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1 The quest for the right topology

The underlying (Zariski) topological space |X| of an algebraic variety/scheme X does
not capture our intuition stemming from complex analysis. It is straightforward
to show that two C-curves X and Y (closed or not) have homeomorphic Zariski
topologies, regardless of genus and singularities, etc.

In the first part this talk we will discuss purely algebraic means of recovering
algebraic topological invariants of varieties, and the reader is encouraged to think
of our objects of study being defined over the field of complex numbers. In a broad
outline there are two theories, allowing purely algebraic treatments, which capture
the algebraic topological properties of manifolds:

• differential equations (differential forms, de Rham complex, D-modules)

• covering spaces (π1 = Aut(X̃/X), local systems).

We will entirely focus on the second picture, since it’s easier to generalize to
arbitrary characteristic (the first picture becoming slightly obscure in positive char-
acteristic, rendering it less intuitive for a complex geometer). Nonetheless, the im-
portance of the first approach to the historical development of the subject cannot be
underestimated. Grothendieck’s proof of the algebraic de Rham theorem should be
seen as the first result allowing the calculation of singular cohomology groups in a
purely algebraic manner.

The second part of the talk is entirely settled in the world of finite fields, where
the constructions obtained earlier are still reasonable but give rise to entirely new
phenomena. By definition, all invariants constructed in the first chapter, will natu-
rally be equipped with actions by Galois groups, giving the theory a new, arithmetic

1



flavour. In the particularly important case of finite fields, the Galois element given
by the Frobenius automorphism allows us introduce Deligne’s theory of weights and
Grothendieck’s function-sheaf dictionary.

1.1 Fundamental groups

In the following we denote by X, Y , etc., nice topological spaces, e.g. those ob-
tained as the underlying spaces of (complex) manifolds or more generally of analytic
varieties.1

1.1.1 Motivation: manifolds

We define the category Cov(X) whose objects are connected covering spaces π : Y →
X. Morphisms Y → Y ′ are given by a commutative diagram of coverings

Y //

  

Y ′

��
X,

and denote by
Fibx : Cov(X)→ Set

the functor sending Y to the set π−1(x) and refer to it as the fibre functor at x.
The group of natural self-transformations of the fibre functor Aut(Fibx) is given by
the collection of compatible automorphisms of π−1(Y ); i.e., for every Y ∈ Cov(X) a
permutation σY of the set Fibx(Y ) = π−1(x), s.t. for every morphism of coverings
φ : Y → Y ′ we have a commutative diagram

Fibx(Y )
φ //

σY
��

Fibx(Y
′)

σY ′

��
Fibx(Y )

φ // Fibx(Y
′).

Theorem 1.1. There is a natural automorphism π1(X, x) ∼= Aut(Fibx).

Proof. Every element of π1(X, x) can be pictured as a closed path in X based at x.
Every such path can be lifted to a non-necessarily closed path in a covering space

1From a purely topological viewpoint we need our spaces to be connected, locally path-connected,
and locally simply-connected.
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Y , depending only on the choice of a starting point given an element in π−1(x) =
Fibx(Y ). This construction obiously yields a compatible system of permutations
of the set π−1(x). We have therefore obtained a natural morphism π1(X, x) →
Aut(Fibx) and to conclude the proof we have to verify that it is an isomorphism.

Let X̃ denote a universal covering space of X. We recall that up to the choice
of a base point x̃ ∈ π−1(x) there exists an identification of Fibx(X̃) with π1(X), by
means of the above construction. Moreover there exists an identification of π1(X)

with the group of deck transformations Aut(X̃/X).

Let now σ be the permutation of Fibx(X̃) otained by restricting an arbitrary

element of Aut(Fibx) to X̃. By the discussion in the paragraph above, we have

to show that σ(x̃) determines σ uniquely. Every other element in Fibx(X̃) can be
uniquely written as γx̃, where γ ∈ π1(X, x). Moreover, γ can be also viewed as a deck

transformation of the universal covering space X̃. By naturality of the permutation
σ (definition of natural self-transformation of a functor), we obtain

σ(γx̃) = σ(γ(x̃)) = γσ(x̃),

which allows us to conclude the proof.

