Provenance Semirings

Todd Green Grigoris Karvounarakis Val Tannen

presented by Clemens Ley

o« o .9
“place of origin

Provenance Semirings

Todd Green Grigoris Karvounarakis Val Tannen

presented by Clemens Ley

o« .9
“place of origit algebrajc structure

Provenance Semirings

Todd Green Grigoris Karvounarakis Val Tannen

presented by Clemens Ley

I

Outline

* Data provenance by example
* Relational algebra for data provenance

* Datalog for data provenance

Data Provenance

Data Provenance

Data provenance aims to
explain how a particular
query result was obtained.

Data Provenance

Data provenance aims to

explain how a particular
query result was obtained.

join on B

Data Provenance

Data provenance aims to

explain how a particular
query result was obtained.

join on B

Data Provenance

Data provenance aims to

explain how a particular
query result was obtained.

)4
RxS: A B C D E
join on B
a b c d e|p*g
q
means: was obtained

from both p and ¢4

Data Provenance (2)

C
C |p
Rus: A B C
union o
C a b Cc

Data Provenance (2)

C
means: was obtained
from either p or ¢4
C |p
RuS: A B C
union o b ¢ | prg
C

Data Provenance (3)

c//

projection

ﬂAB(R):

b prg+r

means: was obtained
from either p, g, or r

Data Provenance (4)

A B C

a b c | p
d b e r
f g e s

H Qo » o | P

® ®6 Q0 0O Q|Q

190
(pr) * 1
(rp) *o
(2 +rs+r2) *1

GZ+rs+52)*1

Data Provenance (4)

A B C

a b c | p
b e |r

f g e s

H Qo » o | P

z2+rs+12) *1

C

c [@p2+p)*o
e |@r)*r

c |p)*o

e

e

GZ+rs+52)*1

for selection, multiply
by 1 or o.

Why would this be usetful?

Q = OCc=e Tl'Ac(7Z'AcR X ﬂBcR U TL'ABR X T[BcR)

A B C

a b c |p
d b e |r
£ g e k)

H Qo » o | P

rz+rs+1r2) *1

C

c [@p2+p)*o
e |((pr)*1

c |p)*o

e

e

GZ+rs+52)*1

for selection, multiply
by 1 or o.

Why would this be usetful?

Q: A C
a c |@pr+p)*o=0
a e |@pr)*r=10
d c [Gp)*o=0
Q = 0c-c ac(macR i 7scR U xR 7scR) d e |(ers+r)*r=s5
£ e |[(+rs+s)*1=7
A B C
a b cC | p=2
b e ri=yg
£ g e P for bag semantics,

consider annotations as
multiplicities

Why would this be usetful?

Q: A C
a c |+ pD)*o=((b.AD) Vv (b:nD)) A false
a e |(r)*1=(b:rb) Atrue
d C |[(p)*o=(b.nb) A false
d e |(r+rs+r)*1= b,V (boAD) Vv b)) A true
f e |(Z+rs+52)*1=(b;v (boADy) Vv by) Atrue
B C
b c | p=b
b e |r=b for incomplete databases, consider
g e | s=¢ annotations as boolean values,

*as A, +as vV, I as true, and o as false

Data Structure

Relations are mappings from tuples to annotations in K; we require that

R(®) # o for only finitely many tuples £.
intuitively, “+” means “alternative use” corresponds to union
“*” means “joint use” and corresponds to join

“0” and “1” are special annotations

But what is a query languages for such relations?

Data Structure

Relations are mappings from tuples to annotations in K; we

require that R(#) + o for only finitely many tuples ¢.

«

intuitively, “+” means “alternative use” corresponds to union
TR

means “joint use” and corresponds to join

“0” and “1” are special annotations

But what is (K,+,*0,1) and how are annotations computed?

