Provenance Semirings

Todd Green

Grigoris Karvounarakis

Val Tannen

presented by Clemens Ley

"place of origin"

Provenance Semirings

Todd Green

Grigoris Karvounarakis

Val Tannen

presented by Clemens Ley

Todd Green

Grigoris Karvounarakis

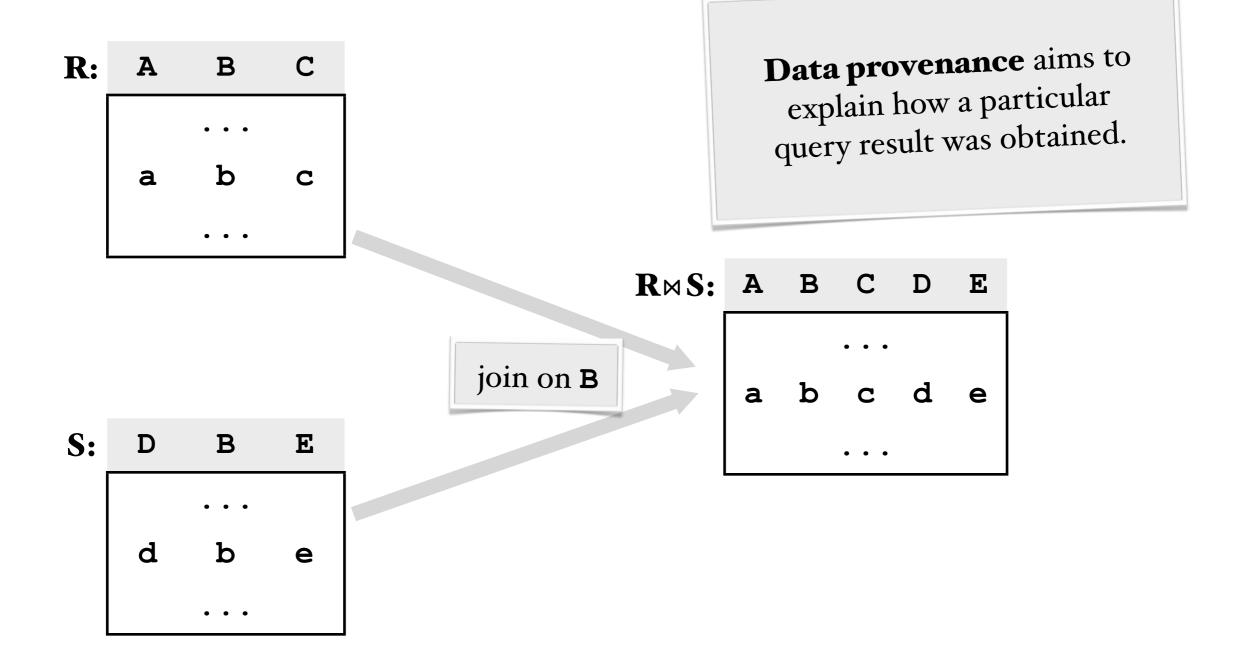
Val Tannen

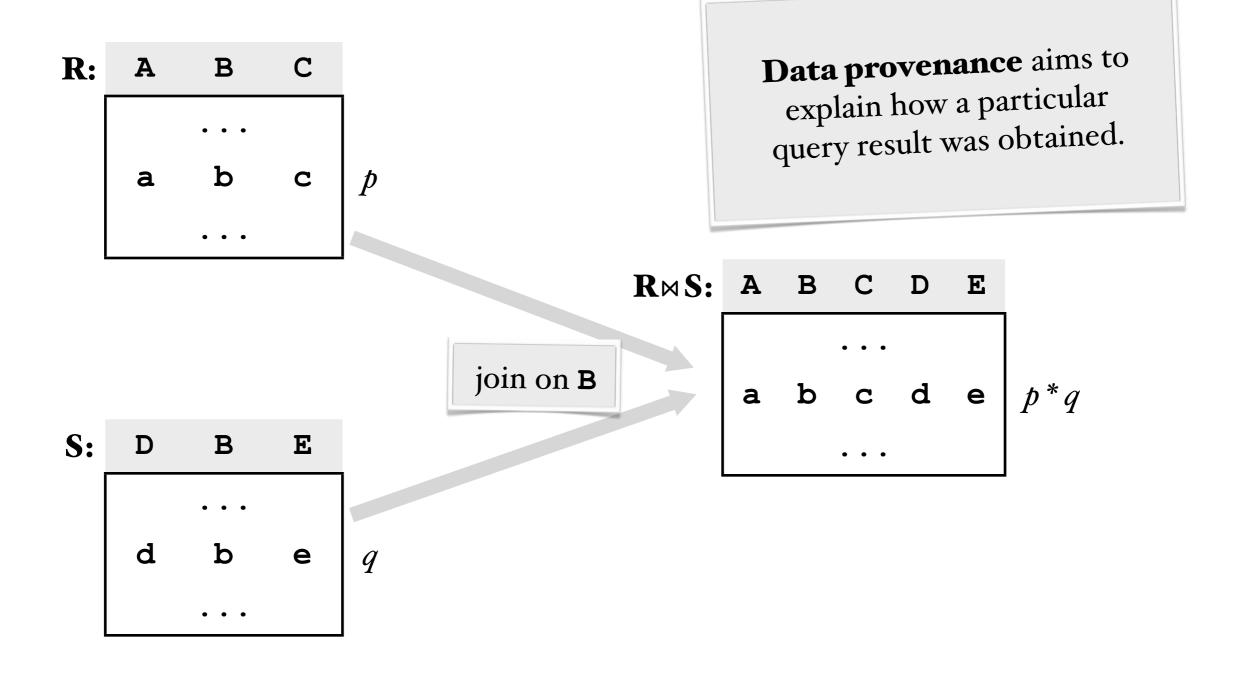
presented by Clemens Ley

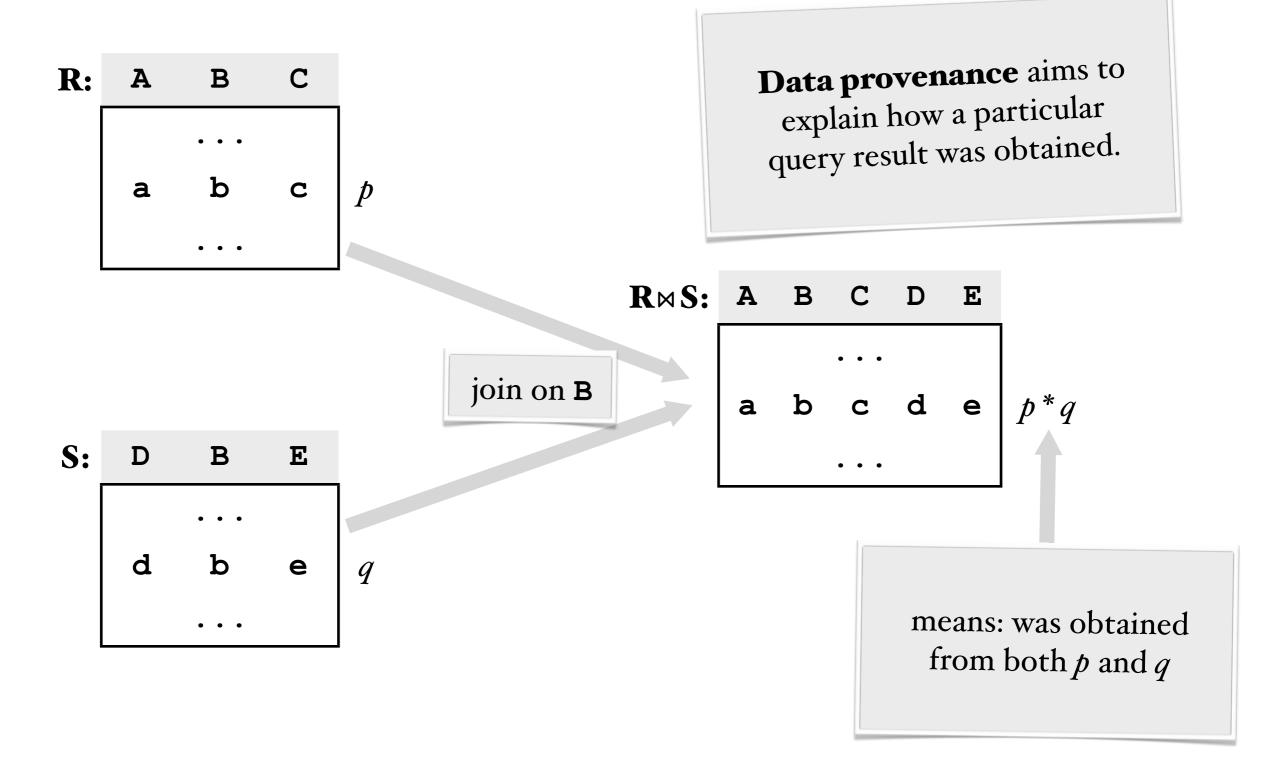
Outline

- Data provenance by example
- Relational algebra for data provenance
- Datalog for data provenance

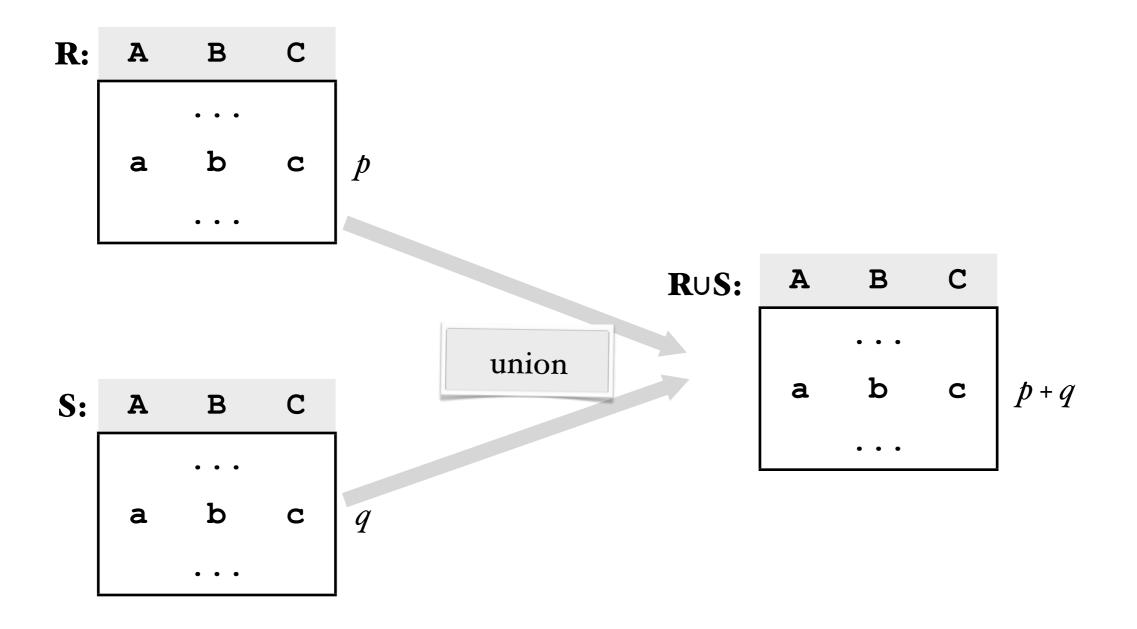
Data provenance aims to explain how a particular query result was obtained.