If the topological spaces X and Y can be endowed with the structure of differ-
entiable manifold, the notion of covering can be expressed in terms of these extra
structure.

Definition 1.2. A map f : Y → X between two differentiable manifolds is called
étale or local diffeomorphism if for every x ∈ X and every y ∈ f−1(x), the differential
dfy : TyY → TxX is an isomorphism.

The proof of the proposition below is left to the reader. It will turn out to be the
key ingredient in algebraizing the topological invariant π1. We hope that the reader
shares our belief of the given assertions being natural and geometrically evident.

Proposition 1.3. Let π : Y → X be an étale morphism between two differentiable
manifolds, which is additionally proper (i.e. preimages of compact subsets are com-
pact), then π is a covering morphism with finite fibres. Moreover, all finite coverings
of a differentiable manifold X arise in this way: i.e. every covering Y inherits the
structure of a differentiable manifold, rendering the map π to be étale, and a covering
map between manifolds has finite fibres if and only if it is proper.

Proposition 1.3 gives a geometric characterization of finite covering maps, it is
therefore an interesting question how far we can go by only using finite covering
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spaces. A more precise question being: let Covfin(X) ⊂ Cov(X) be the full subcat-
egory of finite connected covering spaces, and

Fibfinx : Covfin(X)→ Setfin

the restriction of the fibre functor. How does

πfin1 (X, x) := Aut(Fibfinx )

relate to the fundamental group π1(X, x) = Aut(Fibx)? The next definition contains
a construction from abstract group theory, which allows us to formulate the answer.

Definition 1.4. Let G be an abstract group, we denote by F (G) the set of normal,
finite-index subgroups N of G, i.e. G/N being a finite group. The set F (G) is
inductively ordered and the inverse limit of the finite quotients G/N , i.e.

Ĝ := {([gN ]N)N∈F (G)|[gN ]N ∈ G/N, and [gN ′ ]N = [gN ]N for N ′ ⊂ N},

is called the pro-finite completion of G.

It is important to know that pro-finite groups are more than just groups. The
inverse limit construction endows them naturally with a topology (the subset topol-
ogy of the product topology).2 Moreover, by Tychonov’s theorem, pro-finite groups
are actually compact.

The relevance of this abstract notion to the determination of πfin1 is due to a
simple observation in the theory of covering spaces. Every finite-index subgroup N of
π1(X, x) corresponds to a finite covering space Y → X by virtue of the fundamental
theorem of covering theory. If N is moreover assumed to be a normal subgroup,
it corresponds to finite regular covering spaces.3 We hope that these remarks are
already convincing enough to believe the statement of the following theorem, for the
sake of clarity we have included a proof below.

Theorem 1.5. The canonical morphism π1(X, x)→ πfin1 (X, x), obtained by restrict-
ing an element of Aut(Fibx) to the subcategory Covfin(X), induces an isomorphism

̂π1(X, x) ∼= πfin1 (X, x).

2Finite groups are viewed as topological groups with the trivial topology.
3Regularity is equivalent to the natural action of π1(X,x) on π−1(x) being transitive.
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Proof. Let YN → X be the regular finite covering corresponding to a normal, finite-
index subgroupN ⊂ π1(X, x), a compatible choice of these a collection (YN)N∈F (π1(X,x))

can be constructed by quotienting a universal covering space X̃ by N . The group
of deck transformations of YN is canonically given by π1(X, x)/N . The choice of

x̃ ∈ Fibx(X̃) gives rise to a base point xN in every YN , which allows us to iden-
tify Fibx(YN) with π1(X, x)/N . Similarly to the proof of Theorem 1.1 we let (σN)
be a compatible system of permuations of Fibx(YN). For y ∈ Fibx(YN) there
exists a γ ∈ π1(X, x), whose class [γ]N is welldefined, s.t. y = γ(yN). As be-
fore we see by naturality of (σN) that σN is given by right multiplication with
σN(yN) ∈ π1(X, x)/N . This construction associates to (σN) the compatible system
(σN(yN))N ∈ π1(X, x)/N , which can be seen to give an inverse

̂π1(X, x)→ πfin1 (X, x).

