
Provenance Semirings
Todd Green Grigoris Karvounarakis Val Tannen

presented by Clemens Ley

Provenance Semirings
Todd Green Grigoris Karvounarakis Val Tannen

presented by Clemens Ley

“place of origin”

Provenance Semirings
Todd Green Grigoris Karvounarakis Val Tannen

presented by Clemens Ley

“place of origin” algebraic structure, e.g (N,*,+,0,1)

Outline

• Data provenance by example

• Relational algebra for data provenance

• Datalog for data provenance

Data Provenance

Data Provenance
Data provenance aims to

explain how a particular
query result was obtained.

R: A B C

...

a b c p
...

S: D B E

...

d b e q
...

R⋈S: A B C D E

...............

a b c d e p * q
...............

join on B

Data Provenance
Data provenance aims to

explain how a particular
query result was obtained.

R: A B C

...

a b c p
...

S: D B E

...

d b e q
...

R⋈S: A B C D E

...............

a b c d e p * q
...............

join on B

Data Provenance
Data provenance aims to

explain how a particular
query result was obtained.

R: A B C

...

a b c p
...

S: D B E

...

d b e q
...

R⋈S: A B C D E

...............

a b c d e p * q
...............

join on B

Data Provenance

means: was obtained
from both p and q

Data provenance aims to
explain how a particular

query result was obtained.

Data Provenance (2)
R: A B C

...

a b c p
...

union
S: A B C

...

a b c q
...

R⋃S: A B C

...

a b c p + q
...

Data Provenance (2)
R: A B C

...

a b c p
...

union

means: was obtained
from either p or q

S: A B C

...

a b c q
...

R⋃S: A B C

...

a b c p + q
...

Data Provenance (3)

R: A B C

...

a b c p
a b c’ q
a b c” r

...

projection

means: was obtained
from either p, q, or r

πAB(R): A B

......

a b p + q + r
......

Data Provenance (4)

R: A B C

a b c p
d b e r
f g e s

Q: A C

a c (p2 + p2) * 0
a e (pr) * 1
d c (rp) * 0
d e (r2 + rs + r2) * 1
f e (s2 + rs + s2) * 1

Q = 𝝈C=e πAC(πACR ⋈ πBCR ⋃ πABR ⋈ πBCR)

Data Provenance (4)

R: A B C

a b c p
d b e r
f g e s

Q: A C

a c (p2 + p2) * 0
a e (pr) * 1
d c (rp) * 0
d e (r2 + rs + r2) * 1
f e (s2 + rs + s2) * 1

for selection, multiply
by 1 or 0.

Q = 𝝈C=e πAC(πACR ⋈ πBCR ⋃ πABR ⋈ πBCR)

Why would this be useful?

R: A B C

a b c p
d b e r
f g e s

Q: A C

a c (p2 + p2) * 0
a e (pr) * 1
d c (rp) * 0
d e (r2 + rs + r2) * 1
f e (s2 + rs + s2) * 1

for selection, multiply
by 1 or 0.

Q = 𝝈C=e πAC(πACR ⋈ πBCR ⋃ πABR ⋈ πBCR)

Why would this be useful?

for bag semantics,
consider annotations as

multiplicities

R: A B C

a b c p := 2
d b e r := 5
f g e s := 1

Q: A C

a c (p2 + p2) * 0 = 0
a e (pr) * 1 = 10
d c (rp) * 0 = 0
d e (r2 + rs + r2) * 1 = 55
f e (s2 + rs + s2) * 1 = 7

Q = 𝝈C=e πAC(πACR ⋈ πBCR ⋃ πABR ⋈ πBCR)

Why would this be useful?

for incomplete databases, consider
annotations as boolean values,

 * as ∧, + as ∨, 1 as true, and 0 as false

R: A B C

a b c p := b1

d b e r := b2

f g e s := b3

Q: A C

a c (p2 + p2) * 0 = ((b1∧b1) ∨ (b1∧b1)) ∧ false
a e (pr) * 1 = (b1∧b2) ∧ true
d c (rp) * 0 = (b2∧b1) ∧ false
d e (r2 + rs + r2) * 1 = (b2 ∨ (b2∧b3) ∨ b2) ∧ true
f e (s2 + rs + s2) * 1 = (b3 ∨ (b2∧b3) ∨ b3) ∧ true

Data Structure

• Relations are mappings from tuples to annotations in K; we require that
R(t) ≠ 0 for only finitely many tuples t.

• intuitively, “+” means “alternative use” corresponds to union

• “*” means “joint use” and corresponds to join

• “0” and “1” are special annotations

• But what is a query languages for such relations?

Data Structure

• Relations are mappings from tuples to annotations in K; we
require that R(t) ≠ 0 for only finitely many tuples t.

• intuitively, “+” means “alternative use” corresponds to union

• “*” means “joint use” and corresponds to join

• “0” and “1” are special annotations

• But what is (K,+,*,0,1) and how are annotations computed?

Positive Algebra

Positive Algebra

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

Positive Algebra (2)

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

What is K?

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

What is K?

Note that the list does not contain

idempotence of union and self join,

as these fail for set semantics

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

Def. A commutative semiring is a structure (K,+,*,0,1) where

• + is commutative, associative, with identity 0

• * is associative with identity 1

• * distributes over +

• a * 0 = 0 * a = 0

Examples:

• the natural numbers: (N, +, *, 0, 1)

• the booleans: (B, ∧, ∨, true, false)

• subsets of a set: (𝒫(Ω), ⋃, ∩, ∅, Ω)

• the naturals with infinity: (N∞, +, *, 0, 1)

• polynomials in X: (N[X], +, *, 0, 1)

What is K?

Note that the list does not contain

idempotence of union and self join,

as these fail for set semantics

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

Def. A commutative semiring is a structure (K,+,*,0,1) where

• + is commutative, associative, with identity 0

• * is associative with identity 1

• * distributes over +

• a * 0 = 0 * a = 0

Examples:

• the natural numbers: (N, +, *, 0, 1)

• the booleans: (B, ∧, ∨, true, false)

• subsets of a set: (𝒫(Ω), ⋃, ∩, ∅, Ω)

• the naturals with infinity: (N∞, +, *, 0, 1)

• polynomials in X: (N[X], +, *, 0, 1)

What is K?

a b c

a b c x

d b e y

f g e z

E Pr
x 0.6
y 0.5
z 0.1

a c

a c x

a e x \ y

d c x \ y

d e y

f e z

(a) (b)

Figure 4: Probabilistic example

the domain D for the time being and we denote the set of
all such U -tuples by U -Tup. (Usual) relations over U are
subsets of U -Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all pos-
sible tuples, with those tuples not considered to be “in”
the relation tagged with a special value. For example, the
usual set-theoretic relations correspond to functions that
map U -Tup to B = {true, false} with the tuples in the re-
lation tagged by true and those not in the relation tagged
by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U

is a function R : U -Tup ! K such that its support defined

by supp(R)
def
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more struc-
ture on the set of tags. To deal with selection we assume
that the set K contains two distinct values 0 6= 1 which de-
note “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine di↵er-
ent tags of the same tuple into one tag we assume that K

is equipped with a binary operation “+”. To deal with nat-
ural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is
equipped with another binary operation “·”.

Definition 3.2. Let (K, +, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U , there is ; :
U -Tup ! K such that ;(t) = 0.

union If R

1

, R

2

: U -Tup ! K then R

1

[R

2

: U -Tup ! K

is defined by

(R
1

[R

2

)(t)
def
= R

1

(t) + R

2

(t)

projection If R : U -Tup ! K and V ✓ U then ⇡V R :
V -Tup ! K is defined by

(⇡V R)(t)
def
=

X

t=t0 on V and R(t0) 6=0

R(t0)

(here t = t

0 on V means t

0 is a U-tuple whose restric-
tion to V is the same as the V -tuple t; note also that
the sum is finite since R has finite support)

selection If R : U -Tup ! K and the selection predicate
P maps each U-tuple to either 0 or 1 then �PR :
U -Tup ! K is defined by

(�PR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection pred-
icates is left unspecified, except that we assume that
false—the constantly 0 predicate, and true—the con-
stantly 1 predicate, are always available.

natural join If Ri : Ui-Tup ! K i = 1, 2 then R

1

1 R

2

is
the K-relation over U

1

[U

2

defined by

(R
1

1 R

2

)(t)
def
= R

1

(t
1

) · R
2

(t
2

)

where t

1

= t on U

1

and t

2

= t on U

2

(recall that t is a
U

1

[U

2

-tuple).

renaming If R : U -Tup ! K and � : U ! U

0 is a bijection
then ⇢�R is a K-relation over U

0 defined by

(⇢�R)(t)
def
= R(t � �)

Proposition 3.3. The operations of RA+ preserve the
finiteness of supports therefore they map K-relations to K-
relations. Hence, Definition 3.2 gives us an algebra on K-
relations.