Positive Algebra

Positive Algebra

DEFINITION 3.2. Let (K,+,-,0,1) be an algebraic struc-
ture with two binary operations and two distinguished ele-
ments. The operations of the positive algebra are defined
as follows:

empty relation For any set of attributes U, there is () :
U-Tup — K such that O(t) = 0.

union If Ri, R : U-Tup — K then Ri UR2 : U-Tup — K
15 defined by

def

(R1UR2)(t) = Ri(t)+ Ra(t)

projection If R : U-Tup — K and V C U then Ty R :
V-Tup — K 1s defined by

(TvR)(t) =) R(t)
t=t’ on V and R(t’)#0

(here t =t on V means t' is a U-tuple whose restric-
tion to V' 1is the same as the V-tuple t; note also that
the sum is finite since R has finite support)

Positive Algebra (2)

selection If R : U-Tup — K and the selection predicate
P maps each U-tuple to either 0 or 1 then OpR :
U-Tup — K 1s defined by

(OpR)(t) = R(t)-P(t)

Which {0, 1}-valued functions are used as selection pred-
wcates 1s left unspecified, except that we assume that

false—the constantly 0 predicate, and true—the con-

stantly 1 predicate, are always available.

natural join If R; : U;-Tup — K 1 =1,2 then R1 X Ry is
the K-relation over Uy U Uz defined by

(R1 X R2)(t) & Ri(t1) - Ra(tz)

where t1 =t on Uy and t2 =t on Us (recall that t is a

Uy U Us-tuple).

renaming [f R:U-Tup — K and B :U — U’ is a bijection
then ,%R is a K -relation over U’ defined by

def

(PsR)(t) = R(top)

What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity 0;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) = (0 and Utrue<R) = R.

hold for the positive algebra on K-relations if and only if
(K,+,-,0,1) is a commutative semiring.

What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity 0;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) =0 and Utrue(R) = R.

hold for the positive algebra on K-relations if and only if
(K,+,-,0,1) is a commutative semiring.

Note that the list does not con.ta.m
idempotence of union and self join,
as these fail for set semantics

What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity 0;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) =0 and Utrue(R) = R.

hold for the positive algebra on K-relations if and only if
(K,+,-,0,1) is a commutative semiring.

Def A commutative semirii ,
s not contain

the list doe
Note that the 1 self join,

idempotence of union an .
® " is associative with identit as these fail for set semantics

® + 1S commutative, associatr

e * distributes over +

® s*0=0%a=0

What is K?

PROPOSITION 3.4. The following RA identities:
e union is associative, commutative and has identity (;

® join 1S assoctative, commutative and distributive over
UNILON,

e projections and selections commute with each other as
well as with unions and joins (when applicable);

° O-false(R) =0 and Utrue<R) = R.
hold for the positive algebra on K-relations if and only if

(K,+,-,0,1) is a commutative semiring.

Def. A commutative semiring is a structure (K,+,* 0,1) where

® .+ is commutative, associative, with identity o
® *js associative with identity 1
e * distributes over +

® s*0=0%a=0

What is K?

Def. A commutative semiring is a structure (K,+,* 0,1) where
® .+ is commutative, associative, with identity o
® *js associative with identity 1
e * distributes over +

® s*0=0%a=0

Examples:

e the natural numbers: (N, +, * o, 1)
o the booleans: (B, A, v, true, false)

® subsets of a set: (P(12), U, n, J, 2

e the naturals with infinity: (N=, +, * 0, 1)

e polynomials in X: (N[X/, +,* 0, 1)

The fundamental property of RA

For every query g and every homomorphism of
commutative semirings h : K, — K, the following

“commutes”:
h
K,-data » K,-data
q q
¥ h K.-d
K,-data » K,-data

Recall, semiring homomorphism is mapping »:K; — K, such that

h(ix) = 1k h(oxs) = ok
h(a+x: b) = h(@ +x. h(B) h(a*c: b) = h(@ *. h(B)

The fundamental property of RA

For every query g and every homomorphism of
commutative semirings h : K, — K, the following

“commutes”:
h
K,-data K, dats
q q
Works only if 4 in I}A*.
L Does not generalize
o 26 e.g. to negation.