1.1.2 Étale coverings and fundamental groups

Proposition 1.3 contained a characterization of finite covering maps of manifolds as
proper étale morphisms (i.e. proper local diffeomorphisms). Since tangent spaces can
be defined in algebraic terms for varieties4, this motivates the following definition.

Definition 1.6. Let f : Y → X be a map between two smooth algebraic varieties.
Then f is said to be étale if for every closed point x ∈ X and every y ∈ f−1(x) the
induced map of tangent spaces dfx : TyY → TxX is an isomorphism of vector spaces.

It is important to note that the above definition is merely a characterization of
étale maps for smooth varieties. A detailed discussion of general étale morphisms
can be found in chapter 1.3 of [Mil80].

Also the notion of properness of a morphism is wonderfully captured by Grothendieck’s
approach to algebraic geometry (see chapter II.4 in [Har77]). Nonetheless it can be
shown that for étale maps, properness is equivalent to the simpler notion of being
finite (this is essentially exercise III.11.2 in [Har77]).

Definition 1.7. A map between two affine varieties f : SpecB → SpecA is called
finite, if the induced map of rings A → B endows B with the structure of a finitely
generated A-module. A map between two varieties f : Y → X is called finite, if

4We define varieties to be separated schemes of finite type over a fixed base field. For algebraically
closed fields it is possible to substitute the theory of schemes by one of the classical approaches to
algebraic geometry.
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there exists a covering X =
⋃
i∈I Ui, s.t. each f−1(Ui) is affine, and the restriction

f : f−1(Ui)→ Ui is finite.

Motivated by Theorem 1.5 we define the category Covet(X) to be the category
of (connected) finite étale covering spaces π : Y → X with morphisms being given
by a finite étale map Y → Y ′ sitting in a commutative diagram

Y //

  

Y ′

��
X.

For every geometric point x of X, i.e. for every map SpecF sep → X, where F sep is
a separably closed field, there is a fibre functor

Fibetx : Covet(X)→ Set,

sending Y to the fibre HomX(Spec F̄ , Y ).

Definition 1.8. The étale fundamental group of a variety X at a geometric point x,
is defined to be the group of natural self-transformations of the fibre functor Fibetx ,
i.e.

πet1 (X, x) := Aut(Fibetx ).

For later use we record the following lemma, which will be useful in constructing
representations of the étale fundamental group.

Lemma 1.9. Let X be a variety and π : Y → X a finite étale covering. We say
that π is regular (or Galois), if the action of πet1 (X, x) on Fibetx (Y ) is transitive.
Under these circumstances, the group of deck transformations Aut(Y/X), i.e. the
automorphism group of Y in the category Covet(X), is a surjective image of πet1 (X, x).

In case that X is a complex variety, and x ∈ X(C) we would like to state a
comparison theorem relating πet1 (X, x) with πfin1 (X, x). In order to acchieve this it
suffices to construct a natural equivalence of categories

Covfin(Xan) ∼= Covet(X),

respecting fibre functors.

Theorem 1.10 (Riemann Existence Theorem). Let X be a complex variety, then
there exists a canonical equivalence of finite étale coverings of X and finite coverings
of Xan.
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A proof for non-projective X, avoiding resolution of singularities, is given in
[GR58]. We restrict ourselves to some handwaving in the projective case, and invite
the reader to find an alternative argument using Serre’s GAGA theorem [Ser56].

Sketch for X projective. We have to show that a finite covering π : Y an → Xan of
a projective complex variety Xan is a projective complex variety itself. Let L be
an ample line bundle on Xan, we would like to show that π∗ L on Y an is ample
in the sense of complex analytic varieties. Using the cohomological criterion for
ampleness, it suffices to show that H i(Y an,F ⊗π∗ Lm) vanishes for m >> 0, where
F is an arbitrary coherent complex analytic sheaf on Y an. Since π is a finite covering
map, i.e. the fibres have no higher cohomology, this cohomology group is equivalent
to H i(Xan, π∗(F ⊗π∗ Lm)). According to the projection formula, this agrees with
H i(Xan, π∗F ⊗L), and ampleness of L implies the requested vanishing for m big
enough.

