply this RA query to R and Q.
4=D * Equate!

u=r7r-+uv
V:S—I—V2
W = XU + WV

(f)

This leads to system of equations of polynomials in

NOO[[m7 n? p? T? S]][X7 Y7 Z? u? V7 W]

As N~[{m,nprsl}is omega continuos, these equations have

least fixed points that can be computed.



Decidability

A tuple can have an annotations in any of the classes below:

It is decidable in which class the annotation of a tuple is.

N=[[X1]




Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

N=[[X1]




Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “<=” Assume such a tree exists:




Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “<=” Assume such a tree exists:

Then this is also a derivation tree: / \d
4, N




Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.



Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation
trees of height equal to (# of atoms +1).



Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation

trees of height equalte (# of atoms +1).



Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation

trees of height egual-te (# of atoms +1).

greater than
or equal



Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation

trees of height egual-te (# of atoms +1).

greater than
or equal

Thus there are only finitely many derivation trees.



Also decidable:

* given t € q(I), and a monomial p, the coefficient of W in the
power series that is the provenance of t is computable
(including when it is o).

g

* testing whether all coeflicients are # oo.

Not decidable:

* testing whether all coefhicients are 1.



Conclusion

A versatile framework for provenance computation.
Specializes to many known systems for provenance.

In a sense most general within frameworks that use
Semirings.

Provides semantics for positive datalog under rich
semantics (e.g. bag semantics).






Thank You!