This definition generalizes the definitions of RA+ for the
motivating examples we saw. Indeed, for (B,_,^, false, true)
we obtain the usual RA+ with set semantics. For (N, +, ·, 0, 1)
it is RA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider
the set of Boolean expressions over some set B of variables
which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for
all boolean assignments of the variables in B.2 Denoting
by PosBool(B) the result and applying Definition 3.2 to the
structure (PosBool(B),_,^, false, true) produces exactly the
Imielinski-Lipski algebra. Finally, for (P(⌦),[,\, ;, ⌦) we
obtain the Fuhr-Rölleke-Zimányi RA+ on event tables.

These four structures are examples of commutative semir-
ings, i.e., algebraic structures (K, +, ·, 0, 1) such that (K, +, 0)
and (K, ·, 1) are commutative monoids, · is distributive over
+ and 8a, 0 · a = a · 0 = 0. Further evidence for requiring
K to form such a semiring is given by

Proposition 3.4. The following RA identities:

• union is associative, commutative and has identity ;;

• join is associative, commutative and distributive over
union;

• projections and selections commute with each other as
well as with unions and joins (when applicable);

• �false(R) = ; and �true(R) = R.

hold for the positive algebra on K-relations if and only if
(K, +, ·, 0, 1) is a commutative semiring.

Glaringly absent from the list of relational identities are
the idempotence of union and of (self-)join. Indeed, these
fail for the bag semantics, an important particular case of
our general treatment.

Any function h : K ! K

0 can be used to transform
K-relations to K

0-relations simply by applying h to each
2in order to permit simplifications; it turns out that this is
the same as transforming using the axioms of distributive
lattices [11]

Def. A commutative semiring is a structure (K,+,*,0,1) where

• + is commutative, associative, with identity 0

• * is associative with identity 1

• * distributes over +

• a * 0 = 0 * a = 0

Examples:

• the natural numbers: (N, +, *, 0, 1)

• the booleans: (B, ∧, ∨, true, false)

• subsets of a set: (𝒫(Ω), ⋃, ∩, ∅, Ω)

• the naturals with infinity: (N∞, +, *, 0, 1)

• polynomials in X: (N[X], +, *, 0, 1)

What is K?

Recall, semiring homomorphism is mapping h:K1 → K2 such that

h(1K1) = 1K2 h(0K1) = 0K2
h(a +K1 b) = h(a) +K2 h(b) h(a *K1 b) = h(a) *K2 h(b)

The fundamental property of RA
Fundamental)property)

For!every!query!!!q!!and!every!homomorphism!of!
commutaMve!semirings!! h : K1 ! K2 the!following!
“commutes”:

K1Bdata!

K1Edata!

q! q!

h!

h!

05/20/10! AMW!Tutorial,!Buenos!Aires! 42!

K2Bdata!

K2Bdata!

Doesn’t!always!
work,!eg.!difference.

Recall, semiring homomorphism is mapping h:K1 → K2 such that

h(1K1) = 1K2 h(0K1) = 0K2
h(a +K1 b) = h(a) +K2 h(b) h(a *K1 b) = h(a) *K2 h(b)

The fundamental property of RA
Fundamental)property)

For!every!query!!!q!!and!every!homomorphism!of!
commutaMve!semirings!! h : K1 ! K2 the!following!
“commutes”:

K1Bdata!

K1Edata!

q! q!

h!

h!

05/20/10! AMW!Tutorial,!Buenos!Aires! 42!

K2Bdata!

K2Bdata!

Doesn’t!always!
work,!eg.!difference.

Works only if q in RA+.

Does not generalize

e.g. to negation.

Which semiring do we choose?

a b c

a b c p

d b e r

f g e s

a c

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

a c

a c 2p

2

a e pr

d c pr

d e 2r

2 + rs

f e 2s

2 + rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

tag (note that the support may shrink but never increase).
Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K

0-relations also by h. The
RA operations we have defined work nicely with semiring
structures:

Proposition 3.5. Let h : K ! K

0 and assume that
K, K

0 are commutative semirings. The transformation given
by h from K-relations to K

0-relations commutes with any
RA+ query (for queries of one argument) q(h(R)) = h(q(R))
if and only if h is a semiring homomorphism.

4. POLYNOMIALS FOR PROVENANCE
Lineage/why-provenance was defined in [12, 13, 6] as a

way of relating the tuples in a query output to the tuples
in the query input that “contribute” to them. The why-
provenance of a tuple t in a query output is in fact the set
of all contributing input tuples.

Computing the why-provenance for queries in RA+ turns
out to be exactly Definition 3.2 for the semiring
(P(X),[,[, ;, ;) where X consists of the ids of the tuples
in the input instance. For example, we consider the same
tuples as in relation R used in the examples of Section 2
but now we tag them with their own ids p,r,s, as shown in
Figure 5(a). The resulting R can be seen as a P({p, r, s})-
relation by replacing p with {p}, etc. Applying the query q

from Section 2 to R we obtain according to Definition 3.2
the P({p, r, s})-relation shown in Figure 5(b).

This example illustrates the limitations of why-provenance
(also recognized in [8]). For example, in the query result in
Figure 5(b) (f, e) and (d, e) have the same why-provenance,
the input tuples with id r and s. However, the query can
also calculate (f, e) from s alone and (d, e) from r alone. In
a provenance application in which one of r or s is perhaps
less trusted or less usable than the other the e↵ect can be
di↵erent on (f, e) than on (d, e) and this cannot be detected
by why-provenance. It seems that we need to know not just
which input tuples contribute but also how they contribute.3

On the other hand, by using the di↵erent operations of the
semiring, Definition 3.2 appears to fully “document” how an
output tuple is produced. To record the documentation as
tuple tags we need to use a semiring of symbolic expressions.
In the case of semirings, like in ring theory, these are the
polynomials.

Definition 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with variables

3In contrast to why-provenance, the notion of provenance
we propose could justifiably be called how-provenance.

(a.k.a. indeterminates) from X and coe�cients from N, with
the operations defined as usual4: (N[X], +, ·, 0, 1).

Example of provenance computation. Start again from
the relation R in Figure 5(a) in which tuples are tagged with
their own id. R can be seen as an N[p, r, s]-relation. Apply-
ing to R the query q from Section 2 and doing the calcu-
lations in the provenance semiring we obtain the N[p, r, s]-
relation shown in Figure 5(c). The provenance of (f, e) is
2s

2 + rs which can be “read” as follows: (f, e) is computed
by q in three di↵erent ways; two of them use the input tuple
s twice; the third uses input tuples r and s. We also see
that the provenance of (d, e) is di↵erent and we see how it
is di↵erent! 2

The following standard property of polynomials captures
the intuition that N[X] is as “general” as any semiring:

Proposition 4.2. Let K be a commutative semiring and
X a set of variables. For any valuation v : X ! K there
exists a unique homomorphism of semirings

Evalv : N[X] ! K

such that for the one-variable monomials we have Evalv(x) =
v(x).

As the notation suggests, Evalv(P) evaluates the polyno-
mial P in K given a valuation for its variables. In calcu-
lations with the integer coe�cients, na where n 2 N and
a 2 K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P 2 N[x
1

, . . . , xn] and
any K the polynomial function fP : K

n ! K is given
by:

fP (a
1

, . . . , an)
def
= Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 3.5 and 4.2 we obtain The-
orem 4.3 below, a conceptually important fact that says,
informally, that the semantics of RA+ on K-relations for
any semiring K factors through the semantics of the same
in provenance semirings.

Indeed, let K be a commutative semiring, let R be a K-
relation, and let X be the set of tuple ids of the tuples in
supp(R). There is an obvious valuation v : X ! K that
associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, denoted
R̄, which is an X [{0}-relation. R̄ is such that supp(R̄) =
supp(R) and the tuples in supp(R̄) are tagged by their own
tuple id. For example, in Figure 7(d) we show an abstractly-
tagged version of the relation in Figure 7(b). Note that as
an X [{0}-relation, R̄ is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of
one argument (but the generalization is immediate):

Theorem 4.3. For any RA+ query q we have

q(R) = Evalv � q(R̄)

To illustrate an instance of this theorem, consider the prove-
nance polynomial 2r

2 + rs of the tuple (d, e) in Figure 5(c).
Evaluating it in N for p = 2, r = 5, s = 1 we get 55 which is
indeed the multiplicity of (d, e) in Figure 3(a).
4These are polynomials in commutative variables so their
operations are the same as in middle-school algebra, except
that subtraction is not allowed.

a b c

a b c p

d b e r

f g e s

a c

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

a c

a c 2p

2

a e pr

d c pr

d e 2r

2 + rs

f e 2s

2 + rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

tag (note that the support may shrink but never increase).
Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K

0-relations also by h. The
RA operations we have defined work nicely with semiring
structures:

Proposition 3.5. Let h : K ! K

0 and assume that
K, K

0 are commutative semirings. The transformation given
by h from K-relations to K

0-relations commutes with any
RA+ query (for queries of one argument) q(h(R)) = h(q(R))
if and only if h is a semiring homomorphism.

4. POLYNOMIALS FOR PROVENANCE
Lineage/why-provenance was defined in [12, 13, 6] as a

way of relating the tuples in a query output to the tuples
in the query input that “contribute” to them. The why-
provenance of a tuple t in a query output is in fact the set
of all contributing input tuples.