Corollary 1.11 (Comparison theorem for πet1 ). Let X be a complex variety and
x ∈ X(C) a C-point, then there is a canonical equivalence

πet1 (X, x) ∼= ̂π1(Xan, x).

Proof. The Riemann Existence Theorem 1.10 shows that there is an equivalence of
categories Covet(X, x) ∼= Covfin(Xan, x), respecting fibre functors. In particular we
obtain an equivalence of the groups of natural self-transformations

πet1 (X, x) = Aut(Fibetx ) ∼= Aut(Fibfinx ) = πfin1 (Xan, x).

Since we have seen in Theorem 1.5 that πfin1 (Xan, x) ∼= ̂π1(Xan, x), finishing the
proof of the theorem.

1.1.3 The projective line

In this subsection we give a purely algebraic proof of the fact that πet1 (P1) = 1 over
an algebraically closed field k. This is equivalent to the statement below.

Proposition 1.12. Let X be a smooth genus zero curve over an algebraically closed
field k. Then every connected finite étale map π : Y → X is an isomorphism.

The main step of the argument will be to show that Y has to be of genus zero.
Topologically one would argue with the Euler characteristic of Y being 2− 2g = 2n,
where n denotes the degree of the covering map. This implies n = 1 and g = 0.
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Proof. For an arbitrary smooth curve C, the Euler characteristic of the sheaf TC of
tangent vector fields is given by 1− g, where g denotes the genus. Definition 1.6 can
be read as stating that the natural map TY → π∗TX is an isomorphism. Therefore
we obtain

χY (TY ) = χ(π∗TY ) = χ(TX ⊗ π∗OY ),

by virtue of the projection formula. The Riemann-Roch theorem implies

χ(TX ⊗ π∗OY ) = nχ(TX) + deg π∗OY .

But since the same argument also works with the dual of the sheaves TX and TY ,
we see that deg π∗OY = 0 with the help of Serre duality. As above we obtain n = 1
and g(Y ) = 0.

There is a simple direct argument that such an étale morphism is an isomorphism.
As we have seen above, π∗ induces an isomorphism P ic(X) → P ic(Y ). Picking a
very ample line bundle (e.g. TX) L on X, its pullback will again be very ample (TY
in the example). Hence, π : Y → X is given by a grading preserving morphisms of
graded rings

k[x, y]→ k[x′, y′],

and thus is either constant or an isomorphism.

1.1.4 Galois theory

While over algebraically closed fields k̄ of arbitrary characteristic, the étale funda-
mental group behaves away from bad primes in analogy with what is known from
complex geometry, a slightly different situation arises for non-algebraically closed
fields k.

Lemma 1.13. Let k be a field with separable closure ksep, then

πet1 (Spec k) ∼= Gal(ksep/k).

Proof. Proposition I.3.1 in [Mil80] implies that a connected finite étale covering of
the spectrum of a field k is given by the spectrum of a finite separable field extension
k′. The choice of a geometric base point for k is induced by fixing a separable closure
ksep of k. The fibre of k′/k at ksep is given by the set of different embedding of k′ into
ksep. The étale covering given by k′/k is regular if and only if it is Galois. Using the
above insights it is easy to verify that πet1 (Spec k) is given by Gal(ksep/k) endowed
with the classical structure of a profinite group.
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In the second part of this talk the absolute Galois group of a finite field will play
a special role.

Lemma 1.14. Let k = Fq be a finite field, with algebraic closure k̄. The Frobenius
automorphism x 7→ xq gives rise to an identification

Gal(k̄/k) ∼= Ẑ.

Proof. Every finite field extension of k is Galois, and can be realized within k̄ as the
fixed-point set Fqd of F d. The Galois group Gal(Fqd/F) is a cyclic group of order d,
generated by F . Since Fqd ⊂ Fqd′ , if and only if d|d′, we obtain the same pro-system
of finite cyclic groups calculating the pro-finite completion of Z.

