Séminaire GTE
Greg McShane
français | english
Navigation
Home
Sitemap
This wiki
This page
Modules et dynamiques

Greg McShane, 17 avril 2008, 14h15, MA 11


Résumé :

On considère les trois systèmes dynamiques suivants :

1/ l'action d'un group quasi-Fuchsien sur la sphère de Riemann.
Un groupe quasi-Fuchsien est une représentation discrète et fidèle d'un
groupe de surface dans le groupe de transformations de Moebius.

2/ l'action de z->z^2+c sur sur la sphère de Riemann.

3/ l'action du groupe d'automorphismes du groupe fondamental
d'une surface de Riemann  sur la variété de caractères.
La variété de caractères est l'ensemble des représentations
du groupe fondamental dans SL(2,C) à conjugaison près.

A chacun de ses systemes admet une decomposition naturelle (invariant par la dynamique) :

à un groupe quasi-Fuchsien, on associe son ensemble limite et son domaine de discontinuité

à  l'application f:z->z^2+c  on a un ensemble de Julia et l'ensemble de Fatou

finalement pour la variété de caractères on a DF =  {les representations discretes et fideles et du groupe fondamental} et DF^c

On va discuter ses décompositions et en particulier aborder des questions de rigidité/instabilité dans la variété de caractères.

Search
Share