Computing the why-provenance for queries in RA+ turns
out to be exactly Definition 3.2 for the semiring
(P(X),[,[, ;, ;) where X consists of the ids of the tuples
in the input instance. For example, we consider the same
tuples as in relation R used in the examples of Section 2
but now we tag them with their own ids p,r,s, as shown in
Figure 5(a). The resulting R can be seen as a P({p, r, s})-
relation by replacing p with {p}, etc. Applying the query q

from Section 2 to R we obtain according to Definition 3.2
the P({p, r, s})-relation shown in Figure 5(b).

This example illustrates the limitations of why-provenance
(also recognized in [8]). For example, in the query result in
Figure 5(b) (f, e) and (d, e) have the same why-provenance,
the input tuples with id r and s. However, the query can
also calculate (f, e) from s alone and (d, e) from r alone. In
a provenance application in which one of r or s is perhaps
less trusted or less usable than the other the e↵ect can be
di↵erent on (f, e) than on (d, e) and this cannot be detected
by why-provenance. It seems that we need to know not just
which input tuples contribute but also how they contribute.3

On the other hand, by using the di↵erent operations of the
semiring, Definition 3.2 appears to fully “document” how an
output tuple is produced. To record the documentation as
tuple tags we need to use a semiring of symbolic expressions.
In the case of semirings, like in ring theory, these are the
polynomials.

Definition 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with variables

3In contrast to why-provenance, the notion of provenance
we propose could justifiably be called how-provenance.

(a.k.a. indeterminates) from X and coe�cients from N, with
the operations defined as usual4: (N[X], +, ·, 0, 1).

Example of provenance computation. Start again from
the relation R in Figure 5(a) in which tuples are tagged with
their own id. R can be seen as an N[p, r, s]-relation. Apply-
ing to R the query q from Section 2 and doing the calcu-
lations in the provenance semiring we obtain the N[p, r, s]-
relation shown in Figure 5(c). The provenance of (f, e) is
2s

2 + rs which can be “read” as follows: (f, e) is computed
by q in three di↵erent ways; two of them use the input tuple
s twice; the third uses input tuples r and s. We also see
that the provenance of (d, e) is di↵erent and we see how it
is di↵erent! 2

The following standard property of polynomials captures
the intuition that N[X] is as “general” as any semiring:

Proposition 4.2. Let K be a commutative semiring and
X a set of variables. For any valuation v : X ! K there
exists a unique homomorphism of semirings

Evalv : N[X] ! K

such that for the one-variable monomials we have Evalv(x) =
v(x).

As the notation suggests, Evalv(P) evaluates the polyno-
mial P in K given a valuation for its variables. In calcu-
lations with the integer coe�cients, na where n 2 N and
a 2 K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P 2 N[x
1

, . . . , xn] and
any K the polynomial function fP : K

n ! K is given
by:

fP (a
1

, . . . , an)
def
= Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 3.5 and 4.2 we obtain The-
orem 4.3 below, a conceptually important fact that says,
informally, that the semantics of RA+ on K-relations for
any semiring K factors through the semantics of the same
in provenance semirings.

Indeed, let K be a commutative semiring, let R be a K-
relation, and let X be the set of tuple ids of the tuples in
supp(R). There is an obvious valuation v : X ! K that
associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, denoted
R̄, which is an X [{0}-relation. R̄ is such that supp(R̄) =
supp(R) and the tuples in supp(R̄) are tagged by their own
tuple id. For example, in Figure 7(d) we show an abstractly-
tagged version of the relation in Figure 7(b). Note that as
an X [{0}-relation, R̄ is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of
one argument (but the generalization is immediate):

Theorem 4.3. For any RA+ query q we have

q(R) = Evalv � q(R̄)

To illustrate an instance of this theorem, consider the prove-
nance polynomial 2r

2 + rs of the tuple (d, e) in Figure 5(c).
Evaluating it in N for p = 2, r = 5, s = 1 we get 55 which is
indeed the multiplicity of (d, e) in Figure 3(a).
4These are polynomials in commutative variables so their
operations are the same as in middle-school algebra, except
that subtraction is not allowed.

Which semiring do we choose?

a b c

a b c p

d b e r

f g e s

a c

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

a c

a c 2p

2

a e pr

d c pr

d e 2r

2 + rs

f e 2s

2 + rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

tag (note that the support may shrink but never increase).
Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K

0-relations also by h. The
RA operations we have defined work nicely with semiring
structures:

Proposition 3.5. Let h : K ! K

0 and assume that
K, K

0 are commutative semirings. The transformation given
by h from K-relations to K

0-relations commutes with any
RA+ query (for queries of one argument) q(h(R)) = h(q(R))
if and only if h is a semiring homomorphism.

4. POLYNOMIALS FOR PROVENANCE
Lineage/why-provenance was defined in [12, 13, 6] as a

way of relating the tuples in a query output to the tuples
in the query input that “contribute” to them. The why-
provenance of a tuple t in a query output is in fact the set
of all contributing input tuples.

Computing the why-provenance for queries in RA+ turns
out to be exactly Definition 3.2 for the semiring
(P(X),[,[, ;, ;) where X consists of the ids of the tuples
in the input instance. For example, we consider the same
tuples as in relation R used in the examples of Section 2
but now we tag them with their own ids p,r,s, as shown in
Figure 5(a). The resulting R can be seen as a P({p, r, s})-
relation by replacing p with {p}, etc. Applying the query q

from Section 2 to R we obtain according to Definition 3.2
the P({p, r, s})-relation shown in Figure 5(b).

This example illustrates the limitations of why-provenance
(also recognized in [8]). For example, in the query result in
Figure 5(b) (f, e) and (d, e) have the same why-provenance,
the input tuples with id r and s. However, the query can
also calculate (f, e) from s alone and (d, e) from r alone. In
a provenance application in which one of r or s is perhaps
less trusted or less usable than the other the e↵ect can be
di↵erent on (f, e) than on (d, e) and this cannot be detected
by why-provenance. It seems that we need to know not just
which input tuples contribute but also how they contribute.3

On the other hand, by using the di↵erent operations of the
semiring, Definition 3.2 appears to fully “document” how an
output tuple is produced. To record the documentation as
tuple tags we need to use a semiring of symbolic expressions.
In the case of semirings, like in ring theory, these are the
polynomials.

Definition 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with variables

3In contrast to why-provenance, the notion of provenance
we propose could justifiably be called how-provenance.

(a.k.a. indeterminates) from X and coe�cients from N, with
the operations defined as usual4: (N[X], +, ·, 0, 1).

Example of provenance computation. Start again from
the relation R in Figure 5(a) in which tuples are tagged with
their own id. R can be seen as an N[p, r, s]-relation. Apply-
ing to R the query q from Section 2 and doing the calcu-
lations in the provenance semiring we obtain the N[p, r, s]-
relation shown in Figure 5(c). The provenance of (f, e) is
2s

2 + rs which can be “read” as follows: (f, e) is computed
by q in three di↵erent ways; two of them use the input tuple
s twice; the third uses input tuples r and s. We also see
that the provenance of (d, e) is di↵erent and we see how it
is di↵erent! 2

The following standard property of polynomials captures
the intuition that N[X] is as “general” as any semiring:

Proposition 4.2. Let K be a commutative semiring and
X a set of variables. For any valuation v : X ! K there
exists a unique homomorphism of semirings

Evalv : N[X] ! K

such that for the one-variable monomials we have Evalv(x) =
v(x).

As the notation suggests, Evalv(P) evaluates the polyno-
mial P in K given a valuation for its variables. In calcu-
lations with the integer coe�cients, na where n 2 N and
a 2 K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P 2 N[x
1

, . . . , xn] and
any K the polynomial function fP : K

n ! K is given
by:

fP (a
1

, . . . , an)
def
= Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 3.5 and 4.2 we obtain The-
orem 4.3 below, a conceptually important fact that says,
informally, that the semantics of RA+ on K-relations for
any semiring K factors through the semantics of the same
in provenance semirings.

Indeed, let K be a commutative semiring, let R be a K-
relation, and let X be the set of tuple ids of the tuples in
supp(R). There is an obvious valuation v : X ! K that
associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, denoted
R̄, which is an X [{0}-relation. R̄ is such that supp(R̄) =
supp(R) and the tuples in supp(R̄) are tagged by their own
tuple id. For example, in Figure 7(d) we show an abstractly-
tagged version of the relation in Figure 7(b). Note that as
an X [{0}-relation, R̄ is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of
one argument (but the generalization is immediate):

Theorem 4.3. For any RA+ query q we have

q(R) = Evalv � q(R̄)

To illustrate an instance of this theorem, consider the prove-
nance polynomial 2r

2 + rs of the tuple (d, e) in Figure 5(c).
Evaluating it in N for p = 2, r = 5, s = 1 we get 55 which is
indeed the multiplicity of (d, e) in Figure 3(a).
4These are polynomials in commutative variables so their
operations are the same as in middle-school algebra, except
that subtraction is not allowed.

a b c

a b c p

d b e r

f g e s

a c

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

a c

a c 2p

2

a e pr

d c pr

d e 2r

2 + rs

f e 2s

2 + rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

tag (note that the support may shrink but never increase).
Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K

0-relations also by h. The
RA operations we have defined work nicely with semiring
structures:

Proposition 3.5. Let h : K ! K

0 and assume that
K, K

0 are commutative semirings. The transformation given
by h from K-relations to K

0-relations commutes with any
RA+ query (for queries of one argument) q(h(R)) = h(q(R))
if and only if h is a semiring homomorphism.