For a general scheme X over a field k one has a short exact sequence of groups,
relating πet1 with the absolute Galois group of k:

1→ π1
et(X ×Spec k Spec ksep)→ πet1 (X)→ Gal(ksep/k)→ 1.

In particular we conclude that the projective line over a finite field P1
k has étale

fundamental group isomorphic to Ẑ.

1.2 Sheaves

As we have just seen it is possible to recover a substantial part of the topological
information contained in the fundamental group of an algebraic variety, by studying
finite étale coverings. One might therefore hope for the existence of an étale topology
on an algebraic variety X, e.g. given in form of a functorial assignment of a topo-
logical space Xet to X, s.t. π1(Xet) = πet1 (X). If this was possible, we would also at
once solve the problem of defining singular cohomology groups for X, since we could
just calculate the cohomology of the constant sheaf A on Xet to compute singular
cohomology with coefficients in A.

Nonetheless it seems unlikely that a topological space Xet in the traditional sense
will be able to accomplish all of these tasks. Instead of generalizing the theory of
topological spaces, we will try to guess how to modify the definition of Zariski sheaves
by studying examples of étale sheaves provided by the theory of fundamental groups.

1.2.1 Local systems

Definition 1.15. Let X be a topological space (sufficiently connected, as in the first
subsection), a local system L on X is a locally constant sheaf of abelian groups, i.e.
there exists an open covering (Ui) of X, s.t. each L|Ui is equivalent to a constant
sheaf.
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There is an interesting link between locally constant sheaves L and covering
spaces. For every sheaf in sets F on X there exists a universal local homeomorphism
π : YF → X, s.t. F can be identified with the sheaf of sections of YF . This construc-
tion is referred to as the étale space of the sheaf F , and is given by appropriately
topologizing the disjoint union of stalks

∐
x∈X Fx.

In case of a local system L the étale space YL can be seen to be a covering. The
condition of L being locally constant translates directly into YL → X being locally
trivial, since the étale space of the constant sheaf A is given by X×A. This discussion
reveals in particular that local systems on a simply connected space a trivial, which
yields the following even more general description of locally constant sheaves.

Proposition 1.16. Let L be a local system on X and x ∈ X a base point. If Lx ∼= A,
A being a fixed abelian group, we call L a local system with fibre A, or an Aut(A)-
local system. There is a natural equivalence of categories of Aut(A)-local systems
and representations of the fundamental group

π1(X, x)→ Aut(A).

Proof. Let π : X̃ → X be a universal covering space for X, endowed with the canon-
ical π1(X, x)-action given by deck tranformations. Every local system L on X pulls

back to a trivial local system π∗L on X̃, since the universal covering space is sim-
ply connected. The pullback π∗L is endowed with a π1(X, x)-equivariant structure,
which is equivalent to giving a representation of π1(X, x) → Aut(A), since π∗L is
trivial.

The representation of π1(X, x) on Aut(A) can also be described in terms of mon-
odromy. Parallel transport along closed paths representing elements in the funda-
mental group yields an automorphism of the stalk Lx.

The theory above motivates the following analogue of étale local systems.

Definition 1.17. Let G be a topological group and X a variety with geometric base
point x. An étale G-local system is a continuous representation

πet1 (X, x)→ G.

Of particular importance to us will be `-adic local systems, which correspond to
continuous representations taking values in GLn(Q̄`). Nonetheless we will first study
étale local systems with discrete structure groups to get a feeling for the theory. In
this case it is easy to guess what the analogue of the étale space construction should
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be. Let therefore G be a finite discrete group, arising as the symmetry group of a
mathematical object A (e.g. an abelian group). A continuous representation

πet1 (X, x)→ G

then gives rise to an open kernel N (since {0} is open in G), which induces a regular
finite étale covering YN of X with deck transformation group

Aut(YN/X) ∼= πet1 (X, x)/N.

In the particularly interesting case where G ∼= Aut(YN/X), it seems plausible to call
YN the étale space of the local system under consideration. In general, the definition
as twisted product

YN ×Aut(YN/X) A := (YN × A)/Aut(YN/X)

seems justified.