Recall, semiring homomorphism is mapping »:K; — K, such that

h(ix) = 1k h(oxs) = ok
h(a+x: b) = h(@ +x. h(B) h(a*c: b) = h(@ *. h(B)

Which semiring do we choose?

DEFINITION 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomaals with variables

(a.k.a. indeterminates) from X and coefficients from N, with
the operations defined as usual*: (N[X],+,-,0,1).

Which semiring do we choose?

DEFINITION 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomaals with variables

(a.k.a. indeterminates) from X and coefficients from N, with
the operations defined as usual*: (N[X],+,-,0,1).

But why?

A nice property of N{X}

If K is a commutative semiring, then any function
on tokens, f: X — K extends uniquely to a
homomorphism h: N[X] — K.

Example: K= (N, + % 0, 1), X= .9},
f{pgl — Kbe f(p)=3 and f(q?= 5.
Then the extension of fis
bh: N[X} — K and “evaluates” the
polynomial

(e.g bh(p+29)=13)

Nice + Fundamental

query ma

ma(R): A

R: A B
homomorphism A a b
a d

——

Example: K= (N, + % 0, 1), X= g, s
f{pgl — Kbe f(p)=3 and flg-=s-
Then the extension of fis
h- N[XJ — K and “evaluates” the
polynomial

(e.g bh(p+29)=13)

homom

Nice + Fundamental

query ma

ma(R): A

R: A B
homomorphism A a b
a d
Example: K= (N, + % 0, 1), X= .9},
f{pgl — K be f(p)=3 and f(@)=5.
Then the extension of f is
- N{X] — K and “evaluates” the
polynomial quety 7
(e.g. h(p+29)=13)
ma(R): A
a

homomorphism 5

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

Free the semiring!

“Nice” implies: For every commutative semiring K, and every

K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

qR):

A B
a b
a
query q
A B
a b

15)

~|

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

2 R: A B
b P Eval, a b
d a

query q

qR): A B

15)

~|

q(R):

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

A B R: A
a b P Eval, a
a d a
query q query q
A B qR): A

a b Pq Eval, a

15)

~|

q(R):

Free the semiring!

“Nice” implies: For every commutative semiring K, and every
K-relation R, there is abstractly tagged N{X]-relation R and a

homomorphism Eval, from R to R.

A B R: A
a b p Eval, a
a d a

>
o

THEOREM 4.3. For any RAT query q¢ we have

query q . query q

qg(R) = Eval, oq(R)

qR): A

a b Pq Eval, a

15)

Instantiation of Positive Algebra

(B, A, v, true, false) Set semantics
(N, +,%0,1) Bag semantics
(P(2), u,n, 3,) Probabilistic events

(BoolExp(P), v, A, true, false) Conditional tables

(A, min, max, o, P) where

A=P<C<S<T<0O

Access control levels

More nice...

Example: 2x%y + xy + 5% + z

NIX]

drop coefficients / \ drop exponents
X2y +xy+yr+z B[X] Trio(X) 3xy+ 5y +z

drop both exp. and coeff. /
Xy +y+2z Why(X)

/ \ apply absorption

b+b=>b
Lin(X) PosBool(X) (b +)

y+z

collapse terms
Xyz

A path downward from K, to K, indicates that there exists an
onto (surjective) semiring homomorphism h: K, — K,

More nice...

Example: 2x%y + xy + 5% + z

most informative
NI[X]

drop coefficients / \ drop exponents
X2y +xy+yr+z B[X] Trio(X) 3xy+ 5y +z

/

drop both exp. and coeff.