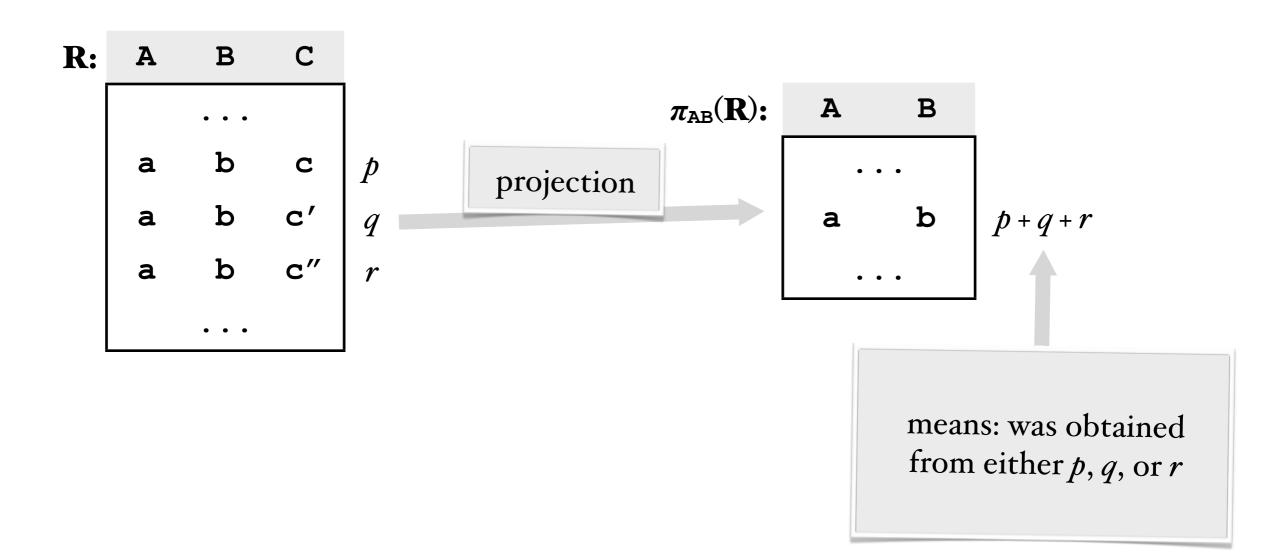
Data Provenance (2)



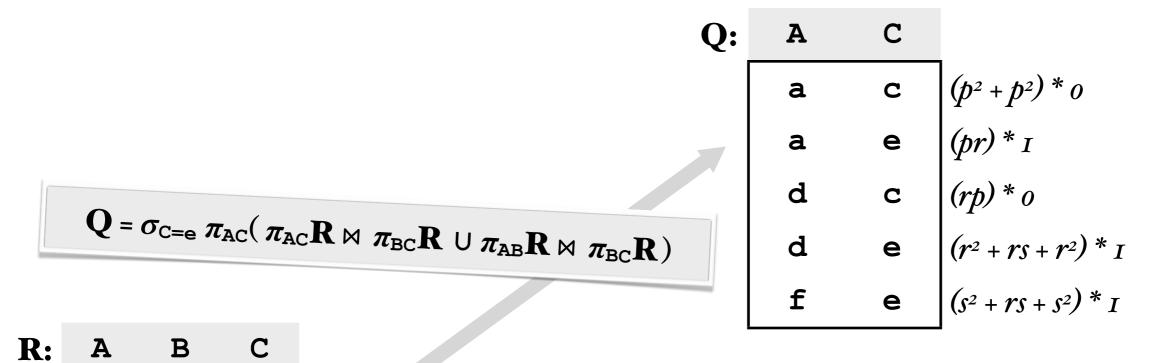
Data Provenance (2)



Data Provenance (3)

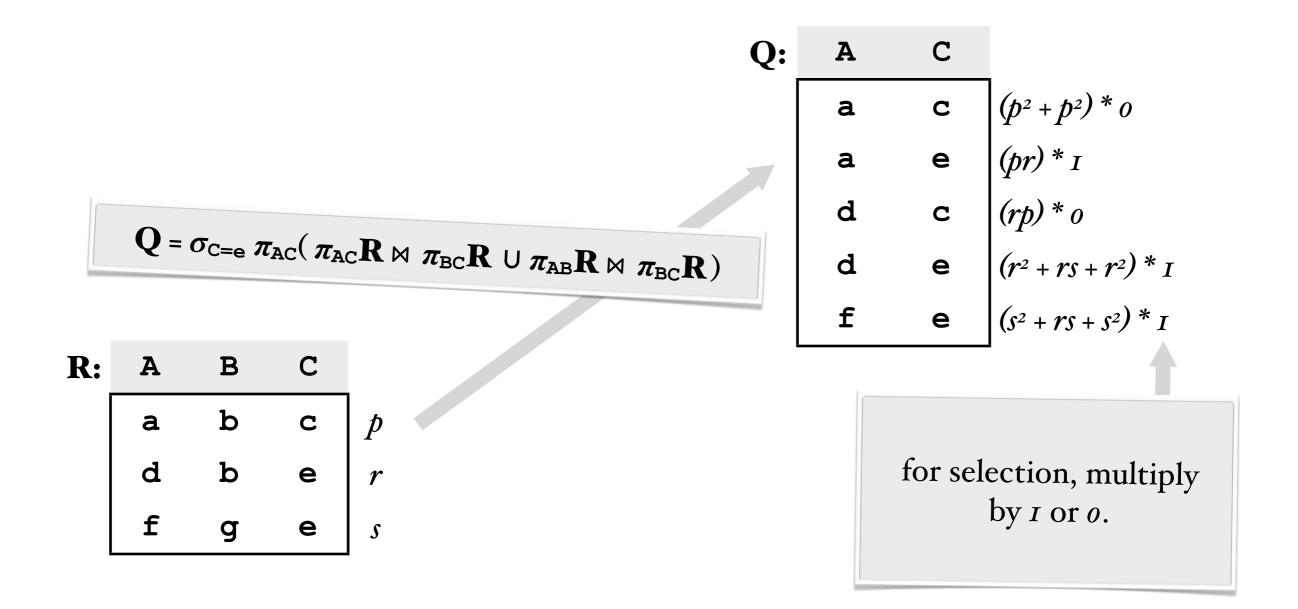


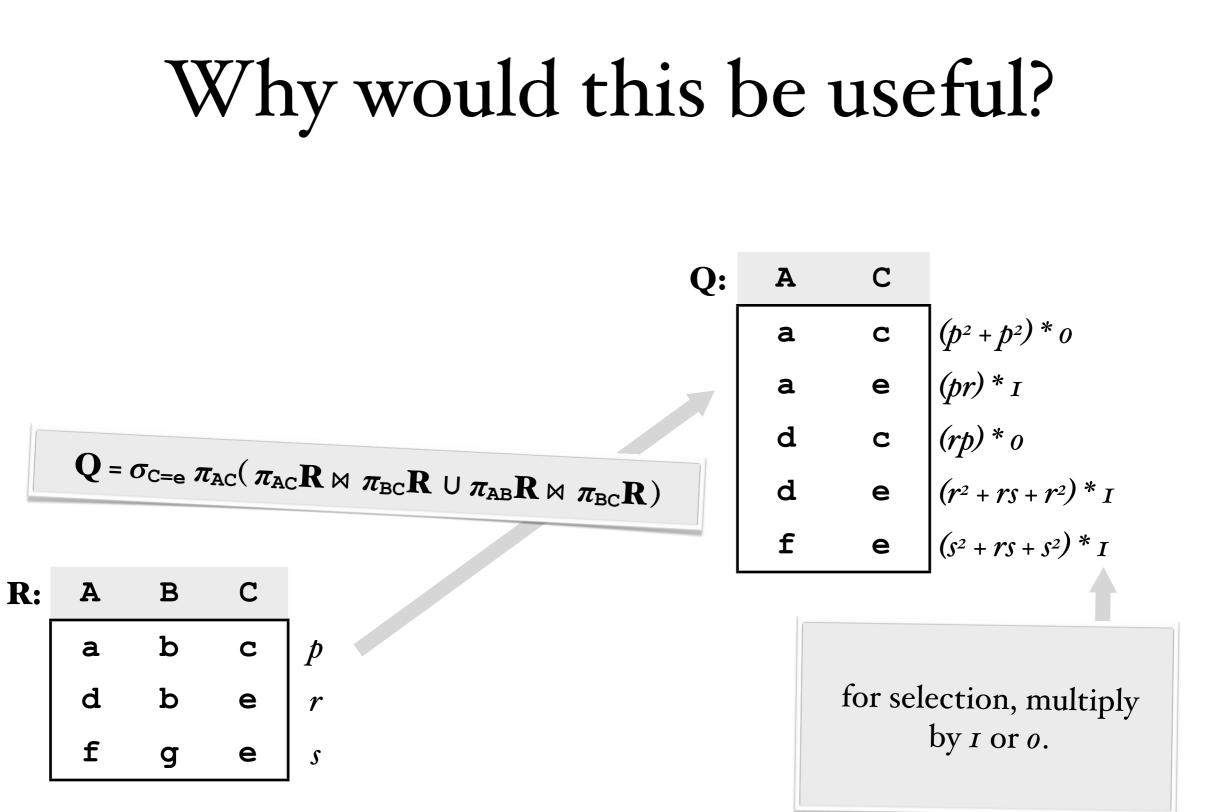
Data Provenance (4)