4. POLYNOMIALS FOR PROVENANCE
Lineage/why-provenance was defined in [12, 13, 6] as a

way of relating the tuples in a query output to the tuples
in the query input that “contribute” to them. The why-
provenance of a tuple t in a query output is in fact the set
of all contributing input tuples.

Computing the why-provenance for queries in RA+ turns
out to be exactly Definition 3.2 for the semiring
(P(X),[,[, ;, ;) where X consists of the ids of the tuples
in the input instance. For example, we consider the same
tuples as in relation R used in the examples of Section 2
but now we tag them with their own ids p,r,s, as shown in
Figure 5(a). The resulting R can be seen as a P({p, r, s})-
relation by replacing p with {p}, etc. Applying the query q

from Section 2 to R we obtain according to Definition 3.2
the P({p, r, s})-relation shown in Figure 5(b).

This example illustrates the limitations of why-provenance
(also recognized in [8]). For example, in the query result in
Figure 5(b) (f, e) and (d, e) have the same why-provenance,
the input tuples with id r and s. However, the query can
also calculate (f, e) from s alone and (d, e) from r alone. In
a provenance application in which one of r or s is perhaps
less trusted or less usable than the other the e↵ect can be
di↵erent on (f, e) than on (d, e) and this cannot be detected
by why-provenance. It seems that we need to know not just
which input tuples contribute but also how they contribute.3

On the other hand, by using the di↵erent operations of the
semiring, Definition 3.2 appears to fully “document” how an
output tuple is produced. To record the documentation as
tuple tags we need to use a semiring of symbolic expressions.
In the case of semirings, like in ring theory, these are the
polynomials.

Definition 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with variables

3In contrast to why-provenance, the notion of provenance
we propose could justifiably be called how-provenance.

(a.k.a. indeterminates) from X and coe�cients from N, with
the operations defined as usual4: (N[X], +, ·, 0, 1).

Example of provenance computation. Start again from
the relation R in Figure 5(a) in which tuples are tagged with
their own id. R can be seen as an N[p, r, s]-relation. Apply-
ing to R the query q from Section 2 and doing the calcu-
lations in the provenance semiring we obtain the N[p, r, s]-
relation shown in Figure 5(c). The provenance of (f, e) is
2s

2 + rs which can be “read” as follows: (f, e) is computed
by q in three di↵erent ways; two of them use the input tuple
s twice; the third uses input tuples r and s. We also see
that the provenance of (d, e) is di↵erent and we see how it
is di↵erent! 2

The following standard property of polynomials captures
the intuition that N[X] is as “general” as any semiring:

Proposition 4.2. Let K be a commutative semiring and
X a set of variables. For any valuation v : X ! K there
exists a unique homomorphism of semirings

Evalv : N[X] ! K

such that for the one-variable monomials we have Evalv(x) =
v(x).

As the notation suggests, Evalv(P) evaluates the polyno-
mial P in K given a valuation for its variables. In calcu-
lations with the integer coe�cients, na where n 2 N and
a 2 K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P 2 N[x
1

, . . . , xn] and
any K the polynomial function fP : K

n ! K is given
by:

fP (a
1

, . . . , an)
def
= Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 3.5 and 4.2 we obtain The-
orem 4.3 below, a conceptually important fact that says,
informally, that the semantics of RA+ on K-relations for
any semiring K factors through the semantics of the same
in provenance semirings.

Indeed, let K be a commutative semiring, let R be a K-
relation, and let X be the set of tuple ids of the tuples in
supp(R). There is an obvious valuation v : X ! K that
associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, denoted
R̄, which is an X [{0}-relation. R̄ is such that supp(R̄) =
supp(R) and the tuples in supp(R̄) are tagged by their own
tuple id. For example, in Figure 7(d) we show an abstractly-
tagged version of the relation in Figure 7(b). Note that as
an X [{0}-relation, R̄ is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of
one argument (but the generalization is immediate):

Theorem 4.3. For any RA+ query q we have

q(R) = Evalv � q(R̄)

To illustrate an instance of this theorem, consider the prove-
nance polynomial 2r

2 + rs of the tuple (d, e) in Figure 5(c).
Evaluating it in N for p = 2, r = 5, s = 1 we get 55 which is
indeed the multiplicity of (d, e) in Figure 3(a).
4These are polynomials in commutative variables so their
operations are the same as in middle-school algebra, except
that subtraction is not allowed.

But why?

A nice property of N[X]

Most)important)source)of)homomorphisms)

If!!!K!!is!a!commutaMve!semiring,!then!any!funcMon!!

on!tokens,!!!f!:!X!! K extends!uniquely!to!a!!
homomorphism!!! h!: N[X]!!! K .

(“Extends!means!that!!h!!coincides!with!!f!!on!tokens.)!

Think!of!!!h(!pr+ r 2+s2 !)!!as!evalua1ng!!pr+ r 2+s2 ! in!!K.!! !
Examples!are!coming!up.!

05/20/10! AMW!Tutorial,!Buenos!Aires! 43!

It’s!the!free!commutaMve!semiring!generated!by!X.!
The!“free”!one!rules!them!all!

Example: K= (N, +, *, 0, 1), X={p,q},

f:{p,q} → K be f(p)=3 and f(q)=5.

 Then the extension of f is

 h: N[X] → K and “evaluates” the

polynomial
(e.g. h(p+2q)=13)

Nice + Fundamental

query πA

πA(R): A

a p + q

...

R: A B C

a b c p

a d e q

...

πA(R): A

a 8

...

R: A B C

a b c 3

a d e 5

...

homomorphism h

query πA

homomorphism h

Example: K= (N, +, *, 0, 1), X={p,q},

f:{p,q} → K be f(p)=3 and f(q)=5.

 Then the extension of f is

 h: N[X] → K and “evaluates” the

polynomial
(e.g. h(p+2q)=13)

Nice + Fundamental

query πA

πA(R): A

a p + q

...

R: A B C

a b c p

a d e q

...

πA(R): A

a 8

...

R: A B C

a b c 3

a d e 5

...

homomorphism h

query πA

homomorphism h

Example: K= (N, +, *, 0, 1), X={p,q},

f:{p,q} → K be f(p)=3 and f(q)=5.

 Then the extension of f is

 h: N[X] → K and “evaluates” the

polynomial
(e.g. h(p+2q)=13)

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N[X]-relation R and a
homomorphism Evalv from R to R.

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N[X]-relation R and a
homomorphism Evalv from R to R.

Free the semiring!

R: A B

a b 3

a d 5

......

q(R): A B

a b 15

......

query q

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N[X]-relation R and a
homomorphism Evalv from R to R.

Free the semiring!

Evalv

R: A B

a b p

a d q

......

R: A B

a b 3

a d 5

......

q(R): A B

a b 15

......

query q

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N[X]-relation R and a
homomorphism Evalv from R to R.

Free the semiring!

Evalv

q(R): A B

a b pq

......

query q

Evalv

R: A B

a b p

a d q

......

R: A B

a b 3

a d 5

......

q(R): A B

a b 15

......

query q

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N[X]-relation R and a
homomorphism Evalv from R to R.

Free the semiring!

Evalv

q(R): A B

a b pq

......

query q

Evalv

R: A B

a b p

a d q

......

R: A B

a b 3

a d 5

......

q(R): A B

a b 15

......

query q

a

b

c

a

b

c

p

d

b

e

r

f

g

e

s

a

c

a

c

{p}
a

e

{p,

r

}
d

c

{p,

r

}
d

e

{r, s}
f

e

{r, s}

a

c

a

c

2p

2

a

e

p

r

d

c

p

r

d

e

2r

2 + r

s

f

e

2s

2 + r

s

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

tag (note that the support may shrink but never increase).

Abusing the notation a bit we denote the resulting trans-

formation from K

-relations to K

0-relations also by h

. The

RA operations we have defined work nicely with semiring

structures:

P

r

o

p

o

s

it

io

n

3.5. Let h

: K

! K

0 and assume that

K

,

K

0 are commutative semirings. The transformation given

by h

from K

-relations to K

0-relations commutes with any

RA+ query (for queries of one argument) q

(h(R)) = h

(q(R))

if and only if h

is a semiring homomorphism.

4. POLYNOMIALS FOR PROVENANCE
Lineage/why-provenance was defined in [12, 13, 6] as a

way of relating the tuples in a query output to the tuples

in the query input that “contribute” to them. The why-

provenance of a tuple t

in a query output is in fact the set

of all contributing input tuples.
Computing the why-provenance for queries in RA+ turns

out to be exactly Definition 3.2 for the semiring

(P(X),[,

[,

;, ;) where X

consists of the ids of the tuples

in the input instance. For example, we consider the same

tuples as in relation R

used in the examples of Section 2

but now we tag them with their own ids p

,r,s, as shown in

Figure 5(a). The resulting R

can be seen as a P({p,

r
,

s

})-
relation by replacing p

with {p}, etc. Applying the query q

from Section 2 to R

we obtain according to Definition 3.2

the P({p,

r
,

s

})-relation shown in Figure 5(b).