Xy +y+2z Why(X)
/ \ apply absorption
collapse terms . (ab + b = b)
2 Lin(X) PosBool(X) y+z least informative

A path downward from K, to K, indicates that there exists an
onto (surjective) semiring homomorphism h: K, — K,

Datalog

Syntax and Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q: a a ldb
a b a b
edb bb bb

Syntax and Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q: aa idb
ab ab
edb bb bb
Q(a,b)

Q(wv y) - R(LU, Z)v R(Za y)

/ AN
R(a,a) R(a,b)

Syntax and Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q: aa idb
ab ab
edb bb bb
Q(a,b) Q(a,b)
| |
Q(xay) = R(LU,Z),R(Z,:(/) Q(xay) = R(LU,Z),R(Z,:(/)
yd AN / AN

R(a,a) R(a,b) R(a,b) R(b,b)

Syntax and Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q: aa idb
ab ab
edb bb bb
Q(a,b) Q(a,b)
| |
Q(xay) = R(LU,Z),R(Z,:(/) Q(xay) = R(LU,Z),R(Z,:(/)
yd AN / AN
R(a,a) R(a,b) R(a,b) R(b,b)
Q(a,a) Q(b,b)
| |
Q(xay) - R(CIZ,Z),R(Z,y) Q(CIZ,y) = R(CC,Z),R(Z,y)
yd AN / AN

R(a,a) R(a,a) R(b,b) R(b,b)

Datalog with Bag Semantics

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:| a a Q:l aa
ab ab
bb bb

Q(a,b)
|
Q(xa y) = R(LU, Z)a R(Za y)
/ AN
R(a,a) R(a,b)
Q(a,a)

Q(CE‘, y) - R(CIZ, Z)? R(Z, y)

/ AN
R(a,a) R(a,a)

Q(a,b)
|
Q(wv y) - R(LU, Z)v R(Za y)

/N
R(a,b) R(b,b)

Q(b,b)
|
Q(CIZ, y) - R(CE, Z)? R(Z, y)

N\
R(b,b) R(b,b)

Datalog with Bag Semantics

Q(a,b)

Q(ZL’, y) - R(CE, Z)? R(Za y)

/ AN
R(@a,a) R(a,b)

Qa,a)

Q(CE, y) = R(.QZ, Z)? R(Z7 y)

/ AN
R(a,a) R(a,a)

Q(mv y) -~ R(Jj, Z)v R(Za y)

laal 2 Q| aa
ab |3 ab
bb | 4 bb Q(a,b)

Q(QZ, y) .- R(ZL‘, Z)? R(Zv y)

/ AN
R(a,b) R(b,b)

Q(b,b)
|

Q(CB, y) - R(SC, Z)? R(Z, y)

N\
R(b,b) R(b,b)

Datalog with Bag Semantics

Q(a,b)

Q(ZL’, y) - R(CE, Z)? R(Za y)

/ AN
R(@a,a) R(a,b)

Qa,a)

Q(CC, y) = R(.QZ, Z)? R(Zv y)

/ AN
R(a,a) R(a,a)

Q(mv y) -~ R(Jj, Z)v R(Za y)

laa|2] Qlaa|2-2=4
ab |3 ab|2-3+3-4=18
bb |4 bb|4-4=16

Q(@a,b)
|

Q(QZ, y) .- R(ZL‘, Z)? R(Zv y)

/ AN
R(a,b) R(b,b)

Q(b,b)
|

Q(CU, y) - R(SC, Z)? R(Z, y)

N\
R(b,b) R(b,b)

What annotations do we need?

Q(a,b)

Q(ZL’, y) - R(CE, Z)? R(Za y)

/ AN
R(@a,a) R(a,b)

Qa,a)

Q(CC, y) = R(.QZ, Z)? R(Zv y)

/ AN
R(a,a) R(a,a)

Q(mv y) -~ R(Jj, Z)v R(Za y)

laa|2] Qlaa|2-2=4
ab |3 ab|2-3+3-4=18
bb |4 bb|4-4=16

Q(@a,b)
|

Q(QZ, y) .- R(ZL‘, Z)? R(Zv y)

/ AN
R(a,b) R(b,b)

Q(b,b)
|

Q(CU, y) - R(SC, Z)? R(Z, y)

N\
R(b,b) R(b,b)

What annotations do we need?