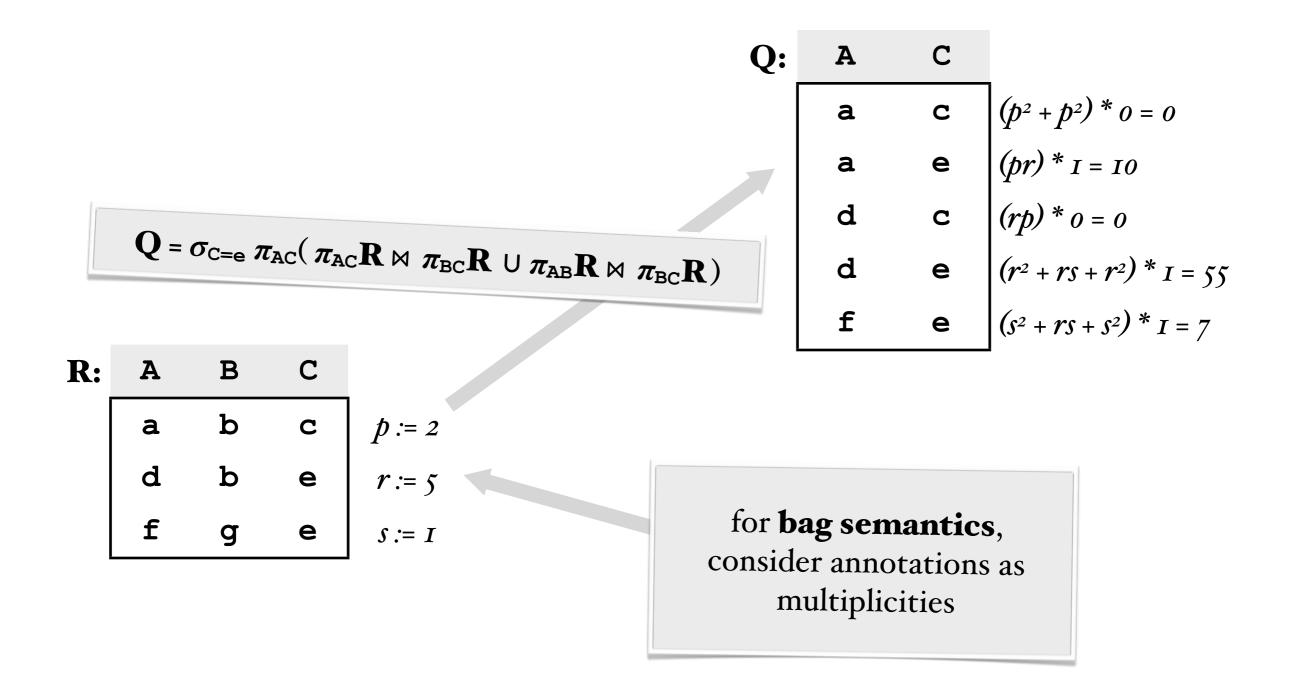
a	b	С	p
d	b	e	r
f	g	е	s

Data Provenance (4)





Why would this be useful?



Why would this be useful?

				Q:	A	С	
					a	С	$ \begin{pmatrix} p^2 + p^2 \end{pmatrix}^* o = ((b_1 \land b_1) \lor (b_1 \land b_1)) \land \text{ false} \\ (pr)^* I = (b_1 \land b_2) \land \text{ true} \\ (rp)^* o = (b_2 \land b_1) \land \text{ false} \\ (r^2 + rs + r^2)^* I = (b_2 \lor (b_2 \land b_3) \lor b_2) \land \text{ true} \\ (s^2 + rs + s^2)^* I = (b_3 \lor (b_2 \land b_3) \lor b_3) \land \text{ true} $
					a	е	$(pr) * I = (b_1 \wedge b_2) \wedge \text{true}$
					d	С	$(rp) * o = (b_2 \wedge b_L) \wedge \text{false}$
					d	е	$(r^2 + rs + r^2) * I = (b_2 \lor (b_2 \land b_3) \lor b_2) \land \text{true}$
					f	е	$(s^2 + rs + s^2) * I = (b_3 \lor (b_2 \land b_3) \lor b_3) \land \text{true}$
R:	A	в	С				
	a	b	С	$p := b_{I}$			
	d	b	e	$r := b_2$ $s := b_3$		for incomplete databases , consider annotations as boolean values, * as ∧, + as ∨, <i>I</i> as true, and <i>o</i> as false	
	f	g	е	$s := b_3$			
-				-			

Data Structure

- Relations are mappings from tuples to annotations in K; we require that
 R(t) ≠ o for only finitely many tuples L.
- intuitively, "+" means "alternative use" corresponds to union
- "*" means "joint use" and corresponds to join
- "*o*" and "*I*" are special annotations
- But what is a query languages for such relations?

Data Structure

- Relations are mappings from tuples to annotations in K; we require that R(t) ≠ o for only finitely many tuples L.
- intuitively, "+" means "alternative use" corresponds to union
- "*" means "joint use" and corresponds to join
- "o" and "I" are special annotations
- But what is (K,+,*,o,I) and how are annotations computed?

Positive Algebra

Positive Algebra

DEFINITION 3.2. Let $(K, +, \cdot, 0, 1)$ be an algebraic structure with two binary operations and two distinguished elements. The operations of the **positive algebra** are defined as follows:

empty relation For any set of attributes U, there is \emptyset : U-Tup $\rightarrow K$ such that $\emptyset(t) = 0$.

union If $R_1, R_2 : U$ -Tup $\to K$ then $R_1 \cup R_2 : U$ -Tup $\to K$ is defined by

$$(R_1 \cup R_2)(t) \stackrel{\text{def}}{=} R_1(t) + R_2(t)$$

projection If R : U-Tup $\to K$ and $V \subseteq U$ then $\pi_V R : V$ -Tup $\to K$ is defined by

$$(\pi_V R)(t) \stackrel{\text{def}}{=} \sum_{t=t' \text{ on } V \text{ and } R(t') \neq 0} R(t')$$

(here t = t' on V means t' is a U-tuple whose restriction to V is the same as the V-tuple t; note also that the sum is finite since R has finite support)

Positive Algebra (2)

selection If R : U-Tup $\to K$ and the selection predicate **P** maps each U-tuple to either 0 or 1 then $\sigma_{\mathbf{P}}R$: U-Tup $\to K$ is defined by

 $(\sigma_{\mathbf{P}}R)(t) \stackrel{\text{def}}{=} R(t) \cdot \mathbf{P}(t)$

Which $\{0, 1\}$ -valued functions are used as selection predicates is left unspecified, except that we assume that false—the constantly 0 predicate, and true—the constantly 1 predicate, are always available.

natural join If $R_i : U_i$ -Tup $\rightarrow K$ i = 1, 2 then $R_1 \bowtie R_2$ is the K-relation over $U_1 \cup U_2$ defined by

 $(R_1 \bowtie R_2)(t) \stackrel{\text{def}}{=} R_1(t_1) \cdot R_2(t_2)$

where $t_1 = t$ on U_1 and $t_2 = t$ on U_2 (recall that t is a $U_1 \cup U_2$ -tuple).

renaming If R: U-Tup $\to K$ and $\beta: U \to U'$ is a bijection then $\rho_{\beta}R$ is a K-relation over U' defined by

 $(\rho_\beta R)(t) \ \stackrel{\rm def}{=} \ R(t\circ\beta)$

PROPOSITION 3.4. The following \mathcal{RA} identities:

- union is associative, commutative and has identity \emptyset ;
- join is associative, commutative and distributive over union;
- projections and selections commute with each other as well as with unions and joins (when applicable);
- $\sigma_{\mathsf{false}}(R) = \emptyset$ and $\sigma_{\mathsf{true}}(R) = R$.

hold for the positive algebra on K-relations if and only if $(K, +, \cdot, 0, 1)$ is a commutative semiring.

PROPOSITION 3.4. The following \mathcal{RA} identities:

- union is associative, commutative and has identity \emptyset ;
- join is associative, commutative and distributive over union;
- projections and selections commute with each other as well as with unions and joins (when applicable);
- $\sigma_{\mathsf{false}}(R) = \emptyset$ and $\sigma_{\mathsf{true}}(R) = R$.

hold for the positive algebra on K-relations if and only if $(K, +, \cdot, 0, 1)$ is a commutative semiring.

Note that the list does not contain idempotence of union and self join, as these fail for set semantics

PROPOSITION 3.4. The following \mathcal{RA} identities:

- union is associative, commutative and has identity \emptyset ;
- join is associative, commutative and distributive over union;
- projections and selections commute with each other as well as with unions and joins (when applicable);
- $\sigma_{\mathsf{false}}(R) = \emptyset$ and $\sigma_{\mathsf{true}}(R) = R$.

hold for the positive algebra on K-relations if and only if $(K, +, \cdot, 0, 1)$ is a commutative semiring.

Def. A commutative semiri

- + is commutative, associati
- * is associative with identity
- * distributes over +
- $a^* 0 = 0^* a = 0$

Note that the list does not contain idempotence of union and self join, as these fail for set semantics

PROPOSITION 3.4. The following \mathcal{RA} identities:

- union is associative, commutative and has identity \emptyset ;
- join is associative, commutative and distributive over union;
- projections and selections commute with each other as well as with unions and joins (when applicable);
- $\sigma_{\mathsf{false}}(R) = \emptyset$ and $\sigma_{\mathsf{true}}(R) = R$.

hold for the positive algebra on K-relations if and only if $(K, +, \cdot, 0, 1)$ is a commutative semiring.

Def. A **commutative semiring** is a structure (K,+,*,0,1) where

- + is commutative, associative, with identity 0
- * is associative with identity 1
- * distributes over +
- $a^* 0 = 0^* a = 0$

Def. A **commutative semiring** is a structure (K,+,*,0,1) where

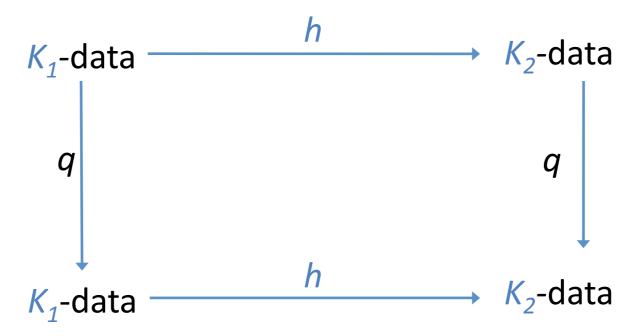
- + is commutative, associative, with identity 0
- * is associative with identity I
- * distributes over +
- $a^* 0 = 0^* a = 0$

Examples:

- the natural numbers: $(\mathbb{N}, +, *, 0, I)$
- the booleans: (\mathbb{B} , \land , \lor , *true*, *false*)
- subsets of a set: $(\mathcal{P}(\Omega), \cup, \cap, \emptyset, \Omega)$
- the naturals with infinity: $(\mathbb{N}^{\infty}, +, *, 0, I)$
- polynomials in *X*: (*N*[*X*], +, *, *o*, *I*)

The fundamental property of RA

For every query q and every homomorphism of commutative semirings $h: K_1 \to K_2$ the following "commutes":

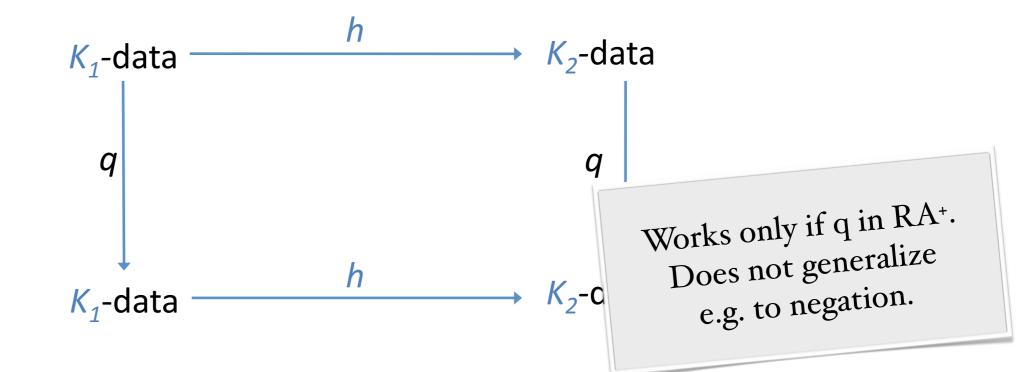


Recall, semiring homomorphism is mapping $h: K_1 \to K_2$ such that

$$\begin{array}{ll} h(I_{K_{I}}) = I_{K_{2}} & h(o_{K_{I}}) = o_{K_{2}} \\ h(a+_{K_{I}}b) = h(a)+_{K_{2}}h(b) & h(a*_{K_{I}}b) = h(a)*_{K_{2}}h(b) \end{array}$$

The fundamental property of RA

For every query q and every homomorphism of commutative semirings $h: K_1 \to K_2$ the following "commutes":



Recall, semiring homomorphism is mapping $h: K_1 \to K_2$ such that

 $\begin{aligned} h(I_{K_{I}}) &= I_{K_{2}} & h(o_{K_{I}}) &= o_{K_{2}} \\ h(a + K_{I} b) &= h(a) + K_{2} h(b) & h(a * K_{I} b) &= h(a) * K_{2} h(b) \end{aligned}$

Which semiring do we choose?