1.2.2 Étale Sheaves

It is important to emphasize the analogy with the construction of topological local
systems coming from representations of the fundamental group. There we noticed
that every local system on X trivializes on the universal covering space and can
therefore we described in terms of an equivariant structure on the trivial local system.
The above story for étale local systems should thus be read as stating that every étale
local system with discrete structure group trivializes along a finite étale covering. In
light of Definition 1.15 this motivates the following notion of étale presheaves.

Definition 1.18. An étale presheaf F (in abelian groups) is a rule that assigns to
every étale map U → X an abelian group F(U → X) (usually called F(U) to simplify
notation), and to every commutative diagram of étale maps

U //

  

V

��
X

restriction morphisms |VU : F(V ) → F(U), satisfying the rules |UU = idF(U) and
|WV |VU = |WU for commutative diagrams of étale maps

U //

''

V //

  

W

��
X.
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We have certainly realized above that it is necessary to associate F(U) to every
finite étale map, to cover the case of étale local system; and to every Zariski open
subset, to include the traditional theory of sheaves in algebraic geometry. Allowing
arbitrary étale maps U → X is a suitable compromise between the two, since the
inclusion of a Zariski open subset is also étale.

Analogous to open covering in topology, an étale covering is a collection of étale
morphisms {Ui → X}, which are jointly surjective. We can now define étale sheaves
in complete analogy with sheaves on topological spaces, replacing the intersection of
two open subsets by the fibre product Uij := Ui ×X Uj.

Definition 1.19. An étale sheaf is an étale presheaf, s.t. for every étale covering
{Ui → U} of an étale map U → X the following is an equalizer diagram

F(U)→
∏
i

F(Ui) ⇒
∏
i,j

F(Ui,j),

i.e. for every collection of si ∈ F(Ui) satisfying si|UiUij = sj|
Uj
Uij

there exists a unique

s ∈ F(U), s.t. s|UUi = si.

In the theory of étale fundamental groups we have already seen that the role of
base points is taken by geometric points x : SpecF sep → X in algebraic geometry.
We will further emphasize this viewpoint by introducing the notion of stalks of an
étale (pre)sheaf at a geometric point x. Recall that for classical sheaves F the stalk
at a point x ∈ X is defined to be the direct limit of F(U), where U is an open subset
containing x.

Definition 1.20. Let F be an étale presheaf on X and x a geometric point of X.
The stalk Fx is defined to be the direct limit of F(U → X) taken over the system of
étale maps U → X sitting in a commutative diagram

x //

  

U

��
X.

1.3 Cohomology

The category of étale sheaves in abelian groups Shet(X) can be shown to be abelian
and having enough injectives (Proposition III.1.1 in [Mil80]). This allows us to apply
the theory of (right) derived functors to the left exact global section functor, sending

12



an étale sheaf F to the abelian group F(X). The obtained functors will be denoted
by H i

et(X,F) and referred to as étale cohomology groups of F .
Alternatively we can also apply a Cech-cohomology construction for étale covering

{Ui}, yielding a slightly more restrictive theory (chapter III.2 in [Mil80]).

1.3.1 Singular cohomology with finite coefficients

The inability of algebraic geometry to account for possibly infinite covering spaces of a
complex algebraic variety, already indicates that some care with the étale cohomology
groups H i(X,A) for A being a general abelian group might be justified. Nonetheless,
in the case of finite A we have the following remarkable comparison theorem.

Theorem 1.21. Let X be a complex algebraic variety and A a finite abelian group.
Then there is a natural equivalence H i(Xan, A) ∼= H i

et(X,A) of cohomology groups.

An outline of a proof is given in chapter III.3 of [Mil80]. As the comparison
theorem for πet1 , it is based on the Riemann Existence Theorem 1.10, but this time
relying on its full strenght even for X projective. We invite the reader to try proving
the theorem above for i = 1 using the comparison theorem for πet1 .

1.3.2 `-adic cohomology

Although the algebraic recovery of singular cohomology with torsion coefficients, as
given by Theorem 1.21, is very exciting, our interest remains mainly algebraically
retrieving the Betti numbers of Xan. For this reason we would like to find an étale
analogue of the cohomology groups H i(Xan, K), where K is a field of characteristic
zero. It turns out that this can be acchieved directly from the theory of torsion
coefficients using a bit of prestidigitation.