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:laa |2 Qlaal|2-2=4
ab|3 ab|2-34+3-4=18
Q(‘i"b) bb |4 bb [4-4=16 Q(Tab)

Q(z,y) - R(z, 2), R(z,y) Q(x,y) - R(z, z), R(z,y)
/ N / N
R(a,a) R(a,b) R(a.b) R(b,b)

How about: the tag of an answer tuple is the % ’
(a.0) sum over all derivation trees and the product
Q T’a of the tags of each leat. Q(b,b)
: |
) (R)(t) = R(t)
Q(x’y)/ R(a}72)\,R(Z’y) q T yi%is t (t’elel;)J;zS(T)) Q(xay) - R(x,z),R(z,y)
R(a,a) R(a,a) - p

R(b,b) R(b,b)

What annotations do we need?

Q(mv y) -~ R(Jj, Z)v R(Za y)

R:laa | 2 Qlaal|2-2=4
(,b) CLb 2'3+3'4:18
QT bb |4 bb | 4-4=16 Qla,b)

— |
Q(xay) = R(CB,Z),R(Z,Q) Q(w,y) - R(a:,z),R(z,y)

o
S
S

R(a,a) R(a,b) R(a.b) R(b,b)

How about: the tag of an answer tuple is the % ’
(a.0) sum over all derivation trees and the product
Q T’a of the tags of each leaf. Q(b,b)
, |
_ q(R)(t) = R(t)
Q(z,y) - R(z,2), R(z,y) _ %S , (t’Glel;)[es(T)) Q(z,y) - R(z, 2), R(2,v)

R(a,a) R(a,a) R(b.b) R(b,b)

Problem: A tuple may have infinitely many ’ ’

derivation trees. Hence we need to work in
semirings in which infinite sums are defined.

(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (o-complete) when x; < x; < x < ... have suprema.

In naturally ordered semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def (w-continous) when * and + preserve suprema.
P P

(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.

(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring)

an order. Preorder: reflexive ar.ld trans1t1\.re.
Not necessarily antrsymme;nc
imoplies x=
Def- (w-complete) when x;< x, < x, < .. (x <y andy < ximp y

In naturally ordered semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def. (o-continous) when * and + preserve suprema.
(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.

becayse <y

(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

when x; < x; < x, < ... have suprema.
urally ordere(d

< -
5= 75, but $#5 d semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def. (o-continous) when * and + preserve suprema.
(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.

(W-continuos semirings

Def. (Natural preorder) x < y iff there is g such that x+z=y.

Def. (Naturally ordered semiring) if the natural pre-order is
an order.

Def. (o-complete) when x; < x; < x < ... have suprema.

In naturally ordered semirings, we can make sense of infinite

sums: -
Z a, = sup (Z a;)

neN meN =0

Def (w-continous) when * and + preserve suprema.
P P

(e.g. sup(@; + b)) = sup(@) + b;).

Lemma. Over w-continuos semirings, functions defined by
polynomials have least fixed points.

Semantics of annotated Datalog

DEFINITION 5.1. Let (K,+,-,0,1) be a commutative
w-continuous semiring. 1o keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K -relation R define

amy= > (I &)
T yields t ¢/ Eleaves(T)

where T ranges over all g-derivation trees for t and t' ranges
over all the leaves of T.

Semantics of annotated Datalog

DEFINITION 5.1. Let (K,+,-,0,1) be a commutative
w-continuous semiring. 1o keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K -relation R define

amy= > (I &)
T yields t ¢/ Eleaves(T)

where T ranges over all g-derivation trees for t and t' ranges
over all the leaves of T.