DEFINITION 4.1. Let X be the set of tuple ids of a (usual) database instance I. The **positive algebra provenance semiring** for I is the semiring of polynomials with variables (a.k.a. indeterminates) from X and coefficients from \mathbb{N} , with the operations defined as usual⁴: ($\mathbb{N}[X], +, \cdot, 0, 1$).

Which semiring do we choose?

DEFINITION 4.1. Let X be the set of tuple ids of a (usual) database instance I. The **positive algebra provenance semiring** for I is the semiring of polynomials with variables (a.k.a. indeterminates) from X and coefficients from \mathbb{N} , with the operations defined as usual⁴: ($\mathbb{N}[X], +, \cdot, 0, 1$).

But why?

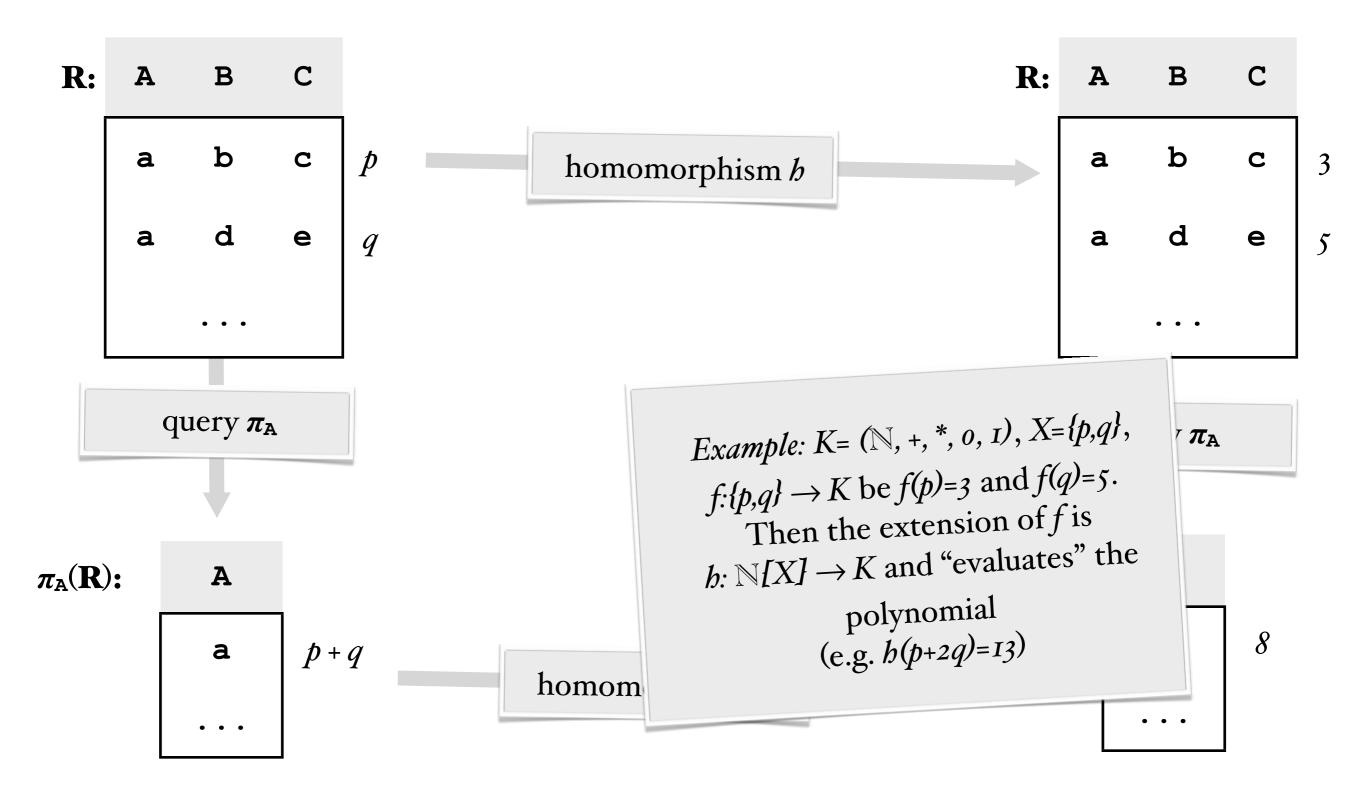
A nice property of $\mathbb{N}[X]$

If *K* is a commutative semiring, then any function on tokens, $f: X \to K$ extends uniquely to a homomorphism $h: \mathbb{N}[X] \to K$.

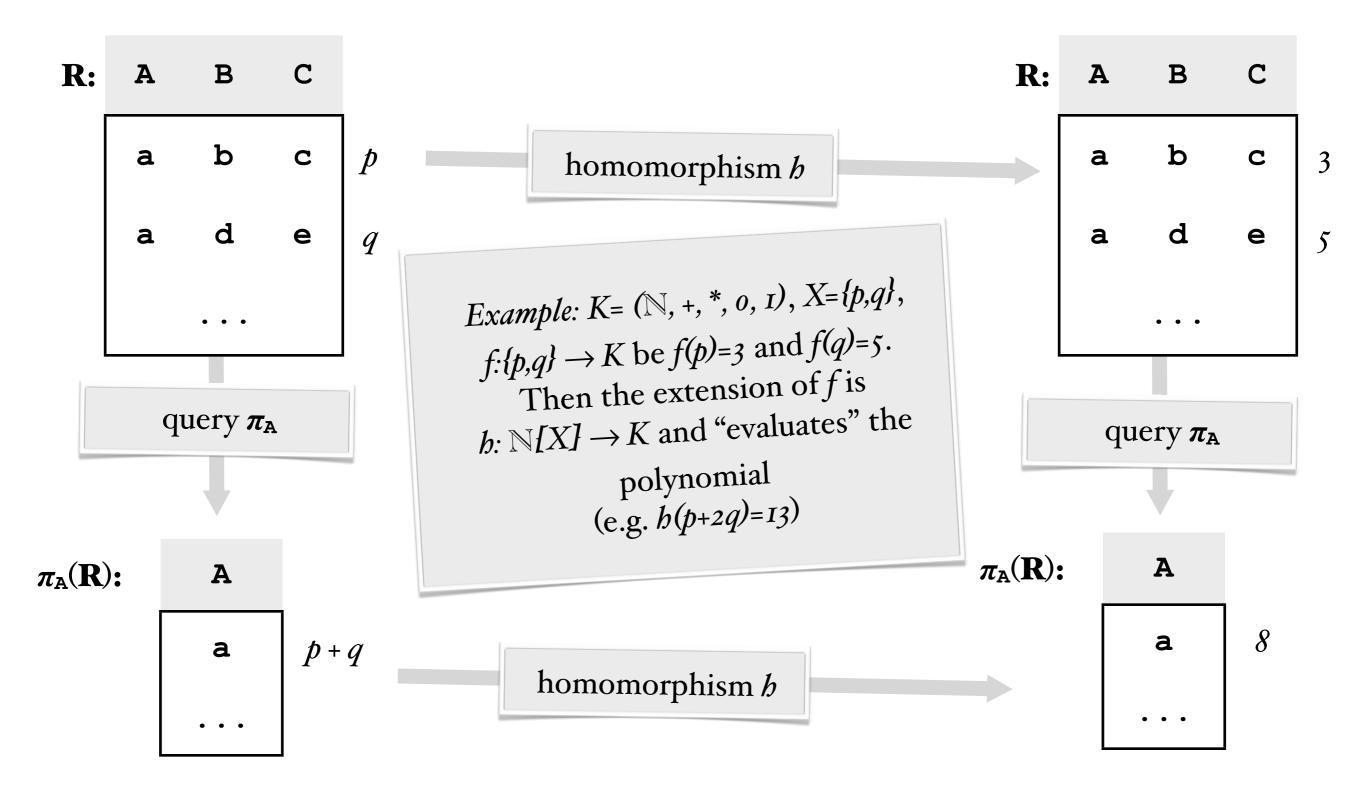
Example:
$$K = (\mathbb{N}, +, *, 0, 1), X = \{p,q\},$$

 $f: \{p,q\} \to K \text{ be } f(p) = 3 \text{ and } f(q) = 5.$
Then the extension of f is
 $b: \mathbb{N}[X] \to K$ and "evaluates" the
polynomial
 $(e.g. b(p+2q)=13)$

Nice + Fundamental



Nice + Fundamental

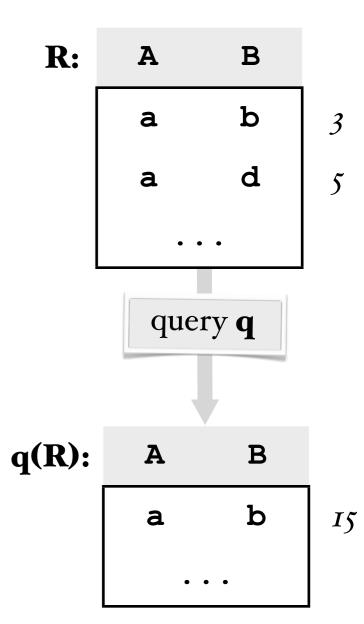


Free the semiring!

"Nice" implies: For every commutative semiring K, and every K-relation \mathbf{R} , there is abstractly tagged N[X]-relation $\overline{\mathbf{R}}$ and a homomorphism Eval_v from $\overline{\mathbf{R}}$ to \mathbf{R} .