This example illustrates the limitations of why-provenance

(also recognized in [8]). For example, in the query result in

Figure 5(b) (f,

e

) and (d,

e

) have the same why-provenance,

the input tuples with id r

and s

. However, the query can

also calculate (f,

e

) from s

alone and (d,

e

) from r

alone. In

a provenance application in which one of r

or s

is perhaps

less trusted or less usable than the other the e↵ect can be

di↵erent on (f,

e

) than on (d,

e

) and this cannot be detected

by why-provenance. It seems that we need to know not just

which input tuples contribute but also how they contribute.3

On the other hand, by using the di↵erent operations of the

semiring, Definition 3.2 appears to fully “document” how an

output tuple is produced. To record the documentation as

tuple tags we need to use a semiring of symbolic expressions.

In the case of semirings, like in ring theory, these are the

polynomials.

D

e

f

in

it

io

n

4.1. Let X

be the set of tuple ids of a (usual)

database instance I

. The positive algebra provenance

semiring for I

is the semiring of polynomials with variables

3In contrast to why-provenance, the notion of provenance
we propose could justifiably be called how-provenance.

(a.k.a. indeterminates) from X

and coe�cients from N, with

the operations defined as usual4: (N[X], +,

·, 0,

1).

Example of provenance computation. Start again from

the relation R

in Figure 5(a) in which tuples are tagged with

their own id. R

can be seen as an N[p,

r
,

s

]-relation. Apply-

ing to R

the query q

from Section 2 and doing the calcu-

lations in the provenance semiring we obtain the N[p,

r
,

s

]-

relation shown in Figure 5(c). The provenance of (f,

e

) is

2s

2 + r

s

which can be “read” as follows: (f,

e

) is computed

by q

in three di↵erent ways; two of them use the input tuple

s

twice; the third uses input tuples r

and s

. We also see

that the provenance of (d,

e

) is di↵erent and we see how it

is di↵erent! 2

The following standard property of polynomials captures

the intuition that N[X] is as “general” as any semiring:

P

r

o

p

o

s

it

io

n

4.2. Let K

be a commutative semiring and

X

a set of variables. For any valuation v

: X

! K

there

exists a unique homomorphism of semirings

E

v

a

lv : N[X] ! K

such that for the one-variable monomials we have E

v

a

lv(x) =

v

(x).

As the notation suggests, E

v

a

lv(P) evaluates the polyno-

mial P

in K

given a valuation for its variables. In calcu-

lations with the integer coe�cients, n

a

where n

2 N and

a

2 K

is the sum in K

of n

copies of a

. Note that N is

embedded in K

by mapping n

to the sum of n

copies of 1K .

Using the E

v

a

l

notation, for any P

2 N[x
1

,

.

.

.

,

xn] and

any K

the polynomial function fP : K

n ! K

is given

by:

fP (a
1

,

.

.

.

,

an)
def
= E

v

a

lv(P) v

(xi) = ai, i = 1..
n

Putting together Propositions 3.5 and 4.2 we obtain The-

orem 4.3 below, a conceptually important fact that says,

informally, that the semantics of RA+ on K

-relations for

any semiring K

factors through the semantics of the same

in provenance semirings.
Indeed, let K

be a commutative semiring, let R

be a K

-

relation, and let X

be the set of tuple ids of the tuples in

su

p

p

(R). There is an obvious valuation v

: X

! K

that

associates to a tuple id the tag of that tuple in R

.

We associate to R

an “abstractly tagged” version, denoted

R̄

, which is an X

[{0}-relation. R̄

is such that su

p

p

(R̄) =

su

p

p

(R) and the tuples in su

p

p

(R̄) are tagged by their own

tuple id. For example, in Figure 7(d) we show an abstractly-

tagged version of the relation in Figure 7(b). Note that as

an X

[{0}-relation, R̄

is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of

one argument (but the generalization is immediate):

T

h

e

o

r

e

m

4.3. For any RA+ query q

we have

q

(R) = E

v

a

lv � q

(R̄)

To illustrate an instance of this theorem, consider the prove-

nance polynomial 2r

2 + r

s

of the tuple (d,

e

) in Figure 5(c).

Evaluating it in N for p

= 2,

r

= 5,

s

= 1 we get 55 which is

indeed the multiplicity of (d,

e

) in Figure 3(a).

4These are polynomials in commutative variables so their
operations are the same as in middle-school algebra, except
that subtraction is not allowed.

Instantiation of Positive Algebra

(B, ∧, ∨, true, false) Set semantics

(N, +, *, 0, 1) Bag semantics

(𝒫(Ω), ⋃, ∩, ∅, Ω) Probabilistic events

(BoolExp(P), ∨, ∧, true, false) Conditional tables

(A, min, max, 0, P) where

A = P < C < S < T < 0
Access control levels

More nice...
One)semiring)to)rule)them)all…))(apologies!))

N[X]!

B[X]! Trio(X)!

Why(X)!

Lin(X)! PosBool(X)!

Example:!2x2y!+!xy!+!5y2!+!z!

drop!exponents!
3xy!+!5y!+!z!

drop!coefficients!
x2y!+!xy!+!y2!+!z!

collapse!terms!
xyz!

drop!both!exp.!and!coeff.!
!!!!!!!!!xy!+!y!+!z!

apply!absorpMon!
(ab!+!b!=!b)!

y!+!z!

31!05/20/10! AMW!Tutorial,!Buenos!Aires!

A!path!downward!from!K1!to!K2!indicates!that!there!exists!an!
onto!(surjec1ve))semiring)homomorphism)))!h!:!K1!→!K2!!!!!!!

One)semiring)to)rule)them)all…))(apologies!))

N[X]!

B[X]! Trio(X)!

Why(X)!

Lin(X)! PosBool(X)!

Example:!2x2y!+!xy!+!5y2!+!z!

drop!exponents!
3xy!+!5y!+!z!

drop!coefficients!
x2y!+!xy!+!y2!+!z!

collapse!terms!
xyz!

drop!both!exp.!and!coeff.!
!!!!!!!!!xy!+!y!+!z!

apply!absorpMon!
(ab!+!b!=!b)!

y!+!z!

31!05/20/10! AMW!Tutorial,!Buenos!Aires!

A!path!downward!from!K1!to!K2!indicates!that!there!exists!an!
onto!(surjec1ve))semiring)homomorphism)))!h!:!K1!→!K2!!!!!!!

More nice...
One)semiring)to)rule)them)all…))(apologies!))

N[X]!

B[X]! Trio(X)!

Why(X)!

Lin(X)! PosBool(X)!

Example:!2x2y!+!xy!+!5y2!+!z!

drop!exponents!
3xy!+!5y!+!z!

drop!coefficients!
x2y!+!xy!+!y2!+!z!

collapse!terms!
xyz!

drop!both!exp.!and!coeff.!
!!!!!!!!!xy!+!y!+!z!

apply!absorpMon!
(ab!+!b!=!b)!

y!+!z!

31!05/20/10! AMW!Tutorial,!Buenos!Aires!

A!path!downward!from!K1!to!K2!indicates!that!there!exists!an!
onto!(surjec1ve))semiring)homomorphism)))!h!:!K1!→!K2!!!!!!!

One)semiring)to)rule)them)all…))(apologies!))

N[X]!

B[X]! Trio(X)!

Why(X)!

Lin(X)! PosBool(X)!

Example:!2x2y!+!xy!+!5y2!+!z!

drop!exponents!
3xy!+!5y!+!z!

drop!coefficients!
x2y!+!xy!+!y2!+!z!

collapse!terms!
xyz!

drop!both!exp.!and!coeff.!
!!!!!!!!!xy!+!y!+!z!

apply!absorpMon!
(ab!+!b!=!b)!

y!+!z!

31!05/20/10! AMW!Tutorial,!Buenos!Aires!

A!path!downward!from!K1!to!K2!indicates!that!there!exists!an!
onto!(surjec1ve))semiring)homomorphism)))!h!:!K1!→!K2!!!!!!!

A)provenance)hierarchy)

N[X]!

B[X]! Trio(X)!

Why(X)!

Lin(X)! PosBool(X)!

most!informaMve!

least!informaMve!

30!05/20/10! AMW!Tutorial,!Buenos!Aires!

Datalog

Syntax and Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

edb

idb

Syntax and Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

edb

idb

Syntax and Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

edb

idb

Syntax and Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

edb

idb

Datalog with Bag Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q:

Datalog with Bag Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q:

Datalog with Bag Semantics
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q:

What annotations do we need?
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

What annotations do we need?
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

How about: the tag of an answer tuple is the
sum over all derivation trees and the product
of the tags of each leaf.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

What annotations do we need?
Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

How about: the tag of an answer tuple is the
sum over all derivation trees and the product
of the tags of each leaf.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

R: Q:

Q(a,b)

R(a,a) R(a,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,a)

R(a,a) R(a,a)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(a,b)

R(a,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Q(b,b)

R(b,b) R(b,b)

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Problem: A tuple may have infinitely many
derivation trees. Hence we need to work in
semirings in which infinite sums are defined.