For every query g and every homomorphism of
commutative semirings 1 : K, — K, the following

“commutes”;
h
K,-data K,-data
q q

K ,-data K,-data

Semantics of annotated Datalog

DEFINITION 5.1. Let (K,+,-,0,1) be a commutative
w-continuous semiring. 1o keep notation simple let q be a
datalog query with one argument (it is easy to generalize to
multiple arguments). For any K -relation R define

amw= > (II &)

T yields t t’ €leaves(T)

where T ranges over all g-derivation trees for t and t' ranges
over all the leaves of T.

fDatang w-continuos ~
For everyquery g and every homomorphism of

commutative semirings 1 : K, — K, the following
“commutes”:

h
K,-data K,-data

K ,-data K,-data

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple
% infinite sums in annotations

In particular two kinds of infinite summations
* infinitely many copies of the same monomial —

coefhicients in N~ = IN U {co}

* infinitely many copies of different monomials — formal
power series K{{ X1}

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple
% infinite sums in annotations

In particular two kinds of infinite summations
* infinitely many copies of the same monomial —

coefhicients in N~ = IN U {co}

* infinitely many copies of different monomials — formal
power series K{IX1} |
Formal power sertes:
basically polynomia.ls with
infinite summation

The Datalog provenance Semiring

Problem: there can be infinitely many derivation trees for
one tuple

= infinite sums in annotations

In particular two kinds of infinite summations
* infinitely many copies of the same monomial —
coefficients in N>~ = N U {oo}

* infinitely many copies of different monomials — formal
power series K{{ X1}

DEFINITION 6.1. Let X be the set of tuple ids of a database
instance I. The datalog provenance semiring for I is the
commutative w-continuous semiring of formal power series

N=1X]).

Fixed Point Semantics

R:
Q(xay) - R(Zlﬁ,y)
Q(z,y) - Qz, 2),
Q(z,y)
(a)
R: ab | m Q(R):
acln
cb |p
bd | r
dd | s

(d)

=N W N

g|<|e|N|<|x

(e)

QR):l ab | 8
ac|3
cb |2
bd | oo * Transform immediate
dd | oo FO;
oo consequence Operator o Q.mto
(c) a union of conjunctive queries;
U X 2=
‘< —m it yz here RU (Q 1 Q) } }
y=n * Apply this RA query to R and Q.
4=D * Equate!

u=r7r-+uv
V:S—I—V2
W = XU + WV

(f)

This leads to system of equations of polynomials in

NOO[[m7 n? p? T? S]][X7 Y7 Z? u? V7 W]

As N~[{m,nprsl}is omega continuos, these equations have

least fixed points that can be computed.

Decidability

A tuple can have an annotations in any of the classes below:

It is decidable in which class the annotation of a tuple is.

N=[[X1]

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

N=[[X1]

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “<=” Assume such a tree exists:

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “<=” Assume such a tree exists:

Then this is also a derivation tree: / \d
4, N

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation
trees of height equal to (# of atoms +1).

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation

trees of height equalte (# of atoms +1).

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation

trees of height egual-te (# of atoms +1).

greater than
or equal

Decidability: Case N{X}

Claim.: Let QQ be a Datalog program, D a database, and R an
relation in the intensional schema of P.

R(t) ¢ NI{X}iff t has a derivation tree T w.r.t. Q and D of
height less than (# of atoms +2) that has a path with two
occurrences of the same atom «.

Proof: “=” In particular, trees of height (# of atoms +1) have no
path with two repeated atoms.

Hence, by the pigeon hole principle, there are no derivation

trees of height egual-te (# of atoms +1).

greater than
or equal

Thus there are only finitely many derivation trees.

Also decidable:

* given t € q(I), and a monomial p, the coefficient of W in the
power series that is the provenance of t is computable
(including when it is o).

g

* testing whether all coeflicients are # oo.

Not decidable:

* testing whether all coefhicients are 1.

Conclusion

A versatile framework for provenance computation.
Specializes to many known systems for provenance.

In a sense most general within frameworks that use
Semirings.

Provides semantics for positive datalog under rich
semantics (e.g. bag semantics).

Thank You!