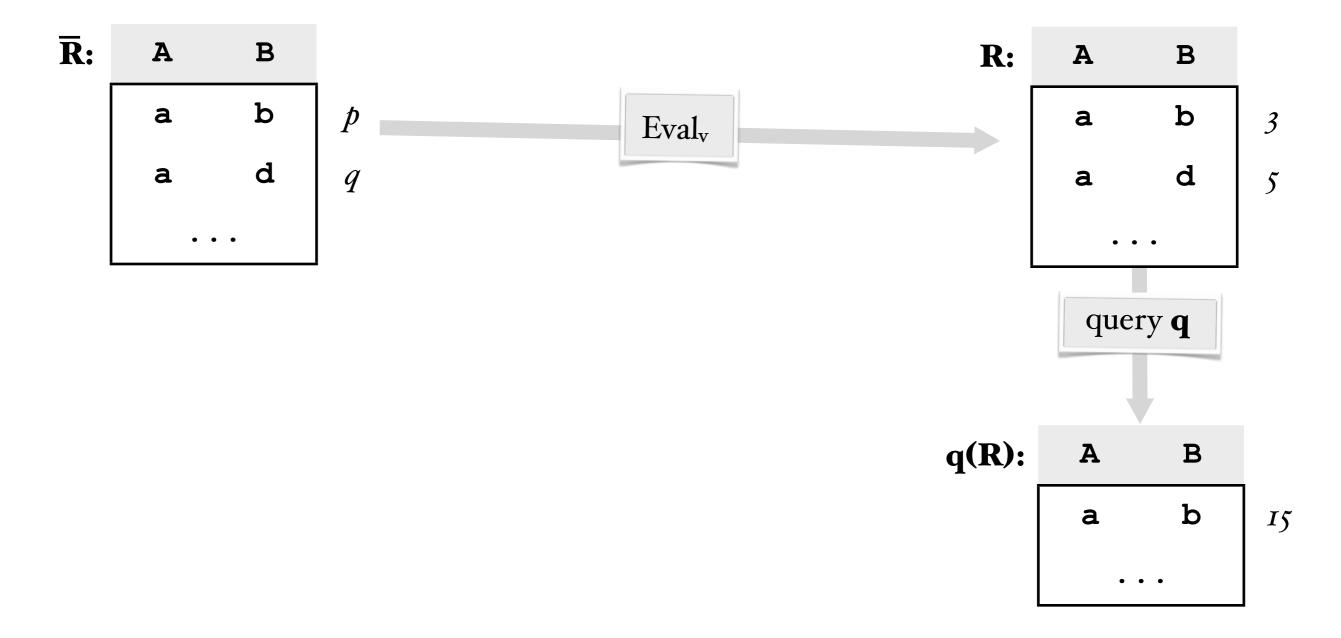
Free the semiring!

"Nice" implies: For every commutative semiring K, and every K-relation \mathbf{R} , there is abstractly tagged N[X]-relation $\overline{\mathbf{R}}$ and a homomorphism Eval_v from $\overline{\mathbf{R}}$ to \mathbf{R} .



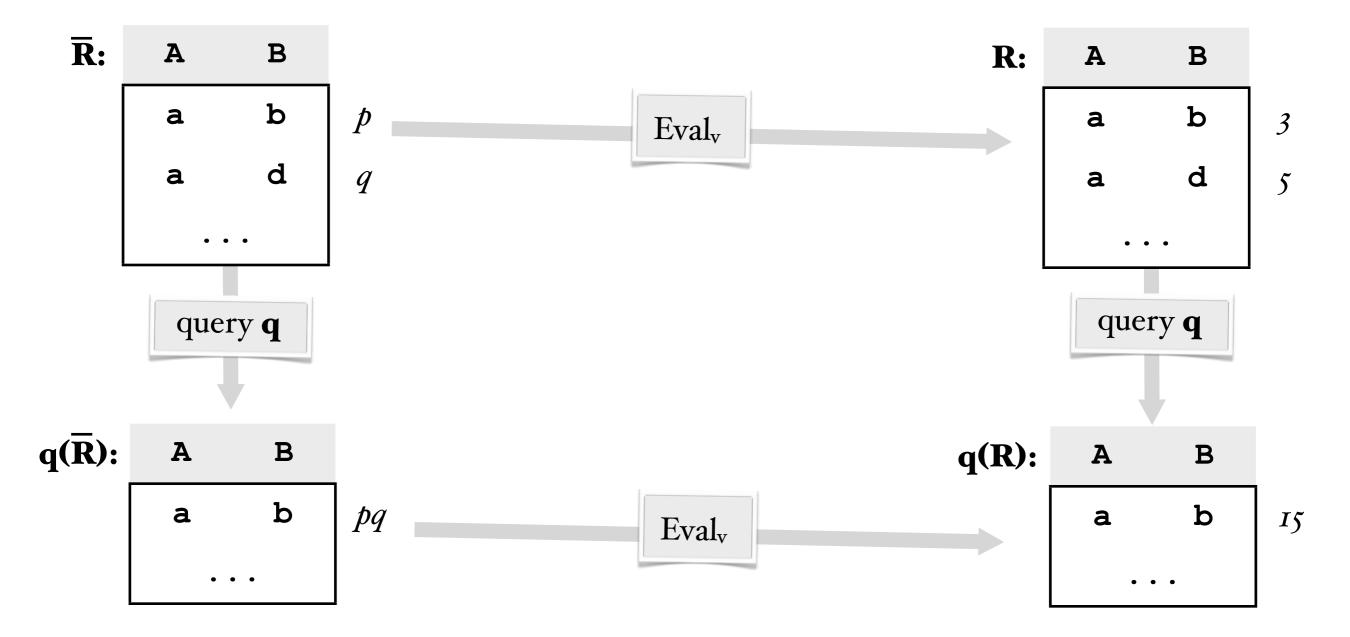
Free the semiring!

"Nice" implies: For every commutative semiring K, and every K-relation \mathbf{R} , there is abstractly tagged N[X]-relation $\overline{\mathbf{R}}$ and a homomorphism Eval_v from $\overline{\mathbf{R}}$ to \mathbf{R} .



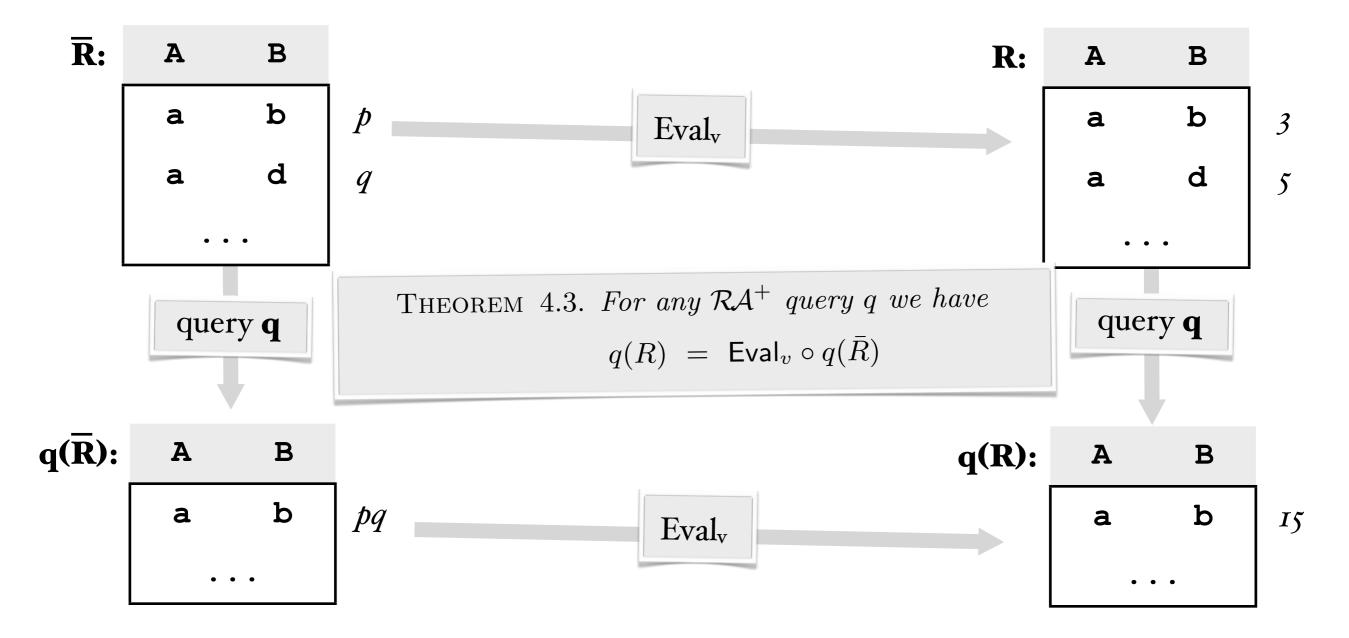
Free the semiring!

"Nice" implies: For every commutative semiring K, and every K-relation \mathbf{R} , there is abstractly tagged N[X]-relation $\overline{\mathbf{R}}$ and a homomorphism Eval_v from $\overline{\mathbf{R}}$ to \mathbf{R} .



Free the semiring!

"Nice" implies: For every commutative semiring K, and every K-relation \mathbf{R} , there is abstractly tagged N[X]-relation $\overline{\mathbf{R}}$ and a homomorphism Eval_v from $\overline{\mathbf{R}}$ to \mathbf{R} .



Instantiation of Positive Algebra

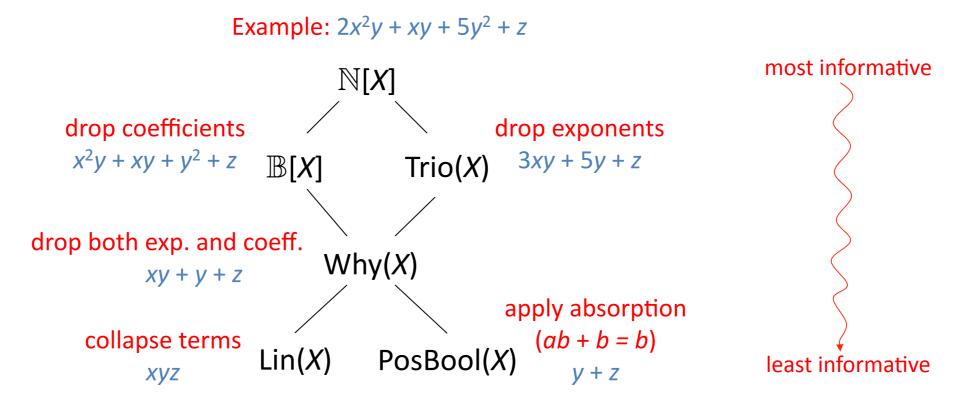
(B, ∧, ∨, true, false)	Set semantics	
(N, +, *, 0, I)	Bag semantics	
$(\mathcal{P}(\Omega), U, n, arnothing, \Omega)$	Probabilistic events	
(BoolExp(P), \lor , \land , true, false)	Conditional tables	
(<i>A</i> , min, max, <i>o</i> , <i>P</i>) where $A = \mathbb{P} < \mathbb{C} < \mathbb{S} < \mathbb{T} < \mathbb{O}$	Access control levels	

More nice...