Definition 1.22. We formally define H i
et(X,Z`) to be inverse limit of the system

of étale cohomology groups H i
et(X,Z/`nZ). The `-adic cohomology groups of X are

defined to be
H i
et(X,Z`)⊗Z` Q`.

Based on Theorem 1.21 we obtain

Theorem 1.23. There is a canonical equivalence of `-adic cohomology groups

H i(Xan,Q`) ∼= H i
et(X,Q`).
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Proof. The universal coefficent theorem implies that

H i(Xan, A) ∼= H i(Xan,Z)⊗ A⊕ Tor(H i+1(Xan,Z), A),

where the second part only depends on the torsion part of H i+1(Xan,Z), and can
therefore be neglected from our analysis. Together with the comparison theorem for
finite coefficient groups 1.21 we obtain that up to torsion we have

H i
et(X,Z`) ∼= H i(Xan,Z`).

Tensoring by Q` we conclude the proof of the assertion.

1.3.3 Parental advisory disclaimer

It is important to know that many étale local systems actually don’t give rise to étale
sheaves as such, but rather to pro-systems of sheaves. Unless one is working with
discrete finite structure groups, it is always necessary to complement the theory of
étale sheaves with some abstract nonsense.

2 The function sheaf dictionary

In the section part of these notes we consider varieties X0 over a finite field. It is
not difficult to see that the purely algebraic concepts of étale fundamental groups,
étale sheaves, and `-adic cohomology are still well-defined in this geometrically exotic
context.5

We denote by k̄ a fixed algebraic closure of k, and by X̄ the base change of X0 to
Spec k̄. Every element of Gal(k̄/k) induces a scheme-theoretic automorphism of X.
This implies the existence of an interesting extra structure for the `-adic cohomology,
which is not present over the field of complex numbers: the action of the Galois group
Ẑ = Gal(k̄/k) on H i

et(X,Q`). Since Ẑ is topologically generated by the Frobenius

automorphism 1 ∈ Ẑ, it suffices to study the action of the Frobenius automorphism
of an algebraic variety on `-adic cohomology. If X is explicitly given by equations, Fx
is the map of algebraic varieties given by raising the coordinates to the pr-th power,
where pr = |k|.

Definition 2.1. A Weil `-adic local system on X0 is an `-adic local system L on X0

together with an isomorphism
F ∗XL

∼= L.

5We emphasize that ` and p := char k are always assumed to be coprime.
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2.1 Character sheaves on commutative algebraic groups

We refer the reader to Gaitsgory’s chapter in [BCdS+03]. Let A (resp. A0) be a
commutative algebraic group scheme, defined over a finite field k, and let A = A(k)
be the finite commutative group of k-points. The Frobenius morphism F : A → A
can be shown to be an isomorphism of group schemes. The group A can be identified
with the fixed-points of F , or alternatively with the zero fibre of the map

L : A → A,

which sends x to Fx− x. The map L is called the Lang isogeny, and can be shown
to be a finite étale covering. In the special case of the additive group Ga, the Lang
isogeny is given by the Artin-Schreier map A1 → A1, sending x to xp − x.

Lemma 2.2. The Lang isogeny L is a regular étale covering, with group of deck
transformations canonically equivalent to A.

Proof. Every non-trivial element of A induces a non-trivial action on A by transla-
tion. In particular we have a canonical action of A on A, which by definition of L
preserves the Lang isogeny. In particular we see that there is an injection

A ↪→ Aut(L),

but since each fibre of L can be non-canonically identified with the kernel A of L,
we conclude that A acts transitively on the fibres. This implies that L is a regular
étale covering, and moreover that A ∼= Aut(L).

This simple result, combined with Lemma 1.9, yields a construction of associating
an Weil `-adic local system on A (preserved by FA) to a character

χ : A→ Q̄`.

Lemma 2.3. To every character χ : A → Q̄` we can naturally associate a Weil
`-adic local system Lχ on A, satisfying Lχ1χ2

∼= Lχ1 ⊗ Lχ2.