ω-continuos semirings
Def. (Natural preorder) x ≤ y iff there is z such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (ω-complete) when x1 ≤ x2 ≤ x2 ≤ ... have suprema.

In naturally ordered semirings, we can make sense of infinite
sums:

 Def. (ω-continous) when * and + preserve suprema.
(e.g. sup(ai + bi) = sup(ai) + bi).

Lemma. Over ω-continuos semirings, functions defined by
polynomials have least fixed points.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

ω-continuos semirings
Def. (Natural preorder) x ≤ y iff there is z such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (ω-complete) when x1 ≤ x2 ≤ x2 ≤ ... have suprema.

In naturally ordered semirings, we can make sense of infinite
sums:

 Def. (ω-continous) when * and + preserve suprema.
(e.g. sup(ai + bi) = sup(ai) + bi).

Lemma. Over ω-continuos semirings, functions defined by
polynomials have least fixed points.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Preorder: reflexive and transitive.

Not necessarily anti-symmetric

(x ≤ y and y ≤ x implies x=y)

ω-continuos semirings
Def. (Natural preorder) x ≤ y iff there is z such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (ω-complete) when x1 ≤ x2 ≤ x2 ≤ ... have suprema.

In naturally ordered semirings, we can make sense of infinite
sums:

 Def. (ω-continous) when * and + preserve suprema.
(e.g. sup(ai + bi) = sup(ai) + bi).

Lemma. Over ω-continuos semirings, functions defined by
polynomials have least fixed points.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

E.g. Z is not naturally ordered because -5 ≤ 5, 5 ≤ -5, but -5≠5

ω-continuos semirings
Def. (Natural preorder) x ≤ y iff there is z such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (ω-complete) when x1 ≤ x2 ≤ x2 ≤ ... have suprema.

In naturally ordered semirings, we can make sense of infinite
sums:

 Def. (ω-continous) when * and + preserve suprema.
(e.g. sup(ai + bi) = sup(ai) + bi).

Lemma. Over ω-continuos semirings, functions defined by
polynomials have least fixed points.

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Semantics of annotated Datalog

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Semantics of annotated Datalog

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Fundamental)property)

For!every!query!!!q!!and!every!homomorphism!of!
commutaMve!semirings!! h : K1 ! K2 the!following!
“commutes”:

K1Bdata!

K1Edata!

q! q!

h!

h!

05/20/10! AMW!Tutorial,!Buenos!Aires! 42!

K2Bdata!

K2Bdata!

Doesn’t!always!
work,!eg.!difference.

Semantics of annotated Datalog

Q(x, y) :- R(x, z), R(z, y)

(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 6: Datalog with bag semantics

5. DATALOG ON K-RELATIONS
We now seek to give semantics on K-relations to data-

log queries. It is more convenient to use the unnamed per-
spective here. We also consider only “pure” datalog rules
in which all subgoals are relational atoms. First observe
that for conjunctive queries over K-relations the semantics
in Definition 3.2 simplifies to computing tags as sums of
products, each product corresponding to a valuation of the
query variables that makes the query body hold. For exam-
ple, consider the conjunctive query and N-relation shown in
Figure 6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b):
{x = a, y = a, z = b} yields the body R(a, a), R(a, b) while
{x = a, y = b, z = b} yields the body R(a, b), R(b, b). The
sum of products of tags is 2 · 3 + 3 · 4 which is exactly what
the equivalent RA+ query yields according to Definition 3.2.
If we think of this conjunctive query as a datalog program,
the two valuations above correspond to the two derivation
trees of the tuple Q(a, b).

This suggests the following generalized semantics for dat-
alog on K-relations: the tag of an answer tuple is the sum
over all its derivation trees of the product of the tags of
the leaves of each tree. Indeed, this generalizes the bag se-
mantics of datalog considered in [26, 27] when the number
of derivation trees is finite. In general, a tuple can have
infinitely many derivation trees (an algorithm for detecting
this appears in [28]) hence we need to work with semirings
in which infinite sums are defined.

Closed semirings [31] have infinite sums but their “+”
is idempotent which rules out the bag and provenance se-
mantics. We will adopt the approach used in formal lan-
guages [22] and later show further connections with how
semirings and formal power series are used for context-free
languages. By assuming that D is countable, it will su�ce
to define countable sums.

Let (K, +, ·, 0, 1) be a semiring and define a  b

def, 9x a+
x = b. When  is a partial order we say that K is naturally
ordered. B, N, N[X] and the other semiring examples we
gave so far are all naturally ordered.

We say that K is an !-complete semiring if it is naturally
ordered and  is such that !-chains x

0

 x

1

 · · ·  xn 
· · · have least upper bounds. In such semirings we can define
countable sums:

X

n2N
an

def
= sup

m2N
(

m
X

i=0

ai)

Note that if 9N s.t. 8n > N, an = 0 then
P

n2N an =
PN

i=0

ai. All the semiring examples we gave so far are !-
complete with the exception of N and N[X].

An !-continuous semiring is an !-complete semiring in
which the operations + and · are !-continuous in each ar-

gument. It follows that countable sums are associative and
commutative, that · distributes over countable sums and
that countable sums are monotone in each addend.

Examples of commutative !-continuous semirings:

• (B,_,^, false, true)

• (N1, +, ·, 0, 1) where we add 1 to the natural num-
bers and define 1 + n = n + 1 = 1 and 1 · n =
n ·1 = 1 except for 1 · 0 = 0 ·1 = 0. We can think
of N1 as the !-continuous “completion” of N.

• (PosBool(B),_,^, false, true) with B finite. This com-
mutative semiring is in fact a distributive lattice [11]
and the natural order is the lattice order. Since we
identify those expressions that yield the same truth-
value for all boolean assignments for the variables, B

finite makes PosBool(B) finite, hence !-continuous.

• (P(⌦),[,\, ;, ⌦), used for event tables which is also
an example of distributive lattice.

• (N1, min, +,1, 0), the tropical semiring [22]

• ([0, 1], max, min, 0, 1) is related to fuzzy sets [32] so we
will call it the fuzzy semiring.

Definition 5.1. Let (K, +, ·, 0, 1) be a commutative
!-continuous semiring. To keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K-relation R define

q(R)(t) =
X

⌧ yields t

“

Y

t02leaves(⌧)

R(t0)
”

where ⌧ ranges over all q-derivation trees for t and t

0 ranges
over all the leaves of ⌧ .

The next result shows that Definition 5.1 does indeed give
us a semantics for datalog queries on K-relations.

Proposition 5.2. For any K-relation R, q(R) has finite
support and is therefore a K-relation.

Proof. (sketch) Let S be the set of tuples t s.t. R(t) 6= 0
and let t

0 be a tuple s.t. q(R)(t0) 6= 0. By Definition 5.1, this
implies that there is a derivation tree for t (s.t. the tags of
the tuples in its leaves are non-zero and correspond to this
product) i.e., t

0 2 q(S). Since q(S) is finite, q(R) has finite
support.

As an example, consider the datalog program q with out-
put predicate Q defined by the rules shown in Figure 7(c),
applied on the N-relation R shown in Figure 7(a). Since any
N-relation is also a N1-relation and N1 is !-continuous we
can answer this query5 and we obtain the table shown in
Figure 7(b).

A couple of sanity checks follow.

Proposition 5.3. Let q be an RA+ query in which the
selection predicates only test for attribute equality and let
q

0 be the (non-recursive) datalog query obtained by standard
translation from q. Then q and q

0 produce the same an-
swer when applied to the same instance of a database of
K-relations.

5This is transitive closure with bag semantics.

Fundamental)property)

For!every!query!!!q!!and!every!homomorphism!of!
commutaMve!semirings!! h : K1 ! K2 the!following!
“commutes”:

K1Bdata!

K1Edata!

q! q!

h!

h!

05/20/10! AMW!Tutorial,!Buenos!Aires! 42!

K2Bdata!

K2Bdata!

Doesn’t!always!
work,!eg.!difference.

⤵ω-continuosDatalog⤹

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple

☞ infinite sums in annotations
In particular two kinds of infinite summations
• infinitely many copies of the same monomial →

coefficients in N∞ = N ⋃ {∞}
• infinitely many copies of different monomials → formal

power series K[[X]]

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple

☞ infinite sums in annotations
In particular two kinds of infinite summations
• infinitely many copies of the same monomial →

coefficients in N∞ = N ⋃ {∞}
• infinitely many copies of different monomials → formal

power series K[[X]]
Formal power series:

basically polynomials with

infinite summation

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple

☞ infinite sums in annotations
In particular two kinds of infinite summations
• infinitely many copies of the same monomial →

coefficients in N∞ = N ⋃ {∞}
• infinitely many copies of different monomials → formal

power series K[[X]]

“complete” N[X] to a commutative !-continuous semiring.
This problem has been tackled in formal language theory
and it led to the study of formal power series [22].