Example: $2x^2y + xy + 5y^2 + z$ **ℕ[X]** drop coefficients drop exponents $x^2y + xy + y^2 + z$ 3xy + 5y + z $\mathbb{B}[X]$ Trio(X) drop both exp. and coeff. Why(X) xy + y + zapply absorption (ab + b = b)y + zPosBool(X) collapse terms Lin(X) XYZ

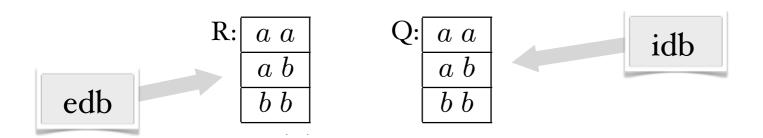
A path downward from K_1 to K_2 indicates that there exists an **onto (surjective) semiring homomorphism** $h: K_1 \rightarrow K_2$

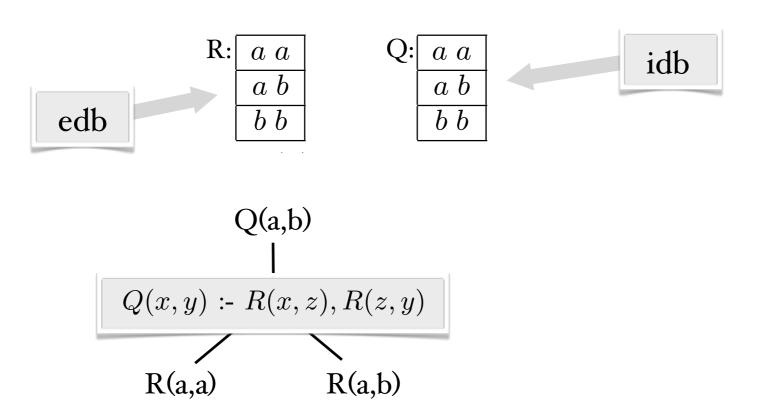
More nice...

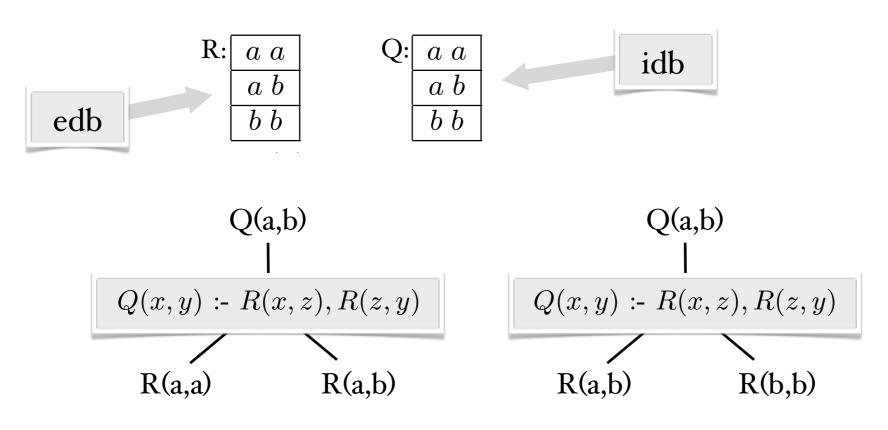


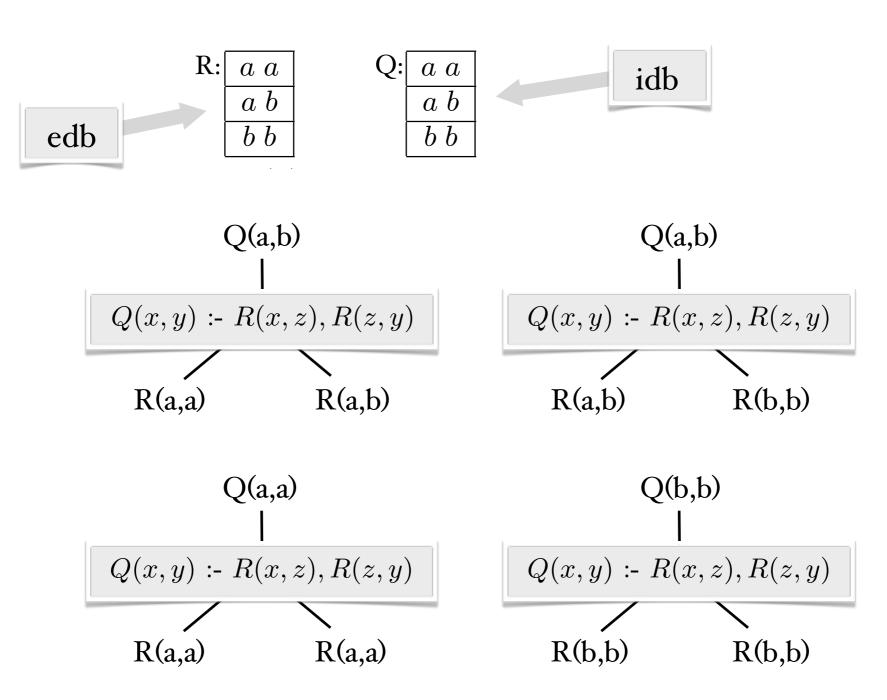
A path downward from K_1 to K_2 indicates that there exists an **onto (surjective) semiring homomorphism** $h: K_1 \rightarrow K_2$

Datalog



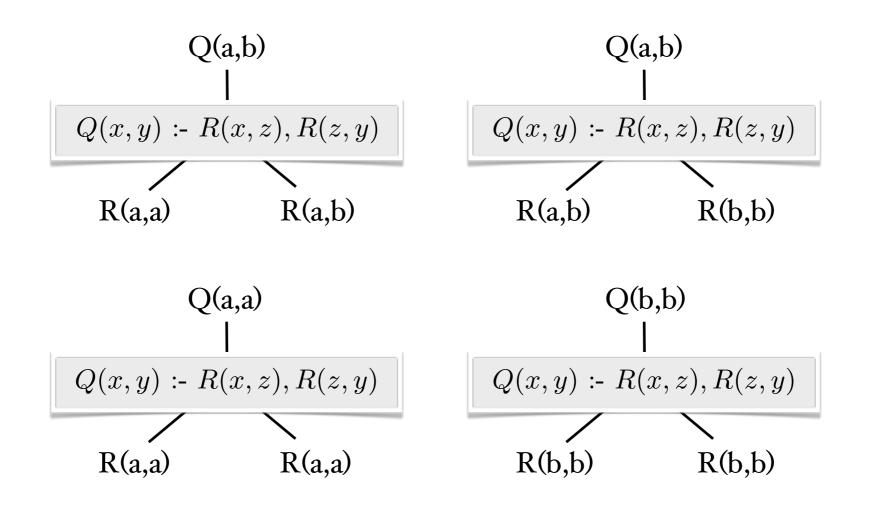






Datalog with Bag Semantics

R:	a a	Q:	a a
	a b		a b
	b b		b b



Datalog with Bag Semantics

Q(x,y) :- R(x,z), R(z,y)

a a

a b

b b

2

3

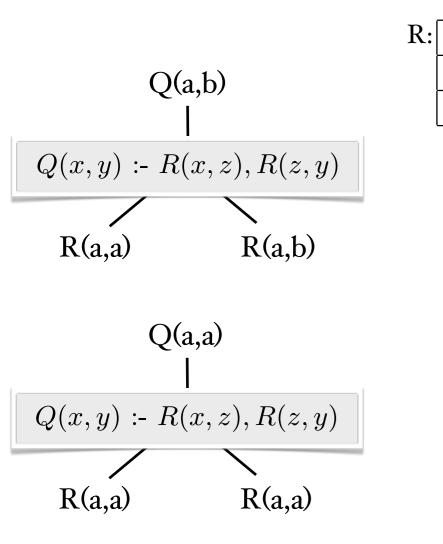
4

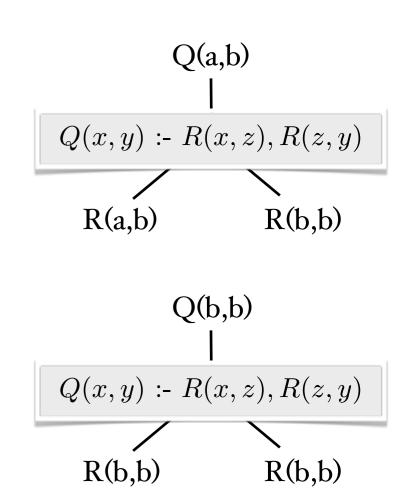
a a

a b

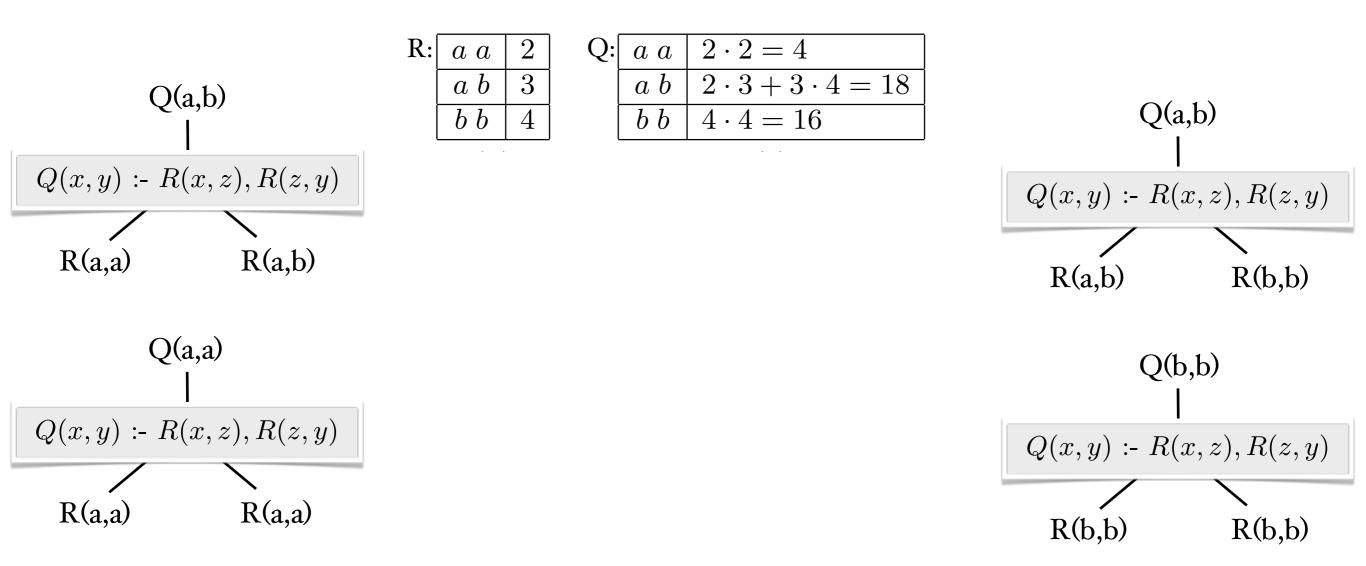
b b

Q:

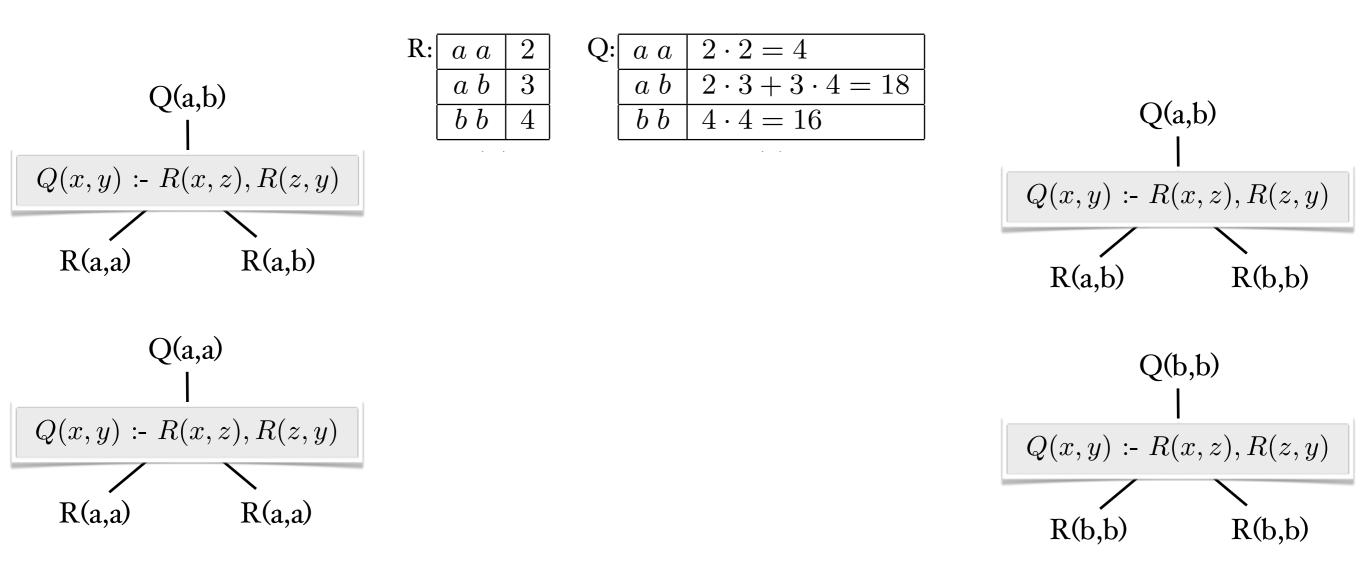




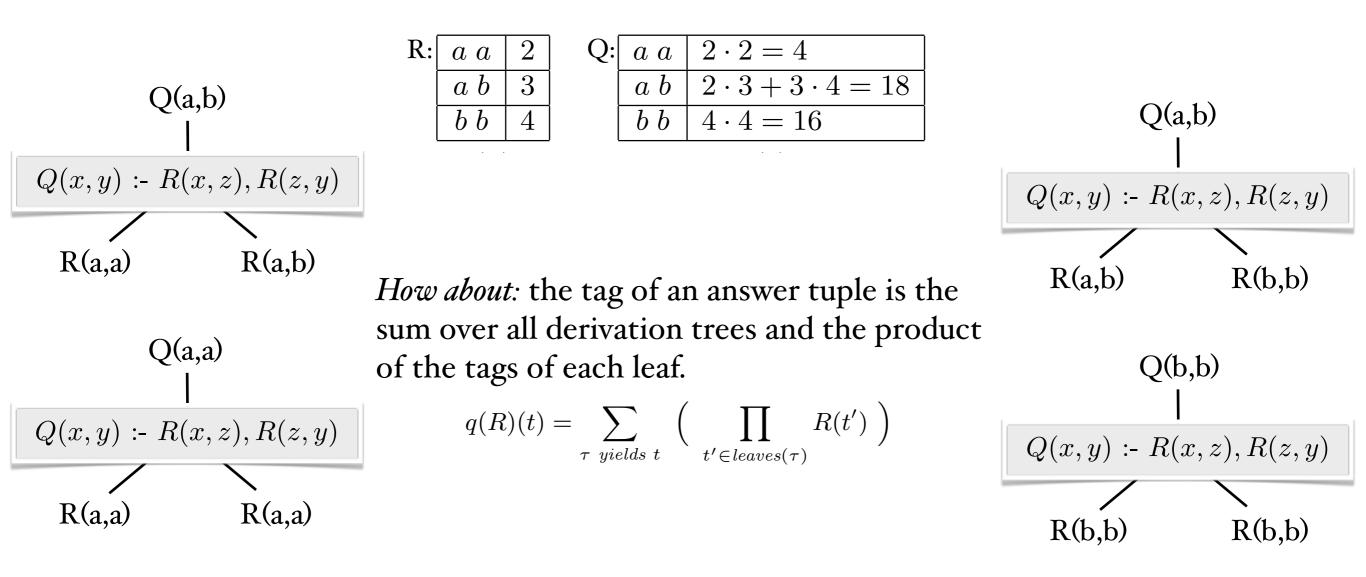
Datalog with Bag Semantics



What annotations do we need?



What annotations do we need?



What annotations do we need?

Q(x,y) := R(x,z), R(z,y)

a a

a b

b b

2

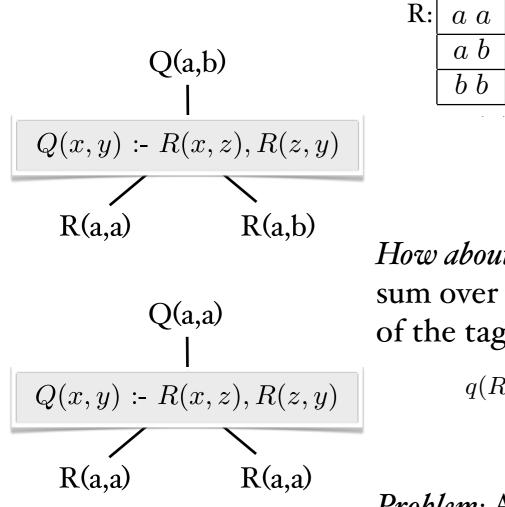
3

Q:|

 $2 \cdot 2 = 4$

 $4 \cdot 4 = 16$

 $2 \cdot 3 + 3 \cdot 4 = 18$

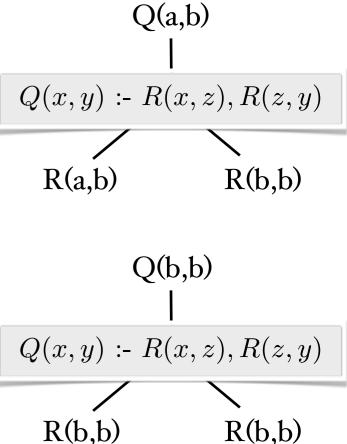


How about: the tag of an answer tuple is the sum over all derivation trees and the product of the tags of each leaf.

$$q(R)(t) = \sum_{\tau \text{ yields } t} \left(\prod_{t' \in leaves(\tau)} R(t') \right)$$

$$R(t')$$
) $Q(x,y)$

Problem: A tuple may have infinitely many derivation trees. Hence we need to work in semirings in which infinite sums are defined.



ω-continuos semirings

Def. (*Natural preorder*) $x \le y$ iff there is z such that x+z=y.

Def. (*Naturally ordered semiring*) if the natural pre-order is an order.

Def. (ω -complete) when $x_1 \le x_2 \le x_2 \le ...$ have suprema.

In naturally ordered semirings, we can make sense of infinite sums: m

$$\sum_{n \in \mathbb{N}} a_n \stackrel{\text{def}}{=} \sup_{m \in \mathbb{N}} (\sum_{i=0}^m a_i)$$

Def. (ω -continous) when * and + preserve suprema. (e.g. $\sup(a_i + b_i) = \sup(a_i) + b_i$).

w-continuos semirings

Def. (*Natural preorder*) $x \le y$ iff there is z such that x+z=y.

Def. (Naturally ordered semiring) an order.

Def. (ω -complete) when $x_1 \le x_2 \le x_2 \le ...$

Preorder: reflexive and transitive. Not necessarily anti-symmetric $(x \le y \text{ and } y \le x \text{ implies } x=y)$

In naturally ordered semirings, we can make sense of infinite sums: m

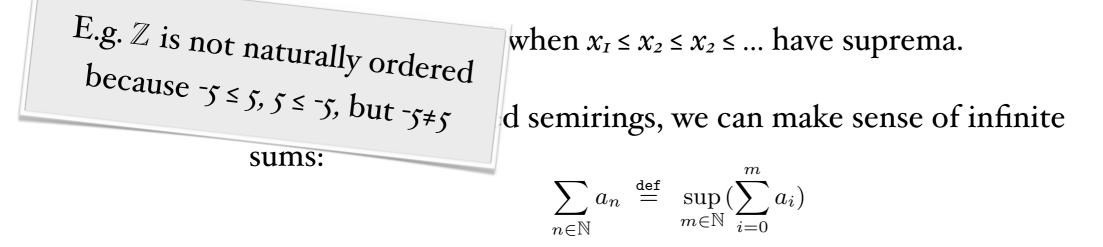
$$\sum_{n \in \mathbb{N}} a_n \stackrel{\text{def}}{=} \sup_{m \in \mathbb{N}} (\sum_{i=0}^m a_i)$$

Def. (ω -continous) when * and + preserve suprema. (e.g. $\sup(a_i + b_i) = \sup(a_i) + b_i$).

w-continuos semirings

Def. (*Natural preorder*) $x \le y$ iff there is z such that x+z=y.

Def. (*Naturally ordered semiring*) if the natural pre-order is an order.



Def. (ω -continous) when * and + preserve suprema. (e.g. $\sup(a_i + b_i) = \sup(a_i) + b_i$).

ω-continuos semirings

Def. (*Natural preorder*) $x \le y$ iff there is z such that x+z=y.

Def. (*Naturally ordered semiring*) if the natural pre-order is an order.

Def. (ω -complete) when $x_1 \le x_2 \le x_2 \le ...$ have suprema.

In naturally ordered semirings, we can make sense of infinite sums: m

$$\sum_{n \in \mathbb{N}} a_n \stackrel{\text{def}}{=} \sup_{m \in \mathbb{N}} (\sum_{i=0}^m a_i)$$

Def. (ω -continous) when * and + preserve suprema. (e.g. $\sup(a_i + b_i) = \sup(a_i) + b_i$).

Semantics of annotated Datalog

DEFINITION 5.1. Let $(K, +, \cdot, 0, 1)$ be a commutative ω -continuous semiring. To keep notation simple let q be a datalog query with one argument (it is easy to generalize to multiple arguments). For any K-relation R define

$$q(R)(t) = \sum_{\tau \text{ yields } t} \left(\prod_{t' \in leaves(\tau)} R(t') \right)$$

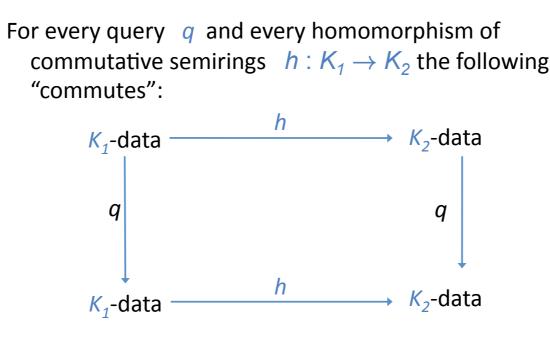
where τ ranges over all q-derivation trees for t and t' ranges over all the leaves of τ .