Proof. Lemma 2.2 shows that the Lang isogeny L : A → A is a finite étale covering
with group of deck transformations given by the finite commutative group A. In
particular we have a surjection πet1 (A, 0) � A by Lemma 1.9. By composing with
the character χ : A→ Q̄` we obtain a continuous representation of the fundamental
group, giving rise to an `-adic local system Lχ.
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Applying this construction to the Artin-Schreier morphism, gives rise to inter-
esting local systems on the affine line, usually referred to as Artin-Schreier sheaves.6

Similarly, Kummer sheaves on the multiplicative group Gm and Hecke eigensheaves
on Jacobians of curves, can be constructed.

2.1.1 Extracting a function out of a sheaf

Conversely to the process described in the proceeding subsection, we would like
to associate a function on X(k) to a Weil local system L on X. In order to do
that we let x : Spec k → X be a k-point of X. Pulling back L to x, we simply
obtain a representation of πet1 (Spec k) = Gal(k̄/k) = Ẑ, which is determined by the
action of the Frobenius morphism. In analogy with the above character-theoretic
construction, we therefore associate the trace of the Frobenius element on the stalk
at x. The corresponding function will be denoted by

fL : X(k)→ Q̄`.

The lemma below follows directly from the definition of the Lang isogeny, and es-
tablishes a compatibility with the character sheaf construction of Lemma 2.3.

Lemma 2.4. We have fLχ = χ.

This is not the only convenient property of the function-sheaf correspondance.

Lemma 2.5. The following properties hold for Weil local systems L1, L2 on X, and
a map π : Y → X:

(a) fL1⊕L2 = fL1 + fL2,

(b) fL1⊗L2 = fL1 · fL2,

(c) fπ∗L = π∗fL.

The functor π∗ has an adjoint given by push-forward π∗. At least for a proper
morphism Y → X we would expect that fπ∗L should be calculated by fibrewise (dis-
crete) integration of the function fL. In order for this to be true, it is necessary
to generalize the definition of f to complexes of étale local systems and even more
generally complexes of constructible `-adic sheaves. There exists a triangulated cate-
gory Db

const(X, Q̄`), containing the categories of `-adic local systems supported on an

6This statement is to be contrasted with the analogous situation over the complex numbers,
where the affine line, due to its simply-connectedness, does not carry any interesting local systems.
As we can see, A1 is not simply-connected in positive characteristic!
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arbitrary closed subvarieties Z ⊂ X. Moreover, it contains complexes of `-adic local
systems and generalizations thereof. The functors π∗, π

∗, ⊗ and ⊕ admit derived
analogues, which in the particular important case of π∗ compute fibrewise cohomol-
ogy. An object L• in Db

const(X, Q̄`), fixed by FX , gives now rise to a function on
X(k), by taking an alternating sum of traces∑

i∈Z

(−1)iTr(f ∗ : H i(L•)→ H i(L•)).

Theorem 2.6 (Grothendieck-Lefschetz). For a proper map π : Y → X and L• ∈
Db
const(X, Q̄`) we have fπ∗L• =

∫
π
fL•.

The Grothendieck-Lefschetz theorem is a generalization of a classical theorem in
algebraic topology, which is due to Lefschetz. In connection with its relevance to the
Weil conjectures, it should be understood to be the main motivation to study étale
analogues of topological invariants.

Theorem 2.7 (Lefschetz). Let X be a nice compact topological space, and f : X → X
a map with only finitely many fixed-points. Then the number of fixed points equals
the following alternativing sum of traces∑

i∈N

(−1)iTr(f ∗ : H i(X,Q)→ H i(X,Q)).

Naively applying an `-adic analogue of the Lefschetz fixed-point Theorem to the
Frobenius FX of our variety X, we see that the number of k-points can be calculated
as ∑

i∈N

(−1)iTr(F ∗X : H i(X, Q̄`)→ H i(X, Q̄)`),

which agrees with fπ∗Q̄` , where π : X → Spec k. In general we should think of
functions obtained by fibrewise integration as giving rise to a twisted count of rational
points.
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