Note that when we try to apply naively Definition 5.1 to
datalog queries on N[X]-relations we encounter two kinds of
infinite summations. First, it is possible that we have to
sum infinitely many distinct monomials. This leads directly
to formal power series. Second, it is possible that we have
to sum infinitely many copies of the same monomial. This
means that we need coe�cients from N1, not just N.

Let X be a set of variables. Denote by X

� the set of all
possible monomials over X. For example, if X = {x, y} then
X

� = {xm
y

n | m, n � 0} = {✏, x, y, x

2

, xy, y

2

, x

3

, x

2

y, . . .}
where ✏ is the monomial in which both x and y have expo-
nent 0.

Let K be a commutative semiring. A formal power
series with variables from X and coe�cients from K is a
mapping that associates to each monomial in X

� a coe�-
cient in K. A formal power series S is traditionally written
as a possibly infinite sum

S =
X

µ2X�

S(µ) µ

and we denote the set of formal power series by K[[X]]. As
with K[X], there is a commutative semiring structure on
K[[X]] given by the usual way of adding and multiplying,
for example

(S
1

· S
2

)(µ) =
X

µ
1

µ
2

=µ

S

1

(µ
1

) · S
2

(µ
2

)

But the real reason we use formal power series is the fact
that if K is !-continuous then K[[X]] is also !-continuous
(see [22], for example).

Definition 6.1. Let X be the set of tuple ids of a database
instance I. The datalog provenance semiring for I is the
commutative !-continuous semiring of formal power series
N1[[X]].

Let us calculate, using the fixed point semantics, the prove-
nances for the output of the datalog query in Figure 7(a).
We now take as input the relation, call it R̄, in Figure 7(d)
which is the abstractly-tagged (tagged with tuple ids) ver-
sion of the relation R in Figure 7(b). Note that we have two
sets of variables here. The tuple ids of R̄ form one set of
variables and the provenance semiring in which we compute
is N1[[m, n, p, r, s]]. At the same time, the ids of the tuples
in Q̄ in Figure 7(e) are used as variables in the algebraic
system, whose right-hand sides belong to

N1[[m, n, p, r, s]][x,y, z,u,v,w]

i.e., they are polynomials in the variables {x,y, z,u,v,w},
with coe�cients in the semiring of formal power series
N1[[m, n, p, r, s]]. The v component of the solution can be
calculated separately:6

v = s + s

2 + 2s

3 + 5s

4 + 14s

5 + · · ·

Also, one can see that x = m + np, u = rv⇤, w = r(m +
np)(v⇤)2. For example the coe�cient of rnps

3 in the prove-
nance w of Q(a, d) is 5, which means this tuple can be ob-
tained in 5 distinct ways using R(a, c), R(c, b) and R(b, d)
once and R(d, d) three times.
6[9] shows that the coe�cient of s

n+1 is 2n!

n!(n+1)!

.

Algebra provenance, N[X], is embedded in datalog prove-
nance, N1[X], by regarding polynomials as formal power
series in which all but finitely many coe�cients are 0. Here
is the corresponding sanity check:

Proposition 6.2. Let q be an RA+ query (of one argu-
ment, to simplify notation) in which the selection predicates
only test for attribute equality, let q

0 be the (non-recursive)
datalog query obtained by standard translation from q and
let R be a N[X]-relation. Modulo the embedding of N[X] in
N1[X] we have q

0(R) = q(R)

Formal power series can be evaluated in commutative
!-continuous semirings:

Proposition 6.3. Let K be a commutative !-continuous
semiring and X a set of variables. For any valuation v :
X ! K there exists a unique !-continuous homomorphism
of semirings

Evalv : N1[[X]]! K

such that for the one-variable monomials we have Evalv(x) =
v(x).

Therefore, just like polynomials, formal power series de-
fine series functions on any commutative !-continuous
semiring. Finally, we have the analog of Theorem 4.3.

Theorem 6.4. The semantics of datalog on K-relations
for any commutative !-continuous semiring K factors
through the semantics of the same in provenance semirings
(of formal power series).

Although the coe�cients in the provenance series may be
1, we can characterize exactly when this happens7:

Theorem 6.5. A datalog query q has provenance series
in N[[X]] for some tuple t if and only if the instantiation of
q has no cycle of unit rules (rules whose body consists of a
single idb) s.t. t is part of the cycle (i.e., appears on the
head of one of those unit rules and the body of another) and
t is in the result of q.

7. COMPUTING PROVENANCE SERIES
We show here that several natural questions that one

can ask about the computability of formal power series in
N1[[X]] can in fact be decided and all finitely representable
information can in fact be computed.

Given a datalog program q and a relational instance I,
consider the formal power series provenance of some tuple
t in the output q(I), i.e., q(I)(t) where the datalog seman-
tics is taken in N1[[X]] (X is the set of ids of the tuples in
I). We show that it is decidable whether q(I)(t) is in fact
a polynomial in N [X]. The algorithm All-Trees, shown in
Figure 8 (inspired by [28]) decides this for all output tuples
and computes the polynomial when the answer is a�rma-
tive.

For an output tuple t for which the answer given by al-
gorithm All-Trees is negative, we can use Theorem 6.5 to
decide whether q(I)(t) is in N[[X]]. The remaining ques-
tion is whether q(I)(t) is in N1[X], which we can decide by

7In this theorem, the instantiation of a datalog query is the
set of rules obtained by considering all satisfying valuations
for the variables in rules of q.

Fixed Point Semantics

Q(x, y) :- R(x, y)

Q(x, y) :- Q(x, z),
Q(z, y)

a b 2
a c 3
c b 2
b d 1
d d 1

a b 8
a c 3
c b 2
b d 1
d d 1
a d 1

(a) (b) (c)

a b m

a c n

c b p

b d r

d d s

a b x
a c y
c b z
b d u
d d v
a d w

x = m + yz
y = n

z = p

u = r + uv
v = s + v2

w = xu + wv

(d) (e) (f)

Figure 7: Datalog example

Proposition 5.4. For any datalog query q and any B-
relation R, supp(q(R)) is the same as the result of applying
q to the standard relation supp(R).

The definition of datalog semantics given above is not so
useful computationally. However, we can think of it as the
proof-theoretic definition, and as with standard datalog, it
turns out that there is an equivalent fixpoint-theoretic defi-
nition that is much more workable.

Intuitively, this involves representing the possibly infinite
sum of products above as a system of fixpoint equations that
reflect all the ways that a tuple can be produced as a result
of applying the immediate consequence operator Tq (for a
datalog query q) on other tuples. Since such an immediate
consequence can involve other tuples in idb relations, that
may themselves have infinitely many derivations, we intro-
duce a new variable for each tuple in the idb relation and
use that variable to refer to that tuple when calculating its
immediate consequences. Thus, for every tuple there is an
equation between the variable for that tuple and a polyno-
mial over all the variables.

To make this precise we consider polynomials with coef-
ficients in an arbitrary commutative semiring K. If the set
of variables is X we denote the set of polynomials by K[X].
We have already used N[X] for provenance but K[X] also
forms a commutative semiring. We saw in Section 4 that
because N can be embedded in any semiring K the polyno-
mials in N[X] define polynomial functions over K. Similarly,
if X = {x

1

, . . . , xn} then any polynomial P 2 K[X] defines
a polynomial function fP : K

n ! K. Most importantly, if
K is !-continuous then fP is !-continuous in each argument.

Definition 5.5. Let K be a commutative !-continuous
semiring. An algebraic system over K with variables X =
{x

1

, . . . , xn} consists of a list of polynomials P

1

, . . . , Pn 2
K[X] and is written

x

1

= P

1

(x
1

, . . . , xn)
· · ·

xn = Pn(x
1

, . . . , xn)

Together, fP
1

, . . . , fPn define a function fP : K

n ! K

n.
K

n has a component-wise commutative !-continuous semir-
ing structure such that fP is !-continuous. Hence, the least
fixed point

lfp(fP) = sup
m2N

f

m
P (0, . . . , 0)

exists, and we call it the solution of the algebraic system
above.

As an example, consider the one-variable equation x =
ax + b with a, b 2 K. This is closely related to regular
language theory and its solution is x = a

⇤
b where

a

⇤ def
= 1 + a + a

2 + a

3 + · · ·

For example, in N1 we have 1⇤ = 1 while in PosBool(B)
we have e

⇤ = true for any e.
Consider a datalog program q and to simplify notation

assume just one edb predicate R and one idb-and-output
predicate Q. Given an edb K-relation of finite support R

we can e↵ectively construct an algebraic system over K as
follows. Denote by Q also the K-relation that is the output
of the program and let Q̄ be the abstractly-tagged (as in
Theorem 4.3) version of Q where X is the set of ids of the
tuples in supp(Q). Since Q̄ is a X [{0}-relation and R is
a K-relation both can be seen also as K[X]-relations. The
immediate consequence operator Tq is in fact a union of con-
junctive queries, hence Definition 3.2 shows how to calculate
e↵ectively Tq(R, Q̄) as a K[X]-relation of finite support. By
equating the tags of Q̄ with those of Tq(R, Q̄) we obtain the
promised algebraic system. We will denote this system as
Q̄ = Tq(R, Q̄) (although it only involves the tags of these
relations).