Semantics of annotated Datalog

DEFINITION 5.1. Let $(K, +, \cdot, 0, 1)$ be a commutative ω -continuous semiring. To keep notation simple let q be a datalog query with one argument (it is easy to generalize to multiple arguments). For any K-relation R define

$$q(R)(t) = \sum_{\tau \text{ yields } t} \left(\prod_{t' \in leaves(\tau)} R(t') \right)$$

where τ ranges over all q-derivation trees for t and t' ranges over all the leaves of τ .

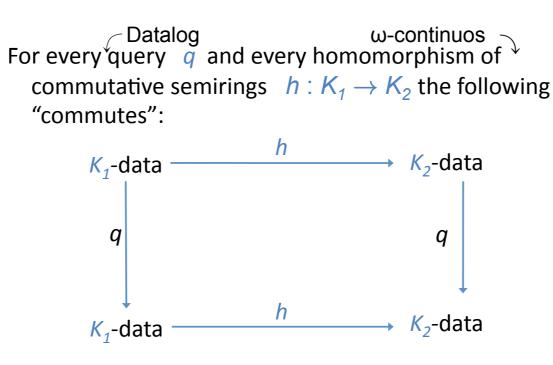


Semantics of annotated Datalog

DEFINITION 5.1. Let $(K, +, \cdot, 0, 1)$ be a commutative ω -continuous semiring. To keep notation simple let q be a datalog query with one argument (it is easy to generalize to multiple arguments). For any K-relation R define

$$q(R)(t) = \sum_{\tau \text{ yields } t} \left(\prod_{t' \in leaves(\tau)} R(t') \right)$$

where τ ranges over all q-derivation trees for t and t' ranges over all the leaves of τ .



The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for one tuple

religion in annotations

In particular two kinds of infinite summations

- infinitely many copies of the same monomial → coefficients in N[∞] = N U {∞}
- infinitely many copies of different monomials → formal power series K[[X]]

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for one tuple

religion in annotations

In particular two kinds of infinite summations

- infinitely many copies of the same monomial → coefficients in N[∞] = N U {∞}
- infinitely many copies of different monomials → formal power series K[[X]]

Formal power series: basically polynomials with infinite summation

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for one tuple

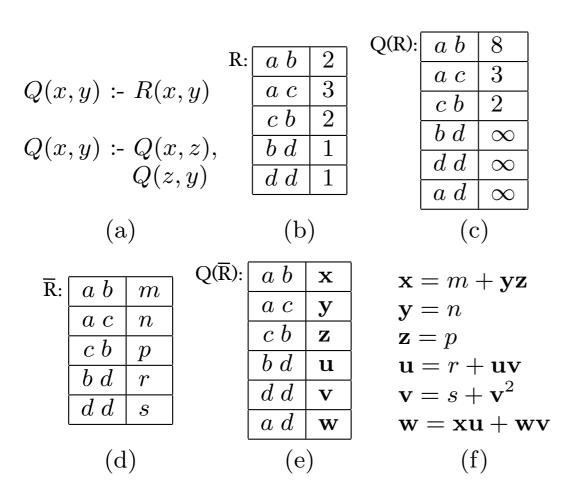
religion in annotations

In particular two kinds of infinite summations

- infinitely many copies of the same monomial → coefficients in N[∞] = N U {∞}
- infinitely many copies of different monomials → formal power series K[[X]]

DEFINITION 6.1. Let X be the set of tuple ids of a database instance I. The **datalog provenance semiring** for I is the commutative ω -continuous semiring of formal power series $\mathbb{N}^{\infty}[[X]]$.

Fixed Point Semantics



- Transform immediate consequence operator of Q into a union of conjunctive queries; here R ∪ (Q ⋈2=1 Q)
- Apply this RA query to \overline{R} and \overline{Q} .
- Equate!

This leads to system of equations of polynomials in

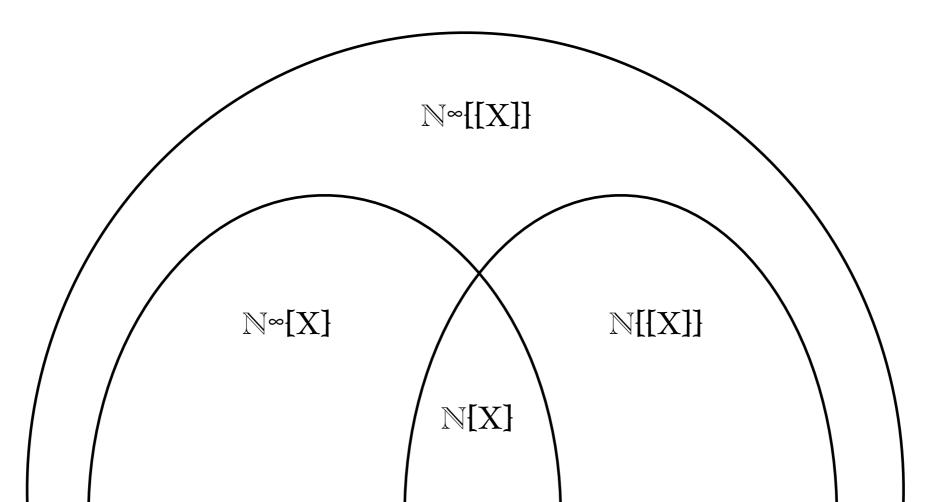
 $\mathbb{N}^{\infty}[[m, n, p, r, s]][\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}, \mathbf{w}]$

As $\mathbb{N}^{\infty}[\{m,n,p,r,s\}]$ is omega continuos, these equations have least fixed points that can be computed.

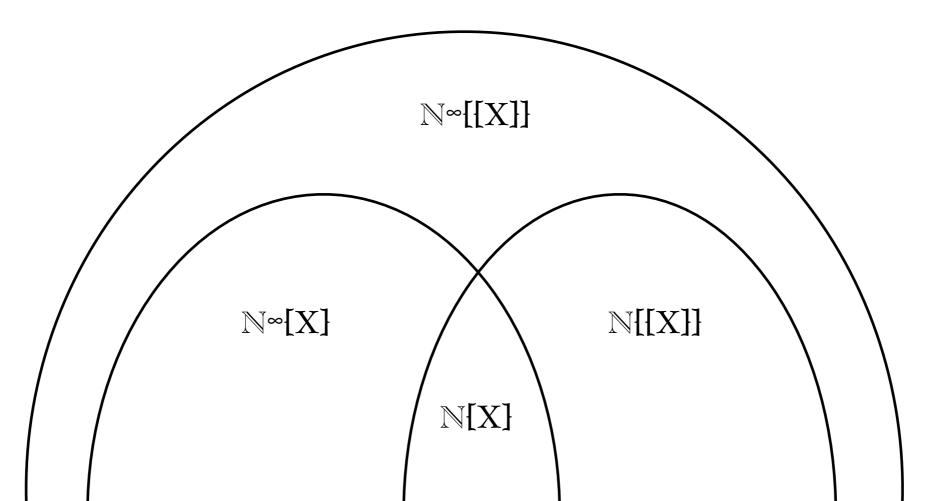
Decidability

A tuple can have an annotations in any of the classes below.

It is decidable in which class the annotation of a tuple is.

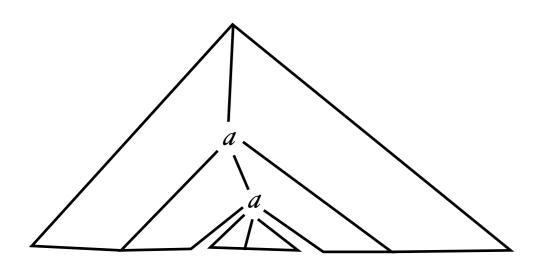


Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.



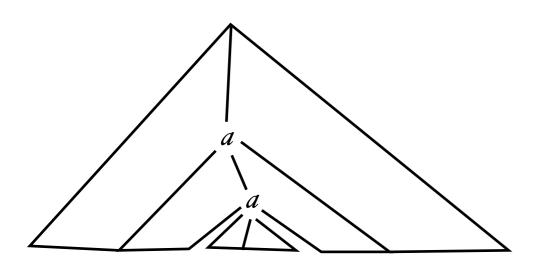
Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

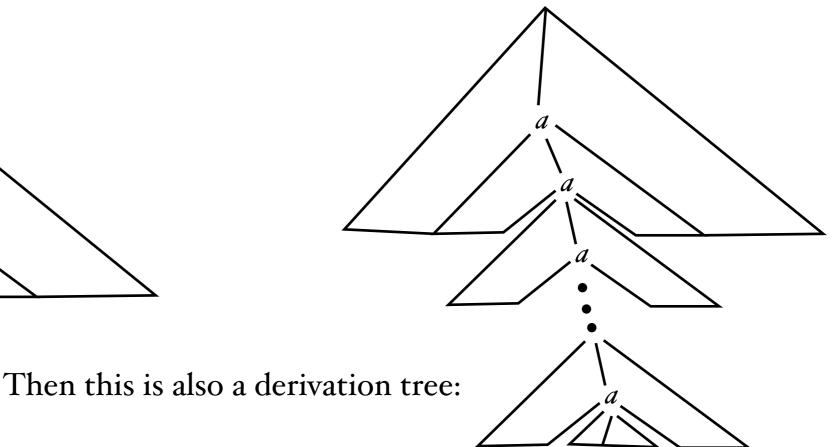
Proof: "⇐" Assume such a tree exists:



Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

Proof: "⇐" Assume such a tree exists:





Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

Proof: " \Rightarrow " In particular, trees of height (# of atoms +1) have no path with two repeated atoms.

Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

Proof: " \Rightarrow " In particular, trees of height (# of atoms +1) have no path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation trees of height equal to (# of atoms +1).

Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

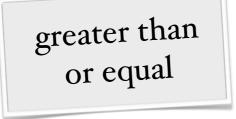
Proof: " \Rightarrow " In particular, trees of height (# of atoms +1) have no path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation trees of height equal to (# of atoms +1).

Claim: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

Proof: " \Rightarrow " In particular, trees of height (# of atoms +1) have no path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation trees of height equal to $(\# \circ f \text{ atoms } +1)$.



Claim.: Let Q be a Datalog program, D a database, and R an relation in the intensional schema of P. R(t) $\notin \mathbb{N}[X]$ iff t has a derivation tree T w.r.t. Q and D of height less than (# of atoms +2) that has a path with two occurrences of the same atom *a*.

Proof: " \Rightarrow " In particular, trees of height (# of atoms +1) have no path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation trees of height equal to $(\# \circ f \text{ atoms } +1)$.

greater than or equal

Thus there are only finitely many derivation trees.

Also decidable:

- given t ∈ q(I), and a monomial µ, the coefficient of µ in the power series that is the provenance of t is computable (including when it is ∞).
- testing whether all coefficients are $\neq \infty$.

Not decidable:

• testing whether all coefficients are 1.

Conclusion

- A versatile framework for provenance computation.
- Specializes to many known systems for provenance.
- In a sense most general within frameworks that use Semirings.
- Provides semantics for positive datalog under rich semantics (e.g. bag semantics).

Thank You!