Navigation
|
Archives du séminaire de Géométrie et Théorie ErgodiqueAutomne 2009This seminar is a joint seminar for the Chair of Geometry (IGAT), the Chair of Ergodic and Geometric Group Theory (IMB) and the Geometric Analysis Unit (IGAT). The seminar is intended to cover a wide range of topics including (but not exclusively) geometric analysis, geometric group theory, low-dimensional geometry and topology, and geometry in a broad sense. People who wish to receive emails concerning the seminars are invited to contact one of the organizers. Le séminaire se déroule les jeudis à 11h30 en salle MAA110 Organisation : Marc TroyanovProgramme :
Retour aux archives du séminaire
Séminaire GTE - Jeudi 24 septembre 2009, 11h15 Judit Abardia : Integral geometry in complex space forms Séminaire GTE - Jeudi 15 octobre 2009, 11h30 Marc Troyanov : Surfaces with bounded integral curvature in the sense of Alexandrov Abstract: In the years 1940-1970, Alexandrov and the "Leningrad School" has developed a rich theory of singular surfaces. These are topological surfaces, with an intrinsic metric for which we can define a notion of curvature which is a Radon measure. This class of surfaces has nice convergence properties and it is remarkably stable with respect to various geometric constructions (such as glueing etc.). It includes polyhedral surfaces and C^2 Riemannian surfaces, both classes being dense in the space of Alexandrov surfaces. Any singular surface one can reasonably think of is an Alexandrov surface, yet many geometric properties of smooth surfaces do extend to Alexandrov surfaces. (The paper is downloadable at http://sma.epfl.ch/~troyanov/publications.html) Séminaire GTE - Jeudi 22 octobre 2009, 11h30 Stephen Ducret : L_{qp}-cohomology of Riemannian manifolds and simplicial complexes and bounded geometry Abstract: We investigate conditions on Riemannian manifolds under which the existence of Sobolev inequalities is a quasi-isometry invariant. By some mean, this leads us to defining an integrable cohomology for manifolds (where the measure comes from the Riemannian structure), and a similar cohomology for simplicial complexes. We prove a de Rham-type theorem, and show how this gives the quasi-isometry invariance for integrable cohomology of manifolds, under suitable assumptions. Séminaire GTE - Jeudi 29 octobre 2009, 11h30 Alberto Setti : Stochastic methods and Gradient Ricci Solitons The aim of this talk is to describe some results in stochastic analysis on manifolds, such as stochastic completeness (in the form of the weak maximum principle at infinity), parabolicity and $L^p$-Liouville type results for weighted Laplacians and show how they may be used to obtain triviality, rigidity results, and scalar curvature estimates for gradient Ricci solitons under $L^p$ conditions on the relevant quantities. Séminaire GTE - Jeudi 12 novembre 2009, 11h30 Frédéric Mangolte : Cremona transformations and diffeomorphisms of topological surfaces Résumé : We show that the action of Cremona transformations on the real points of quadrics exhibits the full complexity of the diffeomorphisms of the sphere, the torus, and of all non-orientable surfaces. The main result says that if X is a surface birational to the real projective plane, then Aut(X), the group of algebraic automorphisms, is dense in Diff(X), the group of self-diffeomorphisms of X. (Joint work with János Kollár.) Séminaire GTE - Jeudi 26 novembre 2009, 11h30 M. Fujii : Growth functions of Artin groups Abstract: In this talk, I will talk on the relationship between the growth functions of Artin groups and those of Artin monoids. Also I will talk about some word accepter for Artin monoids.
Séminaire GTE - Jeudi 3 décembre 2009, 11h30 Athanase Papadopoulos : Actions du groupe modulaire d'une surface. Abstract : Je vais passer en revue plusieurs propriétés de rigidité d'actions du groupe modulaire (ou groupe de Teichmüller) d'une surface de type fini. Je vais ensuite présenter un nouveau résultat (obtenu en commun avec Mustafa Korkmaz) sur l'acion de ce groupe sur le complexe des triangulations idéales de la surface. Séminaire GTE - Jeudi 10 décembre 2009, 10h15 Alexandre Mednykh : Holomorphic maps between Riemann surfaces of small genera. Abstract: We will talk about upper bound for the number of surgective holomorphic maps from the genus three Riemann surfece onto genus two Riemann surface. By classical de Franchis theorem (1913) this number is finite. We show that the sharp bound is exactly 48. Séminaire GTE - Jeudi 10 décembre 2009, 11h30 Christopher M. Judge : Subconics in translation surfaces. Abstract: We consider the space of conic sections---or more precisely the complements of conic sections---immersed in Euclidean surfaces with conical singularities. In the special case where the holonomy is trivial---translation surfaces---we show that this space of `subconics' can be used to encode the Teichmueller geodesic flow on moduli space. In particular, closed orbits of this flow can be characterized. Séminaire GTE - Jeudi 17 décembre 2009, 11h30 A. Arnold: Polygones Hyperboliques Larges |