Theorem 5.6. With the notation above, for any tuple t,
the tag Q(t) given by Definition 5.1, when not 0, equals the
component of the solution (Definition 5.5) of the algebraic
system Q̄ = Tq(R, Q̄) corresponding to the id of t.

To illustrate with an example, consider again the datalog
program in Figure 7(a) applied to the same N-relation, R

shown in Figure 7(b). In Figure 7(e) we have the abstractly-
tagged version of the output relation, Q̄ in which the tuples
are tagged with their own ids. The corresponding algebraic
system is the one obtained from Figure 7(f) by replacing
m = 2, n = 3, p = 2, r = 1, s = 1. (Note that Tq(R, Q̄) =
R [Q̄ 1 Q̄.) Calculating its solution we get after two fixed
point iterations x = 8,y = 3, z = 2,u = 2,v = 2,w = 2. In
further iterations x,y, z remain the same while u,v,w grow
unboundedly (in Section 7 we show how unbounded growth
can be detected). Hence the solution is the one shown in Fig-
ure 7(c).

Note that semiring homomorphisms are monotone with
respect to the natural order. However, to work well with
the datalog semantics more is needed.

Proposition 5.7. Let K, K

0 be commutative !-continuous
semirings and let h : K ! K

0 be an !-continuous semir-
ing homomorphism. Then, the transformation given by h

from K-relations to K

0-relations commutes with any data-
log query (for queries of one argument q(h(R)) = h(q(R))).

6. FORMAL POWER SERIES FOR
PROVENANCE

In Section 4 we showed how to use N[X]-relations to cap-
ture an expressive notion of provenance for the tuples in the
output of an RA+ query. However, polynomials will not
su�ce for the provenance of tuples in the output of datalog
queries because the semiring N[X] does not define infinite
sums. As with the transition from N to N1 we wish to

• Transform immediate
consequence operator of Q into
a union of conjunctive queries;
here R ⋃ (Q ⋈2=1 Q)

• Apply this RA query to R and Q.
• Equate!

This leads to system of equations of polynomials in

As N∞[[m,n,p,r,s]] is omega continuos, these equations have
least fixed points that can be computed.

“complete” N[X] to a commutative !-continuous semiring.
This problem has been tackled in formal language theory
and it led to the study of formal power series [22].

Note that when we try to apply naively Definition 5.1 to
datalog queries on N[X]-relations we encounter two kinds of
infinite summations. First, it is possible that we have to
sum infinitely many distinct monomials. This leads directly
to formal power series. Second, it is possible that we have
to sum infinitely many copies of the same monomial. This
means that we need coe�cients from N1, not just N.

Let X be a set of variables. Denote by X

� the set of all
possible monomials over X. For example, if X = {x, y} then
X

� = {xm
y

n | m, n � 0} = {✏, x, y, x

2

, xy, y

2

, x

3

, x

2

y, . . .}
where ✏ is the monomial in which both x and y have expo-
nent 0.

Let K be a commutative semiring. A formal power
series with variables from X and coe�cients from K is a
mapping that associates to each monomial in X

� a coe�-
cient in K. A formal power series S is traditionally written
as a possibly infinite sum

S =
X

µ2X�

S(µ) µ

and we denote the set of formal power series by K[[X]]. As
with K[X], there is a commutative semiring structure on
K[[X]] given by the usual way of adding and multiplying,
for example

(S
1

· S
2

)(µ) =
X

µ
1

µ
2

=µ

S

1

(µ
1

) · S
2

(µ
2

)

But the real reason we use formal power series is the fact
that if K is !-continuous then K[[X]] is also !-continuous
(see [22], for example).

Definition 6.1. Let X be the set of tuple ids of a database
instance I. The datalog provenance semiring for I is the
commutative !-continuous semiring of formal power series
N1[[X]].

Let us calculate, using the fixed point semantics, the prove-
nances for the output of the datalog query in Figure 7(a).
We now take as input the relation, call it R̄, in Figure 7(d)
which is the abstractly-tagged (tagged with tuple ids) ver-
sion of the relation R in Figure 7(b). Note that we have two
sets of variables here. The tuple ids of R̄ form one set of
variables and the provenance semiring in which we compute
is N1[[m, n, p, r, s]]. At the same time, the ids of the tuples
in Q̄ in Figure 7(e) are used as variables in the algebraic
system, whose right-hand sides belong to

N1[[m, n, p, r, s]][x,y, z,u,v,w]

i.e., they are polynomials in the variables {x,y, z,u,v,w},
with coe�cients in the semiring of formal power series
N1[[m, n, p, r, s]]. The v component of the solution can be
calculated separately:6

v = s + s

2 + 2s

3 + 5s

4 + 14s

5 + · · ·

Also, one can see that x = m + np, u = rv⇤, w = r(m +
np)(v⇤)2. For example the coe�cient of rnps

3 in the prove-
nance w of Q(a, d) is 5, which means this tuple can be ob-
tained in 5 distinct ways using R(a, c), R(c, b) and R(b, d)
once and R(d, d) three times.
6[9] shows that the coe�cient of s

n+1 is 2n!

n!(n+1)!

.

Algebra provenance, N[X], is embedded in datalog prove-
nance, N1[X], by regarding polynomials as formal power
series in which all but finitely many coe�cients are 0. Here
is the corresponding sanity check:

Proposition 6.2. Let q be an RA+ query (of one argu-
ment, to simplify notation) in which the selection predicates
only test for attribute equality, let q

0 be the (non-recursive)
datalog query obtained by standard translation from q and
let R be a N[X]-relation. Modulo the embedding of N[X] in
N1[X] we have q

0(R) = q(R)

Formal power series can be evaluated in commutative
!-continuous semirings:

Proposition 6.3. Let K be a commutative !-continuous
semiring and X a set of variables. For any valuation v :
X ! K there exists a unique !-continuous homomorphism
of semirings

Evalv : N1[[X]]! K

such that for the one-variable monomials we have Evalv(x) =
v(x).

Therefore, just like polynomials, formal power series de-
fine series functions on any commutative !-continuous
semiring. Finally, we have the analog of Theorem 4.3.

Theorem 6.4. The semantics of datalog on K-relations
for any commutative !-continuous semiring K factors
through the semantics of the same in provenance semirings
(of formal power series).

Although the coe�cients in the provenance series may be
1, we can characterize exactly when this happens7:

Theorem 6.5. A datalog query q has provenance series
in N[[X]] for some tuple t if and only if the instantiation of
q has no cycle of unit rules (rules whose body consists of a
single idb) s.t. t is part of the cycle (i.e., appears on the
head of one of those unit rules and the body of another) and
t is in the result of q.

7. COMPUTING PROVENANCE SERIES
We show here that several natural questions that one

can ask about the computability of formal power series in
N1[[X]] can in fact be decided and all finitely representable
information can in fact be computed.

Given a datalog program q and a relational instance I,
consider the formal power series provenance of some tuple
t in the output q(I), i.e., q(I)(t) where the datalog seman-
tics is taken in N1[[X]] (X is the set of ids of the tuples in
I). We show that it is decidable whether q(I)(t) is in fact
a polynomial in N [X]. The algorithm All-Trees, shown in
Figure 8 (inspired by [28]) decides this for all output tuples
and computes the polynomial when the answer is a�rma-
tive.

For an output tuple t for which the answer given by al-
gorithm All-Trees is negative, we can use Theorem 6.5 to
decide whether q(I)(t) is in N[[X]]. The remaining ques-
tion is whether q(I)(t) is in N1[X], which we can decide by

7In this theorem, the instantiation of a datalog query is the
set of rules obtained by considering all satisfying valuations
for the variables in rules of q.

R:
Q(R):

R:
Q(R):

Decidability

N[X]

N[[X]]N∞[X]

N∞[[X]]

A tuple can have an annotations in any of the classes below.

It is decidable in which class the annotation of a tuple is.

Decidability: Case N[X]

N[X]

N[[X]]N∞[X]

N∞[[X]]

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇐” Assume such a tree exists:

a

a

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇐” Assume such a tree exists:

a

a

a

a

a

aThen this is also a derivation tree:

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇒” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇒” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation
trees of height equal to (# of atoms +1).

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇒” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation
trees of height equal to (# of atoms +1).

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇒” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation
trees of height equal to (# of atoms +1).

greater than
or equal

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Decidability: Case N[X]

Proof: “⇒” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation
trees of height equal to (# of atoms +1).

Thus there are only finitely many derivation trees.

greater than
or equal

Claim: Let Q be a Datalog program, D a database, and R an
relation in the intensional schema of P.
R(t) ∉ N[X] iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom a.

Also decidable:

• given t ∈ q(I), and a monomial μ, the coefficient of μ in the
power series that is the provenance of t is computable
(including when it is ∞).

• testing whether all coefficients are ≠ ∞.

Not decidable:

• testing whether all coefficients are 1.

Conclusion

• A versatile framework for provenance computation.

• Specializes to many known systems for provenance.

• In a sense most general within frameworks that use
Semirings.

• Provides semantics for positive datalog under rich
semantics (e.g. bag semantics).

Thank You!

